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Germline-encoded, cytosolic pattern recognition receptors 
sense infectious and sterile stress signals and play a key role 
in mounting an inflammatory response that eradicates infec-

tions and facilitates wound healing and homeostasis. A consequence 
of intracellular pattern recognition is the activation of caspase-1 
within the inflammasome1,2, and NOD-like receptor (NLR) fam-
ily pyrin domain containing 3 (NLRP3) is a prominent inflam-
masome sensor of microbial patterns, self-derived danger signals 
and environmental cues3–5. Excessive or mutation-driven NLRP3 
responses cause a wide range of inflammatory diseases6, including 
CAPS, which is caused by gain-of-function mutations in NLRP3 
(ref. 7). NLRP3 consists of an N-terminal PYD, a central NAIP 
[neuronal apoptosis inhibitor protein], C2TA [class 2 transcrip-
tion activator, of the MHC], HET-E [heterokaryon incompatibility] 
and TP1 [telomerase-associated protein 1] (NACHT) domain and 
C-terminal leucine-rich regions (LRRs). The NACHT has ATPase 
activity and is bound to the LRRs and/or the PYD to maintain 
an inactive conformation8,9. Once this autoinhibition is released, 
NLRP3 oligomerizes, and its PYD nucleates polymerization of the 
adaptor protein ASC, which serves as an amplification mechanism 
and proceeds in a prion-like, self-perpetuating manner, establishing 
a temporal-spatial threshold control10–12. Polymerized ASC filaments 
eventually assemble into the characteristic single macromolecu-
lar aggregate (speck)13,14. ASC polymerization in turn nucleates 
caspase-1 polymerization by caspase recruitment domain (CARD)–
CARD interactions, resulting in its induced, proximity-mediated 
activation15. Caspase-1 is ultimately responsible for the induction 
of pyroptosis through the cleavage of gasdermin D (GSDMD) and 

subsequent GSDMD pore formation, maturation and release of the 
proinflammatory cytokines IL-1β and IL-18 and the release of dan-
ger signals, including IL-1α, HMGB1 and polymerized ASC par-
ticles16–18. NLRP3 inflammasome activation proceeds in two steps. 
Priming includes the upregulation of inflammasome components, 
including NLRP3 and the substrate IL-1β, a metabolic shift from 
oxidative phosphorylation to glycolysis and the post-translational 
modifications of NLRP3, ASC and caspase-1 (refs. 3–5). NLRP3 is 
activated by diverse stimuli3, and K+ efflux has been proposed as the 
unifying mechanism for NLRP3 activation19. Protein oligomeriza-
tion is a common mechanism for the activation of innate immune 
signaling and NLRP3 oligomerization, and particularly the down-
stream ASC polymerization, are key events in inflammasome acti-
vation10,11. Among the NLRP3 regulatory proteins, NEK7 promotes 
inflammasome activation by bridging two NLRP3 molecules, which 
is insufficient to induce NLRP3 oligomerization20–23. GBP5 enables 
NLRP3–ASC binding in response to soluble, but not crystalline, 
agonists24, implying that other crucial, yet-unknown cofactors are 
necessary for NLRP3 oligomerization, inflammasome assembly and 
activation. To date, the precise mechanism, especially in humans, 
remains unclear.

