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Abstract

During general anesthesia it is crucial to control systemic hemodynamics and oxygenation levels. However, anesthetic
agents can affect cerebral hemodynamics and metabolism in a drug-dependent manner, while systemic hemodynamics is
stable. Brain-wide monitoring of this effect remains highly challenging. Because T2*-weighted imaging at ultra-high
magnetic field strengths benefits from a dramatic increase in contrast to noise ratio, we hypothesized that it could monitor
anesthesia effects on brain blood oxygenation. We scanned rat brains at 7T and 17.2T under general anesthesia using
different anesthetics (isoflurane, ketamine-xylazine, medetomidine). We showed that the brain/vessels contrast in T2*-
weighted images at 17.2T varied directly according to the applied pharmacological anesthetic agent, a phenomenon that
was visible, but to a much smaller extent at 7T. This variation is in agreement with the mechanism of action of these agents.
These data demonstrate that preclinical ultra-high field MRI can monitor the effects of a given drug on brain blood
oxygenation level in the absence of systemic blood oxygenation changes and of any neural stimulation.
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Introduction

Anesthetic drugs are widely used in clinical surgery, intensive

care units and preclinical research. Although it is well established

that anesthetic agents influence the cerebral blood flow (CBF) [1]

and cerebral metabolism [2], the data reported are often

conflicting. For example, the study of ketamine effects on CBF

and cerebral metabolic rate of oxygen (CMRO2) found contra-

dictory results in patients [3,4], and in different animal models

[5,6]. Effects might also differ locally: ketamine caused simulta-

neous increase in CBF and glucose utilisation only in specific

limbic structures [7]. Compared to the awake state, ketamine-

induced anesthesia in rats caused no change in CBF and CMRO2

except in the anterior cortex which showed a small increase in

CMRO2 [8]. Lei et al. [9] showed that xylazine generated a

strongly region-dependent reduction in CBF, with the largest

reductions in the hypothalamus and septum and the least

reduction in the caudate putamen. The same authors [9] showed

that ketamine induced no significant increase in the CBF in the

rat, supporting the idea that there are no major changes in

CMRO2 in the cortex of ketamine anesthetized rats. Thus, the

conflicting findings about ketamine consequences may be related

to the dosage, the ventilation methods, the species differences and

the methodology applied to measure cerebral blood flow and

metabolism. Because a deep understanding of the effects of

anesthetic drugs on cerebral hemodynamics and metabolism is

critical both for the clinical and preclinical use as well as for

translational research, there is a need for new sensitive and specific

measurement methods.

MRI has been shown to be sensitive to blood oxygenation

effects, especially when using high magnetic fields, due to the

paramagnetic properties of deoxyhemoglobin contained in

circulating erythrocytes [10–12]. Deoxyhemoglobin introduces

magnetic field inhomogeneities, while oxyhemoglobin, being

diamagnetic, has a negligible effect. As a result, a decrease in

deoxyhemoglobin leads to an increase in signal intensity in

magnetic resonance images sensitized to the apparent transverse

relaxation time (T2*), e.g. gradient echo images. Thus we

hypothesized that a substantial increase in the MR field would

sensitize the signal to a degree that would enable T2* signal to

directly monitor brain blood oxygenation level.

Here we show that different anesthetic agents (isoflurane,

ketamine-xylazine, medetomidine) spontaneously induce different

local contrast changes in magnitude gradient echo images

acquired at ultra-high magnetic field (17.2T) and high magnetic

field (7T) in-vivo in rat brains. Such changes are directly related to

effects of the drugs on the microvasculature and are readily

quantifiable. Our results suggest that ultra-high field (UHF) MRI

is a good candidate to assess in vivo and in real-time the effects of

various drugs on brain blood oxygenation level.

Results

Physiologic measurements
There were no significant differences in arterial blood-gas values

between different types of anesthesia protocols: PaCO2 was

measured in a range of 41–46 mmHg, PaO2 was .200 mmHg

and pH was maintained in a 7.30–7.45 range. During all the MR
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experiments the ventilation parameters were adjusted to maintain

constant exhaled CO2. The mean arterial systolic blood pressure

was 80.063.6 mmHg under isoflurane, 69.963.6 mmHg under

ketamine-xylazine and 87.069.3 mmHg under medetomidine.

Effect of the magnetic field strength on T2* contrast
Figure 1 shows coronal magnitude images obtained, under the

same anesthesia protocol (ketamine-xylazine), at two different

magnetic field strengths, 7T (Figure 1A) and 17.2T (Figure 1B).

Vein-parenchyma contrast was higher at 17.2T compared to 7T.

