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Abstract

Introduction. Shigella sonnei, the cause of bacillary dysentery, belongs to Gram-negative enteropathogenic bacteria. S. sonnei 
contains a 210 kb virulence plasmid that encodes an O-antigen gene cluster of LPSs. However, this virulence plasmid is fre-
quently lost during replication. It is well-documented that after losing the O-antigen and becoming rough strains, the Gram-
negative bacteria may express an LPS core on its surface. Previous studies have suggested that by using the LPS core, 
Gram-negative bacteria can interact with several C-type lectin receptors that are expressed on antigen-presenting cells (APCs).

Hypothesis/Gap Statement. S. sonnei by losing the virulence plasmid may hijack APCs via the interactions of LPS-CD209/
CD207.

Aim. This study aimed to investigate if the S. sonnei rough strain, by losing the virulence plasmid, interacted with APCs that 
express C-type lectins of human CD207, human CD209a and mouse CD209b.

Methodology. SDS-PAGE silver staining was used to examine the O-antigen expression of S. sonnei WT and its rough strain. 
Invasion assays and inhibition assays were used to examine the ability of S. sonnei WT and its rough strain to invade APCs and 
investigate whether CD209 and CD207 are receptors for phagocytosis of rough S. sonnei. Animal assays were used to observe 
the dissemination of S. sonnei.

Results. S. sonnei did not express O-antigens after losing the virulence plasmid. The S. sonnei rough strain invades with APCs, 
including human dendritic cells (DCs) and mouse macrophages. CD209 and CD207 are receptors for phagocytosis of rough S. 
sonnei. Expression of the O-antigen reduces the ability of the S. sonnei rough strain to be disseminated to mesenteric lymph 
nodes and spleens.

Conclusion. This work demonstrated that S. sonnei rough strains – by losing the virulence plasmid – invaded APCs through 
interactions with CD209 and CD207 receptors.
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INTRODUCTION
Shigella spp., the cause of bacillary dysentery, belong to Gram-
negative invasive enteropathogenic bacteria that can penetrate 
mucosal surfaces of guts. The ingestion of as few as 100 bacteria 
is enough to cause bacillary dysentery [1]. Shigellosis represents 
a significant public health burden in developing countries, with 
about 160 million cases occurring annually, predominantly 
in children under the age of 5 years [2]. The Shigella genus 
comprises four species, including Shigella dysenteriae, Shigella 
flexneri, Shigella boydii and Shigella sonnei, and S. flexneri and 
S. sonnei cause the most infections [3].

The ratio of species dominance is highly dependent on the 
socio-economic conditions of an area. In developing countries, 
including those of sub-Saharan Africa and certain countries in 
Asia, S. flexneri is the dominant cause of shigellosis, responsible 
for over 60 % of infections [4]. In developed countries, such as 
Europe and North America, S. sonnei causes around 80 % of 
shigellosis cases [5]. Countries undergoing socio-economic 
improvements are also experiencing a change in infections 
from S. flexneri to S. sonnei [6]. It appears that the frequency 
of S. sonnei isolation directly correlates with per capita gross 

domestic product (GDP) [7]. The primary cause of this associa-
tion is not fully understood. One hypothesis is that exposure 
to unsanitized drinking water systems in developing countries 
results in Plesiomonas shigelloides infection, and hence in natural 
immunity against S. sonnei. P. shigelloides serotype O17 has a 
lipopolysaccharide O-antigen identical to that of S. sonnei [8]. 
Also, S. sonnei has been shown to possess a functional type 
6 secretion system (T6SS), which provides a niche-specific 
competitive advantage for S. sonnei over S. flexneri [6].

Most Gram-negative enteropathogenic bacteria contain 
LPSs located in the outer membrane. The LPSs are composed 
of three covalently linked domains: lipid A, which is 
embedded in the outer membrane; the oligosaccharide 
core (Fig. 1); and the O-polysaccharide or O-antigen, which 
cover the bacterial surface [9]. The O-antigen is one of the 
essential components for bacterial survival during infec-
tion. For example, Salmonella enterica, Francisella tularensis 
and Burkholderia cepacia utilize the O-antigen to avoid 
phagocytosis and to resist lytic action of the complement 
system [10–12]. Unlike S. flexneri, the genes for O-antigen 
in S. sonnei are located on the large 210 kb virulence plasmid 