Here, we report the identification of NLRP11 as an NLRP3 
inflammasome component in human macrophages. NLRP11 
bound to ASC and NLRP3 and was required for NLRP3 oligo-
merization and ASC polymerization. In the absence of NLRP11, 
NLRP3-mediated caspase-1 activation and release of IL-1β and 
IL-18 were defective, but activation of AIM2, NLRC4 and NLRP7 
inflammasomes was not affected. The NLRP3–ASC–NLRP11  
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Fig. 1 | NLRP11 is required for NLRP3-mediated cytokine release. a, Fluorescence microscopy of eGFP (green) and 4,6-diamidino-2-phenylindole 
(DAPI) (blue) in HeK293ASC-eGFP cells transiently transfected with empty plasmid (Ctrl), NLRP3 or NLRP11 (left) and quantification of ASC speck+ cells/
view (right) (Ctrl: n = 4, NLRP3: n = 4, NLRP11: n = 8; mean ± standard deviation (s.d.)); *P = 0.0003, **P < 0.0001. scale bars, 100 μm. b, IL-1β and IL-6 
enzyme-linked immunosorbent assay (eLISA) of cleared culture supernatant (SN) from human macrophages transfected with CtrlsiRNA, NLRP11siRNA or 
NLRP3siRNA; left untreated; primed with LPS (200 ng ml−1, 4 h); and primed and activated with nigericin (Nig) (5 μM, 30 min) (IL-1β: n = 5, IL-6: n = 3, mean 
± s.d.); *P = 0.0043, **P = 0.0079. c, Immunoprecipitation (IP) with immobilized anti-NLRP11 antibodies using total cell lysates (TCLs) from Cas9Ctrl and 
NLRP11KO THP-1 cells primed with Pam3CSK4 (Pam) (1 μg ml−1, 4 h) and analysis by immunoblot alongside TCL for NLRP11 and tubulin loading control. 
The arrowheads mark NLRP11 and immunoglobulin G heavy chain (HC). d–f, IL-1β (d,e) and IL-18 (f) eLISA of SN from Cas9Ctrl, NLRP11KO#1, NLRP11KO#2 and 
NLRP3KO cells left untreated, primed with LPS (200 ng ml−1, 4 h) or Pam3CSK4 (1 μg ml−1, 4 h) and primed and activated with nigericin (5 μM, 30 min), 
silica (200 μg ml−1, 6 h), ATP (5 mM, 25 min) or cultured in K+-free medium (3 h) (n = 3, mean ± s.d.). *P < 0.0001 (d), *P = 0.0009, **P < 0.0001 (e); 
*P < 0.0001, **P = 0.0044, ***P = 0.0039, ****P = 0.002, *****P = 0.0002, ******P = 0.0077, *******P = 0.0037 (f). The dotted line indicates that for 
NLRP3KO only the Pam3CSK4 + nigericin group is shown as control. g, IL-1β and IL-18 eLISA of SN from Cas9Ctrl, NLRP11KO, CASP1KO or CASP4KO cells left 
untreated, primed with Pam3CSK4 (1 μg ml−1, 4 h) and Lipofectamine 2000 (Lipo) transfected with or without LPS (1 μg ml−1, 4 h) (n = 3, mean ± s.d.); 
*P < 0.0001. The dotted line indicates that for CASP1KO and CASP4KO, only the Pam3CSK4 + LPS group is shown as control. h, TNF eLISA of SNs from 
Cas9Ctrl and NLRP11KO cells left untreated, primed with LPS (200 ng ml−1, 4 h) and primed and activated with nigericin (5 μM, 30 min) (n = 3, mean ± s.d.); 
*P < 0.0001, **P = 0.0074. i, Quantitative real-time PCR (qPCR) of IL1B mRNA from Cas9Ctrl and NLRP11KO cells left untreated or primed with Pam3CSK4 
(1 μg ml−1, 2 h) is presented as fold change compared to control cells (n = 3, mean ± s.d.). j, IL-1β eLISA of SN from Cas9Ctrl, NLRP11KO and CASP1KO cells left 
untreated, primed with Pam3CSK4 (1 μg ml−1, 2 h) and primed and transfected with poly(dA:dT) (1 μg ml−1, 4 h), flagellin (0.5 μg ml−1, 4 h) or FSL-1 (0.2 μg 
ml−1, 4 h) (n = 3, mean ± s.d.); *P = 0.0025; **P < 0.0001. The dotted line indicates that for CASP1KO, only the Pam3CSK4 + poly(dA:dT), flagellin and FSL-1 
transfected groups are shown as control. k, IL-1β and IL-6 eLISA of SN from CtrlMyc and NLRP11Myc THP-1 cells left untreated, primed with LPS (200 ng ml−1, 
4 h) and primed and activated with nigericin (5 μM, 30 min) (n = 3, mean ± s.d.); *P < 0.0001. Immunoblot of TCLs for Myc and vinculin loading control. 
NS, not significant.