Specifically, for the rats imaged in Figure 1 the number of

hypointense pixels counted at 7T and 17.2T were 197 and 516,

respectively (8 slices, total number of pixels considered 20 000).

Similar results were obtained under medetomidine anesthesia: we

counted 158 hypointense pixels at 7T and 419 at 17.2T.

Anesthesia effect on magnitude T2* contrast
Isoflurane vs ketamine-xylazine. Coronal magnitude T2*

images obtained under the two different types of anesthesia

(isoflurane and ketamine-xylazine) at different field strengths (7T

and 17.2T) are shown in Figure 2. We notice a slight change in

contrast at 7T after the injection of ketamine-xylazine (Figures 2A

and 2B). On the other hand, at 17.2T the change in contrast is

substantial. The vein-parenchyma contrast under ketamine-

xylazine anesthesia is higher compared to that under isoflurane

anesthesia. Being oriented parallel to the slice plane, the blood

vessels appear as dark lines; as it is clearly seen in Figure 2C. The

analysis performed on the 17.2T magnitude data revealed a

striking contrast increase. Specifically, in analyzing the signal

intensity in the cortex we found 5.4 times (average over 16 slices,

in 3 animals) more pixels corresponding to blood vessels, when

using ketamine-xylazine anesthesia versus isoflurane anesthesia.

The results obtained for each animal are shown in Table 1.

Figures 2G and 2H show typical examples of pixels counted in our

analysis for the two anesthesia conditions, corresponding to the

ROIs displayed in Figures 2E and 2F, respectively.

Isoflurane vs medetomidine. To ascertain which anesthetic

agent is mainly responsible for the difference in contrast described

above we performed a second set of experiments in which we

compared isoflurane with medetomidine. Figure 3 shows the

images acquired, at 7T and 17.2T, under the two conditions: T2*

contrast obtained under medetomidine is very similar to the

contrast obtained under ketamine-xylazine (Figure 3C). Image

analysis showed a 4.8 times increase in the number of the blood

vessels counted under medetomidine compared to that under

isoflurane (average over 16 slices in 3 animals). The images

analysis was performed as for the isoflurane ketamine-xylazine

comparison with typical examples of pixels counted shown in

Figures 3G and 3H, corresponding to the ROI displayed in

Figures 2E and 2F, respectively. Table 1 summarizes the results.

We limited our image analysis to cortical regions; however,

blood vessels are also visible in sub-cortical regions, including the

thalamus and hippocampus (both visible in Figure 3). 3D

acquisitions are also possible as illustrated in Figure 4, which

displays the difference between images acquired under isoflurane

and medetomidine anesthesia overlaid on the medetomidine

image (Figure 4A) and the 3D renderings of the difference images

between isoflurane ketamine-xylazine and isoflurane medetomi-

dine, in Figures 4B and 4C, respectively. Veins and their

ramifications are clearly visible on the brain surface.

Discussion

In this study we establish that the brain/vessels contrast in T2*-

weighted images at UHF manifestly depends on the anesthetic

agent used. Stemming from magnetic susceptibility differences

between the blood in the vessels and the surrounding tissue, this

phenomenon is visible to a much smaller extent at lower field

strengths (7T). To our knowledge this is the first experimental

observation of this effect. The different anesthetic agents, at the

concentrations that we used, are known to induce ‘loss of

consciousness’ in rodents. Furthermore, clinical observation and

physiology monitoring indicated a stable general anesthesia in all

animals. Could the anesthetic agents act as contrast agents?

Because anesthetic agents induce profound changes in general and

local brain hemodynamics and metabolism, a plausible explana-

tion for these results is the difference in the deoxyhemoglobin

brain vascular content induced by the anesthesia. This difference is

caused by changes in different physiological parameters (CBF,

CMRO2, PtO2, vasodilatation) [13–22] generated by the three

anesthetics used in this study (isoflurane, ketamine-xylazine,

Figure 1. Effect of the magnetic field strength on T2* contrast
in rat brain images acquired in vivo under ketamine-xylazine
anesthesia. Representative FLASH images, coronal sections, acquired
at 7T (A) and 17.2T (B). Image resolution: 100 mm6100 mm6250 mm
and 80 mm680 mm6200 mm for 7T and 17.2T, respectively.
doi:10.1371/journal.pone.0032645.g001