Fig. 1. Structures of inner- and outer-core regions of the LPS or LOS of E. coli K12, S. typhimurium and S. sonnei and the genes involved 
in their synthesis. Genes involved in the biosynthesis of core LPS are shown at their approximate site of action (solid line). The sites, 
which are variably substituted or still under investigation, are indicated by dashed lines. The abbreviations in this figure are as follows: 
GlcNAc, N-Acetylglucosamine; Glc, glucose; Hep, heptose; Gal, galactose; P, phosphate; PPEtn, phosphoethanolamine; KDO, 2-keto-3-
deoxyoctonate. It should be noted that E. coli K12 does not possess O-Ag.
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involved in invasion [13]. However, the large plasmid of S. 
sonnei is unstable and easily lost. Why does S. sonnei carry 
genes that control the synthesis of the somatic antigen and 
the expression of virulence on an unstable plasmid, and 
what are selective pressures to maintain the virulent state 
[14]? Maybe, S. sonnei has evolved to lose the virulence 
plasmid as an advantage during infection [15].

Rough Gram-negative bacteria bear shortened LPSs – referred 
to as lipooligosaccharides (LOS) – for which the oligosac-
charide core is exposed to the extracellular environment [9]. 
Previous studies suggested that by using the LPS core, Gram-
negative bacteria can interact with human Langerin (CD207) 
and human DC-SIGN (CD209), expressed on antigen-
presenting cells (APCs) [16–22]. It is well-documented that 
human DC-SIGN is also a receptor for HIV GP-120 that 

hijacks DC-SIGN to be captured by APCs and trafficked to 
target cells such as CD4 lymphocytes [23–25].

Shigella initially crosses the epithelial layer of the colorectal 
mucosa via M cells. M cells are capable of transcytosing 
lumenal antigens into the subepithelial space where gut-
associated lymphoid tissue and/or APCs, such as dendritic 
cells (DCs) and macrophages, are located [26]. The APCs of 
colonic and rectal mucosa can act as ‘Trojan horses’ allowing 
crossing of the intestinal epithelial barrier [27, 28].

In this study, we investigated if S. sonnei rough, rather than 
smooth, strains interacted with human DCs from guts, murine 
primary macrophages and the CHO cell lines that express 
C-type lectins of human CD207, human CD209a and mouse 
CD209b.

METHODS
Bacterial strains
Bacterial strains used in this study are listed in Table 1. E. coli 
K12 strain CS180 contains core oligosaccharides but lacks the 
O-antigen. CS1861 is the strain of CS180 harbouring pSS37, 
a plasmid containing all genes necessary for expression of the 
Shigella dysenteriae serotype 1 O-antigen [29]. E. coli strains 
were cultured on Luria–Bertani (LB) agar at 37 °C overnight. 
Y. pseudotuberculosis (Y1) is a serotype O:1a strain, lacking 
the virulence plasmid (pYV); the strain was obtained from the 
Centers for Disease Control (GA, USA), and used as a control 
strain for invasion since this bacterium invades almost all 
epithelial cell lines via an invasin-integrin interaction [30–32]. 
This strain has been used as a positive invasion control previ-
ously and was cultured on LB agar at 26 °C overnight [33]. S. 
sonnei, a clinical strain isolated from a patient with dysentery 
in Hubei Provincial Center for Disease Control and Prevention, 
Wuhan, PR China, was incubated in tryptic soy broth (TSB) 
at 37 °C overnight. S. sonnei rough strain without the 210 kb 
virulence plasmid was obtained from TS broth containing 0.6 % 
yeast extract with 1.5 % agar and 0.003 % Congo red [15, 34]. 
Rough O+ is a derivative of S. sonnei rough strains that harbour 
pSS37, a plasmid containing all of the genes necessary for 
expression of the S. dysenteriae serotype 1 O-antigen [29]. The 
three S. sonnei strains are isogenic. S. sonnei rough and rough 
O+ strains were cultured on LB agar with the corresponding 
antibiotic at 37 °C overnight.

Cell lines
Cell lines used in this study are listed in Table  1. CHO-
mSIGNR1, CHO-hDC-SIGN and CHO-hLangerin cell lines 
were generated by transfecting CHO cells with corresponding 
C-type lectin cDNAs. Transfection was followed by G418 
(1.5 mg ml− 1) selection and screening for stable surface 
expression [35]. CHO-NEO cells were used as a control cell 
line that expresses the neomycin resistance gene only.