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complex only assembled after NLRP3 inflammasome activation, 
which required NLRP11PYD. NLRP11 was also necessary for the 
release of IL-1β induced by the CAPS-associated NLRP3 mutant 
NLRP3R260W, which placed NLRP11 at an essential step in human 
NLRP3 inflammasome assembly and activation. Our study there-
fore provides important insights into NLRP3 inflammasome regula-
tion in human macrophages.

Results
NLRP11 is required for NLRP3-mediated cytokine release. ASC 
polymerization is nucleated by PYD–PYD interactions between 

the inflammasome sensors and ASC10,11. To identify NLRs that 
can nucleate ASC polymerization, we transfected NLRs into 
HEK293ASC-EGFP cells, which stably express diffusely localized 
ASC-EGFP. Transfection of NLRP3 and NLRP11, but not empty 
plasmid (Ctrl), similarly promoted the formation of speck-like 
aggregates, indicating ASC polymerization (Fig. 1a). Next, we 
generated stable human THP-1 monocytic cells in which NLRP11 
expression was knocked down (NLRP11KD) with two different short 
hairpin RNAs (shRNAs) (Extended Data Fig. 1a) and determined 
the inflammasome-mediated release of IL-1β in response to the 
NLRP3 activators, silica, nigericin and cholera toxin B (CTB) by 
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Fig. 2 | NLRP11 is required for NLRP3-mediated caspase-1 activation. a–d, Flow cytometry of fluorochrome-labeled inhibitors of caspases assay (FLICA) 
signals plotted versus side scatter area (SSC-A) in CtrlKD and NLRP11KD cells (a,b) and primary human macrophages transfected with CtrlsiRNA or NLRP11siRNA  
(c) or CtrlMyc and NLRP11Myc cells left untreated, primed with LPS (1 μg ml−1, 1 h) and primed and activated with nigericin (5 μM, 45 min) (a,c), nigericin  
(5 μM, 15 min) (d) or transfected with poly(dA:dT) (6 ng ml−1, 4 h) (b). e, Immunoblot for cleaved and total caspase-1, cleaved and total GSDMD and tubulin 
loading control from SN and TCL of Cas9Ctrl, NLRP11KO and CASP1KO cells left untreated, primed with Pam3CSK4 (1 μg ml−1, 4 h) and primed and activated with 
nigericin (5 μM, 30 min). The arrowhead marks the cleaved GSDMD fragment also detected by the total GSDMD antibody. f, Immunoblot for cleaved and total 
caspase-1 using SNs and TCLs of Cas9Ctrl and NLRP11KO cells left untreated, primed with Pam3CSK4 (1 μg ml−1, 2 h) and primed + transfected with poly(dA:dT) 
(2 μg ml−1, 6 h). g, LDH release from Cas9Ctrl, NLRP11KO and NLRP3KO cells primed with LPS (200 ng ml−1, 4 h) or primed and activated with nigericin (5 μM, 
30 min) is presented as percent cytotoxicity compared to maximum LDH release (n = 3, mean ± s.d.); *P = 0.0002, **P = 0.0001. h, Immunoblot for ASC and 
NLRP3 using SN and TCL of CtrlKD and NLRP11KD cells primed with LPS (200 ng ml−1, 4 h) or primed and activated with nigericin (5 μM, 15 min).
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ELISA (Extended Data Fig. 1b). IL-1β release was strongly impaired 
in both NLRP11KD cells compared to two non-targeting shRNA 
control (CtrlKD) cells (Extended Data Fig. 1b). IL-6 is secreted 
independently of inflammasome activation and was not affected 
(Extended Data Fig. 1b). Reduced IL-1β release was not a result 
of impaired transcription of IL1B, as indicated by quantitative 
real-time polymerase chain reaction (PCR) (Extended Data Fig. 1c). 
Moreover, release of IL-1β, but not IL-6, was reduced in primary 
human macrophages with short interfering RNA (siRNA) silenced 
NLRP11 (NLRP11siRNA) compared to control siRNA (CtrlsiRNA) (Fig. 