Figure 2. Effect of anesthetic agents on T2* contrast in rat brain
images at 7T and 17.2T: ketamine-xylazine vs isoflurane.
Images are coronal sections at 7T (A, B) and 17.2T (C, D, E, F) acquired
in vivo under general anesthesia using ketamine-xylazine (A, C, E) and
isoflurane (B, D, F). The red ROIs (E, F) show the regions used to
calculate the number of pixels corresponding to visible blood vessels at
17.2T. The pixels below the 75% intensity threshold (see text)
corresponding to these ROIs are clearly visible (G, H).
doi:10.1371/journal.pone.0032645.g002
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medetomidine). The modifications observed in the vessel-tissue

contrast in the UHF T2* images are induced by changes in blood

oxygen level produced by an altered metabolic load or altered

CBF. Under normoxic conditions arterial blood is fully oxygen-

ated and does not contribute to blood oxygenation level dependent

(BOLD) contrast, while venous blood vessels containing de-

oxygenated blood show as hypointense regions in the MR images.

BOLD image contrast is enhanced at high magnetic fields, as we

see on the images, with the hypointense lines better visible at

17.2T than at 7T. BOLD contrast can be used to monitor non-

invasively the blood oxygenation levels of the brain in response to

central nervous system drugs that affect basal metabolism or CBF,

like the anesthesia agents used in this paper. Isoflurane resulted in

a low contrast between cortex and venous blood vessels as seen in

the 17.2T images, likely due to CBF increase, cerebral glucose

uptake decrease and decrease of deoxygenated blood in the venous

blood vessels. Ketamine-xylazine and medetomidine resulted in a

high contrast between cortex and venous blood vessels, probably

because of CBF decrease and cerebral glucose utilization increases

in some limbic structures, leading to an increase of deoxygenated

blood in the venous blood vessels.

Further investigations of this dependence are needed to fully

understand the relationship between the anesthetic agent used and

the vessel-tissue contrast observed. The majority of animal fMRI

studies (rodents, non-human primates) are performed under

general anesthesia in order to reduce motion artifacts and to

minimize the stress [23,24]. Not only do the anesthetic agents

influence the brain activity [25,26] but also modulate the signal

intensity in T2*-weighted images in UHF as shown in this

manuscript. It is therefore imperative to know which anesthetic

agent is most appropriate when performing fMRI studies.

Knowing the influence of different anesthetic agents on T2* will

help the optimization of scanning parameters, especially the echo

time (TE), given the strong dependence of the functional activation

pattern on the TE/T2* relationship [27].

MRI at UHF allows an increase in resolution and image

contrast. The increase in contrast to noise ratio is particularly

important for T2*-weighted imaging, which is sensitive to

susceptibility effects caused by a variety of sources, including

deoxyhemoglobin concentration, iron deposits, and tissue micro-

structure. In the human brain, gradient echo techniques at UHF

produce high resolution, high contrast images [28] and are able to

delineate cortical vascular anatomy and resolve micro-vessels with

diameters down to 100 mm both in vitro [29] and in vivo [30,31].

The visualization of small venous structures is very useful for

studying neurological diseases in relevant preclinical animal

models. A few studies demonstrated the non-invasive detection

of rodent brain vasculature in magnitude T2*-weighted images at

high magnetic fields [10,12]. More recent studies report high

resolution imaging of brain microvasculature in rodents using

susceptibility weighted imaging [32] or phase imaging [33]. As

shown in this manuscript, due to the extreme sensitivity to brain

blood oxygenation level changes induced by anesthetic agents,

UHF MR studies have the potential to screen future anesthesia

drugs for their action on cerebral blood oxygentaion. More

generally, UHF may also play a role during preclinical screening

of new pharmacological agents for their effect on brain

oxygenation on a local basis.

Materials and Methods

Animals
All animal studies were conducted in accordance with the

European convention for animal care and the NIH’s Guide for the

Table 1. Ratio of the number of hypointense pixels counted for different anesthesia conditions (ketamine-xylazine/isoflurane and
medetomidine/isoflurane) at 17.2T.

Anesthetic Rat # Hypointense pixels under isoflurane Ratio of hypointense pixels

Ketamine-xylazine/isoflurane 1 225 4.1

2 238 4.4

3 180 7.7

Medetomidine/isoflurane 4 196 7.2

5 134 4.0

6 241 3.4

doi:10.1371/journal.pone.0032645.t001

Figure 3. Effect of anesthetic agents on T2* contrast in rat brain
images at 7T and 17.2T: medetomidine vs isoflurane. Images are
coronal sections at 7T (A, B) and 17.2T (C, D, E, F) acquired in vivo under
general anesthesia using ketamine-xylazine (A, C, E) and isoflurane (B, D,
F). The red ROIs (E, F) show the regions used to calculate the number of
pixels corresponding to visible blood vessels at 17.2T. The pixels below
the 75% intensity threshold (see text) corresponding to these ROIs are
clearly visible (G, H).
doi:10.1371/journal.pone.0032645.g003
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Care and Use of Laboratory Animals. This study has been

approved by the Comité d’EThique en Expérimentation Animale

Commissariat à l’Energie Atomique et aux énergies alternatives

Direction des Sciences du Vivant Ile de France (CETEA CEA

DSV IdF) under protocol ID 10_032. Sprague-Dawley male rats

with weights between 275 g and 300 g (N = 10) were obtained

from Janvier (Saint Isle, France).