LPS isolation and SDS-PAGE silver staining
The LPS extracts were isolated using the Lipopolysac-
charide Extraction Kit (iNtRON Biotechnology, Korea), 

Table 1. Bacterial strains and cell lines used in this study

Strains Genotypes (phenotypes) Refs

E. coli K 12

CS180 WT (rough) [29, 53, 54]

CS1861 CS180-O antigen 
(smooth)

Y. pseudotuberculosis

Y 1 O:1a, WT expressing 
invasin but with PYV 

plasmid naturally cured 
(smooth)

[30–32, 55]

S. sonnei

Ss-WT WT (smooth) This study

Ss-rough without 210 kb virulence 
plasmid (rough)

This study

Rough O+ S. sonnei-rough with 
pSS37 (smooth)

This study

Cell lines Characteristics

CHO-NEO cells Control cell line, which 
expresses the neomycin 

resistance gene only

CHO-mSIGNR1 Generated by 
transfecting CHO 

cells with mSIGNR1 
cDNAs for stable surface 

expression

CHO-hDC-SIGN Generated by 
transfecting CHO 

cells with hDC-SIGN 
cDNAs for stable surface 

expression

CHO-hLangerin Generated by 
transfecting CHO 

cells with hLangerin 
cDNAs for stable surface 

expression



4

Wu et al., Journal of Medical Microbiology 2021;70:001297

performed according to the manufacturer’s instructions. 
The E. coli strains CS180 and CS1861, which show rough 
LPS (without O-antigen) and smooth LPS (with O-antigen), 
respectively, were used as control strains. After purification, 
the LPS extracts were analysed by 12 % Bis-Tris SDS-PAGE 
and silver stained using the SilverQuest Silver Staining Kit 
(Invitrogen).

Isolation of mouse peritoneal macrophages
The experiments for isolating mouse peritoneal macrophages 
have been described previously [20]. After the mice were 
euthanized, abdomens were immediately exposed, cleaned 
with 75 % ethanol and opened with scissors; 5 ml of RPMI was 
injected into the intraperitoneal cavity. The mouse abdomen 
was gently massaged for 2 min and then lavage fluid was 
collected. The suspension containing the macrophages was 
seeded onto six-well plates, in which each well contained a 
1.5 cm diameter glass cover-slide, and placed in a CO2 incu-
bator for 1.5 h. The cell layers were washed three times to 
remove non-adherent cells. Macrophages were then removed 
from the plastic surface by incubating with citrate saline and 
re-seeded for interaction assays.

Isolation of human gut DCs
Human intestinal segments were obtained from patients 
who were undergoing gastrointestinal surgery and provided 
informed consent. Purification of gut DCs has been described 
previously [22, 36]. Samples were collected in ice-cold Dutch 
modification of RPMI 1640 supplemented with 10 % FBS, 
2 mM l-glutamine, gentamicin (25 µg ml−1), and penicillin/
streptomycin (100 U ml−1). The samples were incubated for 
20 min at room temperature in calcium and magnesium-free 
HBSS containing 1 mM DTT. To remove the epithelium, 
biopsies were transferred to HBSS containing 1 mM EDTA 
and incubated for 30 min on a shaker at 37 °C. To continue 
the isolation of gut DCs, the tissue was digested with 1 mg ml−1 
collagenase D in HEPES-buffered RPMI 1640 containing 
20 µg ml−1 DNase I and 2 % FCS at 37 °C on a shaker for 
90–180 min. Mononuclear cells were separated (650 g, 20 min, 
room temperature) on Ficoll-Paque and washed in complete 
medium. The isolated cells were labelled with anti-CD11c+ 
(Biolegend) and anti-hDC-SIGN antibodies (Pharmingen) 
and then examined by flow cytometry.

Invasion assays
The invasion assays have been described previously [37]. 
Briefly, host cells (CHO, hLangerin, mSIGNR1 and hDC-
SIGN) were plated in a cell culture flask. The degree of cell 
fusion was 80 %. The cells were suspended in RPMI medium 
supplemented with 2 % foetal calf serum at a concentration 
of 1×105 ml−1 and were added to 24-well plates; 12–24 h later, 
cells were washed three times. The 500 µl RPMI medium 
supplemented with 2 % foetal calf serum was added to 24-well 
plates. After the addition of 50 µl of bacterial suspensions at 

a concentration of 5×106 c.f.u. ml− 1, cells were incubated for 
2 h at 37 °C in the presence of 5 % CO2.