1b and Extended Data Fig. 1d), indicating NLRP11 contributed 
to the efficient activation of the NLRP3 inflammasome. Because 
NLRP11 knock down and silencing did not completely abolish 
NLRP11 expression, we used CRISPR-Cas9 to knock out NLRP11 
in THP-1 cells. Sequencing of two independent clones (NLRP11KO#1 
NLRP11KO#2) indicated a deletion of 4 bp and 172 bp adjacent to the 
start ATG (Extended Data Fig. 2a), resulting in a frame shift and 
the introduction of a premature stop codon after amino acid 13 or 

17, respectively (Extended Data Fig. 2b). To prevent the expression 
of various splice forms predicted for NLRP11 (Extended Data Fig. 
2c), including the ones using an alternative start site downstream of 
the PYD, we additionally used CRISPR-Cas9 to target the NACHT/
NAD in NLRP11KO#1 and NLRP11KO#2 cells. A 229-bp deletion 
caused a frame shift (Extended Data Fig. 2d) and premature stop 
(Extended Data Fig. 2e) in both cell lines leading to complete loss 
of NLRP11 expression (Fig. 1c), without impacting the expression 
of NLRP3, ASC or caspase-1 (Extended Data Fig. 2f). THP-1 cells 
with an shRNA-mediated knockdown of ASC (ASCKD) and THP-1 
cells with CRISPR-Cas9-generated deletion of NLRP3 (NLRP3KO), 
CASP1 (CASP1KO), CASP4 (CASP4KO) and Cas9Ctrl cells were used 
as controls (Extended Data Fig. 2f,g)13,25. Activation of primed 
NLRP11KO cells with soluble (nigericin, ATP) and crystalline (silica) 
NLRP3 activators, as well as K+ efflux, resulted in loss of IL-1β (Fig. 
1d,e) and IL-18 (Fig. 1f) release compared to Cas9Ctrl cells. IL-1β 
and IL-18 release was also lost upon noncanonical activation of the 
NLRP3 inflammasome following transfection of lipopolysaccharide  
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Fig. 3 | NLRP11 is an NLRP3 inflammasome component. a, Confocal microscopy of immunostained NLRP11, ASC, NLRP3 and DNA (DAPI) using phorbol 
12-myristate-13-acetate (PMA)-differentiated THP-1 cells left untreated, primed with LPS (200 ng ml−1, 4 h) or primed and activated with nigericin (5 μM, 
20 min). Scale bars, 10 μm. b, Confocal microscopy of HeK293 cells immunostained for NLRP11, ASC, NLRP3 and DNA after transient transfection with 
NLRP11, ASC and NLRP3; also shown is a histogram of concentric layer localization of ASC, NLRP3 and NLRP11 obtained from deconvolved 3D volumetric 
analysis (bottom right). Scale bar, 20 μm. c, Immunoprecipitation of TCLs with immobilized anti-NLRP3 antibodies of untreated, LPS-primed (200 ng 
ml−1, 2 h) and LPS-primed and nigericin (5 μM, 10 min)-treated NLRP11KO THP-1 cells restored with NLRP11-Flag (NLRP11Flag) and NLRP3KO and ASCKD cells 
and immunoblot for Flag, NLRP3, ASC and tubulin loading control alongside TCLs. The weak background signal present in the ASC immunoblot, even 
in ASCKD cell immunoprecipitation samples, reflects background from the antibody light chain. c,e, Arrowheads indicate the correct-size protein. d, 
Confocal microscopy of HeK293 cells immunostained for ASC, NLRP11 and DNA after transient transfection with NLRP11 and ASC. Scale bar, 100 μm. e, 
Immunoprecipitation with immobilized anti-ASC antibodies from TCLs of NLRP11KO and NLRP3KO cells restored with NLRP11Flag left untreated, primed with 
LPS (200 ng ml−1, 2 h) and primed and activated with nigericin (5 μM, 10 min) and immunoblot of immunoprecipitates and TCLs for Flag, ASC, NLRP3 and 
tubulin loading control. WB, western blot.
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(LPS) directly into the cytosol of primed NLRP11KO cells, simi-
lar to both CASP1KO and CASP4KO cells (Fig. 1g). Primed and 
nigericin-activated NLRP11KO cells had unaltered secretion of the 
inflammasome-independent tumor necrosis factor (TNF) (Fig. 1h) 
and unaltered IL1B transcription (Fig. 1i) compared to Cas9Ctrl cells. 