General anesthesia
During general anesthesia, animals were mechanically ventilated

(Bioseb, Vitrolles, France) and received a mixture of air/oxygen

(FiO2 = 0.33). All available physiological parameters (blood pres-

sure, respiration rate, expired CO2, O2 saturation, temperature)

were monitored and kept constant throughout the experiment to

ensure normocapnic and normoxic conditions (for the experiments

performed on the 17.2T the O2 saturation was not monitored due to

the incompatibility of the monitoring system with the strong

magnetic field). Arterial blood gases (pH, PaO2, PaCO2) were

sampled a first time after the intubation but before the beginning of

the acquisition, and the second time immediately at the end of the

MRI measurement for each anesthesia condition and analyzed

using a blood gas analyzer (Radiometer Copenhagen).

One group of six animals was imaged on the 17.2T system. Out

of these, three animals were imaged under isoflurane and

medetomidine anesthesia while the other three were imaged

under isoflurane and ketamine-xylazine anesthesia.

Initially, the animals were anesthetized and maintained under

isoflurane (2% inspired isoflurane) during which time a series of

gradient echo images was acquired. Next the animals were

injected with a bolus of medetomidine (0.3 mg/kg, i. v.) or of

ketamine-xylazine (100/10 mg/kg, i.p.) and the isoflurane was

discontinued. A new set of gradient echo images was acquired

30 minutes after isoflurane was turned off. For comparison four

animals were imaged on the 7T, two under each of the two

anesthesia conditions. For two of these animals (one in each

anesthesia group) we installed a femoral catheter and invasively

monitored the blood pressure (SAII, Stony Brook, USA).

MRI acquisition
The UHF MR experiments were performed on a horizontal bore,

17.2T BioSpec (Bruker BioSpin, Etlingen, Germany) imaging system

equipped with a maximum gradient strength of 1000 mT/m. A 3 cm

diameter surface coil (Bruker BioSpin, Etlingen, Germany) was used

for transmission and reception. On the 7T (PharmaScan, Bruker

Biospin, Etlingen, Germany) the experiments were performed using a

home build 2.5 cm diameter surface coil. Following scout scans and

magnetic field homogeneity optimization (FASTMAP), coronal T2
*

gradient echo images were acquired. The 2D acquisition parameters

were optimized for the two different field strengths as follows: 17.2T:

in-plane resolution 80 mm, FOV = 25.6 mm625.6 mm (matrix size

3206320), flip angle a= 45u, TR/TE = 350/8 ms, thk = 0.2 mm,

N_slice = 16, NEX = 14, 7T: in-plane resolution 100 mm,

FOV = 25.6 mm625.6 mm (matrix size 2566256), TR/TE = 300/

12 ms, thk = 0.25 mm, NEX = 20. For the 3D images acquired on

the 17.2T system we used the following parameters: resolution

120 mm6120 mm6120 mm, flip angle a= 45u, TR/TE = 200/8 ms.

Data processing
The 2D MR images were analyzed in Matlab 1.2 (MathWorks,

Natick, Massachusetts). Regions of interest (ROIs) were selected in

areas of high blood vessel density (cortical regions). For each ROI

we extracted the average signal intensity and then counted the

number of pixels with intensities smaller than 75% of this average.

The contrast to noise ratio (CNR) between tissue and vascular

pixels can be calculated as a function of this 75% threshold (t) and

the signal to noise ratio (SNR) of the images using the relationship:

CNR = (12t)6SNR. Given the SNR of 2861.7 for our images

(measured in regions without prominent blood vessels) we found

CNR = 7, which exceeds the value required for reasonable

discrimination [34]. In choosing the ROIs, the very bright pixels

corresponding to edge artefacts were excluded.

The 3D images were processed using Amira software (Amira 5.3.3,

TGS, San Diego, CA). The two datasets obtained under different

anesthesia were realigned and the difference image was generated on

a pixel-by-pixel basis and visualized with Amira 3D rendering.
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