To determine the internalization of bacteria, gentamicin – 
which kills extracellular bacteria but cannot penetrate host 
cells – was added to each well at a final concentration of 100 µg 
ml− 1 and the cultures were incubated for 60 min. The cells 
were washed three times to remove the gentamicin. Cells 
were suspended in phosphate-buffered saline containing 
0.25 % Triton, after which the cells were diluted and plated 
on LB plates with corresponding antibiotics. The level of 
internalization of bacteria in the host cells was calculated by 
determining the c.f.u. recovered from lysed cells. All experi-
ments were performed in triplicate, and the data are expressed 
as means±standard errors.

For the inhibition assay, the concentration of cells was 
2×105 ml−1. Anti-mSIGNR1 (5 µg ml− 1) antibody, anti-
hLangerin (5 µg ml− 1) antibody (Pharmingen), and mannan 
(500 µg ml− 1) (Sigma-Aldrich) were added 20 min before 
the addition of bacteria. The concentrations used were 
determined based on our preliminary data and were selected 
based on the fact that, at these concentrations, the compounds 
exerted no effects on the survival of bacteria or host cells, as 
previously shown [17, 18].

Animal assays
All animal experiments were carried out in strict accordance 
with the Institutional Animal Care and Use Committees 
(IACUCs) and Institutional Review Board (IRB) of Tongji 
Hospital, Tongji Medical College, PR China. C57BL/6 
female mice at the age of 5–6 weeks were purchased from 
Wuhan University Animal Center. Mice were housed in 
animal facilities at Tongji hospital in direct accordance 
with guidelines drafted by the Animal Care Committees of 
Tongji Hospital. For bacterial infection, three groups (six 
mice/group) of C57BL/6 mice were infected with bacteria 
(1×106 c.f.u.) treated with corresponding antibiotics 
through an intraperitoneal route to observe dissemination.

To confirm bacterial colonization in infected tissues, 
spleens and MLNs were collected after 24 h from intra-
peritoneally challenged mice. Tissues were removed and 
vigorously washed in PBS with gentamicin (100 μg ml−1) 
to remove bacteria that were simply attached but had not 
invaded the tissues [38]. Tissues were then mechanically 
homogenized in 1 ml of 1 % Triton, diluted, and plated onto 
plates containing antibiotics. Colonies were counted after 
18 h of culture at 37 °C.

Statistical analyses
All statistical analyses were completed using Prism soft-
ware, version 6 (Graph Pad, San Diego, CA, USA). Statis-
tical significance was assessed using Student’s t-test for the 
univariate analysis of two sets of data and two-way ANOVA 
for multiple comparisons. P <0.05 was considered statisti-
cally significant.
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RESULTS
S. sonnei without the virulence plasmid did not 
express the O-antigen
SDS-PAGE silver staining was used to examine the O-antigen 
expression of S. sonnei WT and its rough strain. The E. coli 
strains K-12 CS180 (lacking the O-antigen) and CS1861 
(CS180 expressing an O-antigen) were used as controls [29]. 
As shown in Fig. 2, the LPS extract of S. sonnei WT had a 
typical LPS ladder with a predominant chain length of 20 
to 25 O-Ag repeating units; S. sonnei rough strain (lacking 
the O-antigen-encoding virulence plasmid) had only the low 
molecular weight band corresponding to the LPS core-lipid A 
moieties. For rough O+, which harboured the pSS37 deriva-
tive of CS1861, the O-Ag repeating units were identical to 
CS1861.

Rough S. sonnei invades human DCs and mouse 
macrophages
We examined the ability of S. sonnei WT and its rough strain 
to invade DCs. The E. coli strains K-12 CS180 (an avirulent 
strain with the core LPS exposed) and CS1861 (CS180 
expressing an O-antigen) were used as controls [17, 39]. 
Results from the gentamicin protection assays (Fig. 3a, b) 
showed that all of these S. sonnei strains were phagocytosed 
by DCs to some extent, and S. sonnei rough strains were 
taken up more than WT. Previously, it has been reported 
that the central hydrophobic portion of IpaC on virulence 
plasmids, the membrane-spanning domain, was critical for 
entry of Shigella into macrophages [40], suggesting that S. 