In agreement with reports that NLRP11 negatively regulates NF-κB 
signaling26,27, NLRP11KO cells showed a slight increase in TNF 
release compared to Cas9Ctrl cells. NLRP11 selectively affected IL-1β 

release by the NLRP3 inflammasome but not by AIM2, NLRC4 
and NLRP7 inflammasomes, activated with poly(dA:dT), flagellin 
and FSL-1 transfection, respectively (Fig. 1j). NLRP11KD also did 
not affect IL-1β release induced by transfection with poly(dA:dT), 
Clostridium difficile toxin B (TcdB) and FSL-1 for AIM2, pyrin and 
NLRP7 inflammasome activation, respectively (Extended Data 
Fig. 3). Furthermore, the stable expression of Myc-tagged NLRP11 
in THP-1 cells (NLRP11Myc) resulted in increased IL-1β release in 
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Fig. 4 | NLRP11PyD recruits ASC and is necessary for efficient ASC polymerization. a,b, Immunoprecipitation with immobilized anti-Flag (a) and anti-HA 
(b) antibodies, and TCLs were analyzed by immunoblot for HA-, Myc- and Flag-tagged proteins after transient transfection of HeK293 cells with 
Flag-ASCPYD, HA-NLRP11PYD and HA-NLRP3PYD (a) and HA-NLRP11PYD, Myc-ASCPYD and Myc-NLRP3PYD (b), as indicated. c, Immunoprecipitation with 
immobilized anti-ASC antibodies from TCL of NLRP11KO cells restored with NLRP11Flag or NLRP11ΔPYD-Flag left untreated, primed with Pam3CSK4 (1 μg ml−1, 
2 h) and primed and activated with nigericin (5 μM, 10 min); immunoprecipitates and TCLs were analyzed by immunoblot for Flag, ASC and tubulin loading 
control. Arrowheads indicate the correct-size protein. d, IL-1β, IL-18 and TNF eLISA from SNs of NLRP11KO cells restored with low-expressing NLRP11Flag cells 
(NLRP11lo, NLRP11ΔPYD(lo)), high-expressing NLRP11ΔPYD(hi) and ASCKD cells left untreated, primed with Pam3CSK4 (1 μg ml−1, 4 h) and primed and activated 
with nigericin (5 μM, 25 min) (n = 3, mean ± s.d.); *P < 0.0001, **P = 0.0002, ***P = 0.0007, ****P = 0.0038. The dotted line indicates that for ASCKD, only 
the Pam3CSK4 + nigericin group is shown. e, Fluorescence microscopy of eGFP and DAPI in HeK293ASC-eGFP cells transiently transfected with empty vector 
(Ctrl), NLRP3 and NLRP11 as indicated (left) and quantification of ASC speck+ cells per view (right). (n = 5, mean ± s.d.); *P < 0.0001, scale bars, 100 
μm. f, immunoblot for ASC of crosslinked TCL from above cells. Arrowheads indicate oligomers. g,h, Immunoblot for ASC of TCLs and crosslinked TCLs 
from Cas9Ctrl, NLRP11KO#1, NLRP11KO#2 and NLRP3KO cells left untreated or primed with LPS (200 ng ml−1, 4 h) and activated with nigericin (5 μM, 20 min) 
(g) and NLRP11Flag, NLRP11ΔPYD-Flag and ASCKD cells left untreated or primed with Pam3CSK4 (1 μg ml−1, 4 h) and activated with nigericin (5 μM, 15 min) (h). 
Arrowheads indicate oligomers.
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response to nigericin compared to Myc control (CtrlMyc) cells, with-
out affecting the release of IL-6 (Fig. 1k). Collectively, these data 
strongly indicated that NLRP11 was required for NLRP3-mediated 
IL-1β and IL-18 release in human macrophages.

NLRP11 is required for NLRP3-mediated caspase-1 activation. 
Next, we directly assessed caspase-1 activity in CtrlKD cells, which 
showed robust activation of caspase-1 in response to nigericin (Fig. 
2a) and poly(dA:dT) (Fig. 2b), whereas NLRP11KD cells showed 
markedly reduced caspase-1 activation in response to nigericin 
(Fig. 2a and Extended Data Fig. 4), but not to poly(dA:dT) (Fig. 
2b). Nigericin-mediated caspase-1 activation was also reduced in 
NLRP11siRNA transfected human macrophages compared to CtrlsiRNA 
transfected cells (Fig. 2c), whereas nigericin-mediated caspase-1 
activation was enhanced in NLRP11Myc cells compared to CtrlMyc 
cells (Fig. 2d). Accordingly, the release of the cleaved, p20 form 
of active caspase-1 was diminished, and the subsequent proteo-
lytic cleavage of the caspase-1 substrate GSDMD was abolished 
in primed NLRP11KO cells after nigericin treatment (Fig. 2e), but 
not after poly(dA:dT) transfection (Fig. 2f). Pyroptosis was also 
defective in NLRP11KO cells comparable to NLRP3KO cells (Fig. 2g). 
Detection of ASC and NLRP3 was strongly reduced in the culture 
SNs of primed and nigericin-activated NLRP11KD cells compared 
to CtrlKD cells but was maintained in NLRP11KD THP-1 cell lysates 
(Fig. 2h), suggesting ASC and NLRP3 were retained inside the 
cells and not released by pyroptosis. Overall, NLRP11 regulated 
NLRP3-dependent caspase-1 activation, GSDMD cleavage, pyrop-
tosis and the release of inflammasome particles.

NLRP11 is a component of the NLRP3 inflammasome. To deter-
mine whether NLRP11 was a part of the NLRP3 inflammasome, 
we stained untreated or primed and nigericin-activated cells for 
NLRP11 and found redistribution of diffuse NLRP11 into char-
acteristic ‘speck’-like aggregates, which colocalized with ASC and 
NLRP3 upon NLRP3 activation (Fig. 3a), suggesting all three pro-
teins formed a complex. When transiently transfected in HEK293 
cells, NLRP11, ASC and NLRP3 colocalized to the characteristic 
ASC aggregates within concentric layers (Fig. 3b). A cross-section 
view indicated NLRP11 localized between the ASC core and periph-
eral NLRP3 (Fig. 3b), similar to the spatial organization reported for 
NLRP3 and NLRC4 (ref. 28). To directly test whether NLRP11 inter-
acted with the NLRP3 inflammasome, we transduced NLRP11-Flag 
into NLRP11KO cells (NLRP11Flag cells), to allow the specific detection 
and selection of different levels of NLRP11 expression (Extended 
Data Fig. 5a). In these cells, NLRP3 copurified NLRP11Flag and ASC 
following priming and nigericin activation, whereas NLRP3 did 
not bind to NLRP11Flag in primed cells (Fig. 3c). To test whether 
NLRP11 interacted with NLRP3, ASC or both, we co-expressed 
NLRP11 and ASC in HEK293 cells. NLRP11 colocalized with the 
ASC aggregates, which are induced spontaneously after expression 
in HEK293 cells, in the absence of NLRP3 (Fig. 3d), suggesting that 
ASC could be bridging NLRP11 to the NLRP3 inflammasome. To 
test whether NLRP11 recruited ASC independently of NLRP3, we 

immunoprecipitated ASC from primed and nigericin-activated 
NLRP3KO cells expressing NLRP11Flag (Extended Data Fig. 5b) and 
observed that ASC interacted with NLRP11Flag even in the absence 
of NLRP3 (Fig. 3e). These data suggest that NLRP11 interacted with 
ASC independently of NLRP3 in response to nigericin.

ASC recruitment and polymerization requires the NLRP11PYD. 