Fig. 2. Examination of O-antigen expression of S. sonnei WT and its 
rough strain. Silver staining of the LPS of S. sonnei strains. Controls: 
E. coli strains CS180 and CS1861, which show rough LPS (without 
O-antigen) and smooth LPS (with O-antigen), respectively. S. sonnei 
strains: Ss-WT has the virulence plasmid to express the O-antigen. Ss-
rough and rough O+, which show the rough LPS (without O-antigen) and 
smooth LPS (with O-antigen), respectively.

Fig. 3. Human gut dendritic cells (DCs) and mouse macrophages (mMΦ) phagocytose the rough strains S. sonnei. Gentamicin protection 
assays were used to determine the invasion rates of two sets of the Gram-negative bacteria S. sonnei (Ss-WT, Ss-rough and rough O+) 
and E. coli K-12 (CS180 and CS1861) into mMΦ (a) or DCs (b). The number of phagocytosed bacteria was determined by counting c.f.u. 
recovered following gentamycin treatment. *P <0.05; **P <0.01; ***P <0.001.
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sonnei rough strains use different invasive mechanisms to 
hijack DCs.

CD209 and CD207 are receptors for phagocytosis of 
rough S. sonnei
To further study the interaction of DCs with S. sonnei rough 
strains, stably transfected mSIGNR1/hDC-SIGN/hLangerin 
CHO cell lines were used to test their ability to bind and 
internalize S. sonnei rough strains. Y. pseudotuberculosis (Y1) 
was used as a control since it invaded almost all epithelial cell 
lines via an invasion-integrin interaction [18, 31, 33]. Results 
showed that both CS180 and S. sonnei rough strains effec-
tively invaded CHO-mSIGNR1 (Fig. 4a), CHO-hDC-SIGN 
(Fig. 4b) and CHO-hLangerin (Fig. 4c), but not the CHO. 
This demonstrated that S. sonnei rough strains interacted 
with mSIGNR1, hDC-SIGN and hLangerin, as the S. sonnei 
rough-mediated invasion was also blocked by the expression 
of O-antigen.

Inhibition of receptor-mediated phagocytosis of 
S. sonnei rough strains by an anti-mSIGNR1/anti-
hLangerin antibody
To verify specific interactions of S. sonnei rough and 
hCD207/CD209 receptors, anti-mSIGNR1/anti-hLangerin 
antibodies and mannan (an antagonist of mannose receptors) 
were used. As shown in Fig. 5, when antibodies were applied, 
the phagocytosis of S. sonnei rough strains by transfected 
CHO cell lines was significantly reduced. This suggests that 
the mSIGNR1 and hLangerin have a role in the interaction 
between DCs and S. sonnei rough strains. Mannan still 
inhibited the interactions of CS180 with CD209 and hCD207 
(Fig. 5a), as shown in our previous publications [18–20]. 
However, mannan did reduce the interaction of S. sonnei 
rough strains and CD209, but not the hCD207 receptor 
(Fig. 5b), suggesting that in addition to the LPS core other 
sugar residues exposed on the surfaces of S. sonnei rough 
strains may also mediate their interactions.

Fig. 4. Phagocytosis of S. sonnei strains with transfecting CHO cells. The phagocytosis of two sets of bacteria E. coli K-12 (CS180 and 
CS1861) and S. sonnei (Ss-WT, Ss-rough and rough O+) by CHO-mSIGNR1 (a), CHO-hDC-SIGN (b) and CHO-hLangerin (c) cells were 
analysed. Bacteria and CHO transfectants were incubated together for 2 h, and extracellular bacteria were killed with 100 µg ml− 1 
(final concentration) gentamicin. CHO-NEO cells were used as the negative control cell line. The number of phagocytosed bacteria was 
determined by counting c.f.u. recovered following gentamicin treatment. *P <0.05; **P <0.01; ***P <0.001.