Both ASC and NLRP11 contain a PYD, which is known to mediate 
homotypic interactions. Indeed, the PYD of ASC (ASCPYD) was suffi-
cient to copurify the NLRP11PYD, at levels comparable to the established 
ASCPYD–NLRP3PYD interaction (Fig. 4a). However, the NLRP11PYD 
did not copurify the NLRP3PYD (Fig. 4b). To understand the role of 
the NLRP11PYD, we transduced NLRP11KO cells with NLRP11 lack-
ing the PYD (NLRP11ΔPYD-Flag), selected for comparable expression to 
full-length NLRP11Flag (Extended Data Fig. 5a) and immunoprecipi-
tated ASC. Although ASC coimmunoprecipitated NLRP11Flag, it did 
not copurify NLRP11ΔPYD-Flag in primed and nigericin-activated cells 
(Fig. 4c), suggesting that the NLRP11PYD was required for the NLRP11–
ASC interaction. Primed and nigericin-activated NLRP11ΔPYD-Flag cells 
also failed to secrete IL-1β and IL-18 compared to NLRP11Flag cells, 
even at increased expression of NLRP11ΔPYD-Flag (Fig. 4d), indicating 
that the NLRP11PYD was required for NLRP3 inflammasome-mediated 
cytokine release. Primed and nigericin-activated NLRP11ΔPYD-Flag cells 
also showed increased secretion of TNF compared to NLRP11Flag 
cells, comparable to ASCKD cells (Fig. 4d) and reminiscent of the effect 
observed in NLRP11KO cells (Fig. 1h), suggesting that the NLRP11PYD 
was also important for this non-NLRP3 inflammasome-mediated 
effect on NF-κB26,27. ASC polymerization is believed to be nucle-
ated by activated NLRP310,11. However, because NLRP11 interacted 
with ASC and was necessary for NLRP3 inflammasome activation, 
we investigated whether NLRP11 contributed to the recruitment 
and polymerization of ASC. In HEK293ASC-EGFP cells transfected 
with NLRP3 at levels that promoted only limited ASC polymeriza-
tion, coexpression of NLRP11 greatly enhanced ASC polymerization 
(Fig. 4e). Comparable results were obtained by immunoblot assays 
following nonreversible crosslinking of cell lysates from above cells. 
Expression of NLRP3 alone promoted the formation of dimeric and 
oligomeric ASC, whereas coexpression of NLRP3 and NLRP11 syn-
ergistically induced strong ASC polymerization (Fig. 4f). Expression 
of NLRP11 alone did not efficiently nucleate ASC polymerization 
(Fig. 4f). Primed and nigericin-activated NLRP11KO cells (Fig. 4g) or 
NLRP11KD cells (Extended Data Fig. 5c) were completely defective 
in ASC polymerization, similar to NLRP3KO cells, without affecting 
the expression of total ASC in the cells. Only NLRP11Flag cells, but 
not NLRP11ΔPYD-Flag cells, promoted nigericin-induced ASC polym-
erization (Fig. 4h). These results indicated that NLRP3 can nucleate 
ASC polymerization when overexpressed but that both NLRP3 and 
NLRP11 are required to induce ASC polymerization in THP-1 cells in 
a manner dependent on the NLRP11PYD.

NLRP11 is necessary for the oligomerization of human NLRP3. 
Next, we investigated whether NLRP11 directly contributed to 
NLRP3 oligomerization. Cotransfection of NLRP11 with ASC and 

Fig. 5 | NLRP11 is necessary for oligomerization of human NLRP3. a–c, Fluorescence microscopy of eGFP and DAPI in HeK293NLRP3-eGFP cells transiently 
cotransfected with (a) ASC and NLRP11, (b) empty plasmid (Ctrl) and increasing concentrations of NLRP11 and (c) Ctrl, NLRP11, NLRP11ΔPYD, NLRP11PYD, 
NLRP11ΔNACHT, NLRP11NACHT, NLRP11ΔLRR or NLRP11LRR, as indicated (left) and presented as NLRP3 oligomer+ cells per view (right) (a, ASC: n = 4, 