Fig. 5. Inhibition of receptor-mediated phagocytosis of S. sonnei rough strain by antibodies. S. sonnei rough strain cultured at 37 °C was 
incubated with CHO-mSIGNR1 (a) and CHO-hLangerin (b) for 2 h in the presence or absence of anti-mSIGNR1, anti-hLangerin antibodies 
and mannan. All reagents were added to the media 20 min before the addition of bacteria. The phagocytosis rate of Ss-rough was 
determined by the recovery of bacteria following gentamicin treatment. Y. pseudotuberculosis serotype O:1a was used as a control strain 
that shows core-independent invasion of CHO cells. *P <0.05; **P <0.01; ***P <0.001.
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Expression of O-antigen reduces the ability of 
S. sonnei rough strain to be disseminated to 
mesenteric lymph nodes and spleens
To determine whether S. sonnei can be disseminated to local 
lymph nodes and spleens, mice were infected via the intra-
peritoneal route. Fig. 6 shows that all S. sonnei WT, rough and 
rough O+ strains were isolated in spleens and MLNs, but S. 
sonnei rough strains were recovered from spleens and MLNs 
in higher numbers than rough O+ strains. indicating that the 
expression of O-antigen reduced the ability of S. sonnei to be 
disseminated. Most likely, because of the invasive genes on 
virulence plasmids, S. sonnei WT had a strong ability to be 
disseminated.

DISCUSSION
C-type lectins have been studied for their interactions with 
bacteria, viruses and parasites [41–43]. Both DC-SIGN 
and Langerin recognize carbohydrate structures with high 
mannose specificities, therefore, both bind HIV-1 gp120 [44]. 
Langerin induces the formation of the Birbeck granules in 
Langerin+ cells, and mediates HIV-1 degradation, whereas 
DC-SIGN mediates HIV-1 transmission [45, 46]. DC-SIGN 
can bind and readily internalize rough E. coli, Klebsiella 
pneumonia, Mycobacterium tuberculosis, S. typhimurium, Y. 
pestis and Y. pseudotuberculosis [17, 18, 20, 39, 47–49]. This 
CD209-LPS core leads to bacterial dissemination and persis-
tent infection in general [19–22]. We, however, found that 
DC-SIGN/Langerin mediated the phagocytosis of S. sonnei 

rough strains, which was not able to cause disease after losing 
the virulence plasmid [14].

This virulence plasmid is essential for S. sonnei pathogenicity 
[50]. Specifically, infection and dissemination are tightly 
orchestrated by the IpaB and VirG proteins encoded on the 
virulence plasmid [51]. After losing the virulence plasmid, S. 
sonnei rough strains fail to escape from macrophages [40], 
and the CD209/hCD207-S. sonnei rough interactions most 
likely result in the clearance of rough S. sonnei during infec-
tion. As shown in Fig. 6, immune organs, such as spleens and 
MLNs, displayed higher levels of S. sonnei rough internaliza-
tion compared to rough O+. Functioning as the shield for the 
O-antigen, it appears that recovery of rough O+ bacteria from 
spleens and MLNs is seen as an indication of partial virulence.

However, a recent paper indicated that deletion of toxin-
antitoxin systems in the evolution of S. sonnei as a host-
adapted pathogen reduces the metabolic burden for S. 
sonnei growth, reflecting the ongoing transition of S. sonnei 
into an obligate pathogen that is less dependent on survival 
outside a mammalian host than other species of Shigella 
[15]. Moreover, intracellular Shigella can remodel its LPS, 
dampen the innate immune recognition, and evade inflam-
masome activation [1]. Recent studies by Lugo-Villarino et al. 
demonstrated that DC-SIGN has an anti-inflammatory role in 
macrophages in response to pathogens [52]. Therefore, based 
on the CD209/hCD207–S. sonnei rough interactions – most 
likely result in the clearance of rough S. sonnei – we hypoth-
esize that S. sonnei rough strains may provide for less immune 

Fig. 6. S. sonnei strains disseminate in C57BL/6 female mice after intraperitoneal injection. Ss-WT, Ss-rough and rough O+ strains were 
inoculated in mice following the procedures described in Methods. After 24 h, the mice were killed, and the spleens and MLNs were 
separated, homogenized and spread on corresponding plates. The dissemination rate represents the c.f.u. recovered from spleens and 
MLNs. **P <0.01; ***P <0.001.
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system-based killing for losing the plasmid during infection 
(which contributes to S. sonnei WT pathogenicity). Future 
studies may focus on verifyfing the mechanisms of immune 
system-based killing for losing the plasmid and helping the 
survival of WT S. sonnei.
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