ASC + NLRP11: n = 13; b, Ctrl n = 3, NLRP11lo, med: n = 5, NLRP11hi: n = 9; c: n = 5; mean ± s.d.; a, *P = 0.0003; b, *P = 0.0006, **P = 0.0164, ***P = 0.0009; c, 
*P < 0.0001; a–c, scale bars, 100 μm). d,e, Confocal microscopy of NLRP3 and DAPI staining, scale bars, 50 μm (d), and quantification of NLRP3 oligomer+ 
cells per view (e) using PMA-differentiated Cas9Ctrl, NLRP3KO, NLRP11KO and NLRP11KO restored with NLRP11-Flag or truncated NLRP11-Flag, as indicated 
primed with Pam3CSK4 (1 μg ml−1, 4 h) and activated with nigericin (5 μM, 25 min) (n = 3 mean ± s.d.); *P < 0.0001; **P = 0.0001, ***P = 0.0002. f–h, Blue 
native PAGe and immunoblot for NLRP3 and Flag using TCLs from Cas9Ctrl, NLRP3KO, ASCKD and NLRP11Flag cells (f), Cas9Ctrl, NLRP3KO and NLRP11KO cells 
(g) and NLRP11Flag or NLRP11ΔPYD-Flag cells (h) left untreated, primed with LPS (200 ng ml−1, 4 h) (f,g) or Pam3CSK4 (1 μg ml−1, 4 h) (h) and activated with 
nigericin (5 μM, 20–30 min). i, IL-1β eLISA using SNs from cells indicated above left untreated, primed with Pam3CSK4 (1 μg ml−1, 4 h) and primed and 
activated with nigericin (5 μM, 25 min) (n = 3, mean ± s.d.); *P < 0.0001.
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NLRP3EGFP in HEK293 cells enhanced NLRP3EGFP oligomerization 
(Fig. 5a). Furthermore, NLRP11 cotransfection with dispersed 
NLRP3EGFP in HEK293 cells promoted NLRP3 oligomerization in a 
dose-dependent manner, even in the absence of ASC, excluding any 
feedback from polymerized ASC (Fig. 5b), indicating that NLRP11 
was necessary and sufficient to promote NLRP3 oligomerization. 
Because expression of NLRP11ΔPYD in NLRP11KO cells resulted in 
defective release of IL-1β and IL-18 (Fig. 4d), suggesting that the 
NLRP11PYD may also be required for NLRP3 oligomerization, we 
tested the ability and requirement of individual NLRP11 domains 
to promote NLRP3 oligomerization. Comparable expression of 
NLRP11, but not NLRP11ΔPYD, resulted in NLRP3 oligomerization 
in HEK293 cells (Fig. 5c and Extended Data Fig. 6a). The PYD, 
NACHT or LRR alone did not support NLRP3 oligomerization (Fig. 
5c). NLRP11 lacking the NACHT domain (NLRP11ΔNACHT) or the 
LRR (NLRP11ΔLRR) was also defective in inducing NLRP3 oligomer-
ization (Fig. 5c), suggesting that intact NLRP11 was required. To fur-
ther interrogate this mechanism, we stably restored the expression 
of NLRP11, NLRP11ΔPYD, NLRP11ΔNACHT, NLRP11ΔLRR, NLRP11PYD, 
NLRP11NACHT and NLRP11LRR in NLRP11KO cells and sorted cells 
for comparable expression (Extended Data Fig. 6b). Primed and 
nigericin-activated Cas9Ctrl and NLRP11KO cells expressing NLRP11, 
but not NLRP11KO cells or NLRP11KO cells expressing any of the 
other truncated NLRP11 proteins, induced NLRP3 oligomeriza-
tion, as determined by microscopy and quantification of NLRP3 
oligomers using NLRP3KO cells as a specificity control (Fig. 5d,e). 
Biochemical analysis using blue native gel electrophoresis also dem-
onstrated the nigericin-induced NLRP3 oligomerization in primed 
Cas9Ctrl cells, which was further enhanced in NLRP11Flag cells (Fig. 
5f) but reduced in NLRP11KO cells (Fig. 5g) or NLRP11ΔPYD-Flag cells 
(Fig. 5h). NLRP3KO cells were used as a specificity control. This anal-
ysis also revealed the oligomerization of NLRP11 itself in primed 
and nigericin-activated NLRP11Flag cells (Fig. 5f). Primed and 
nigericin-activated NLRP11Flag cells, but not NLRP11KO cells and 
NLRP11KO cells expressing any truncated NLRP11, secreted IL-1β 
comparable to Cas9Ctrl cells (Fig. 5i). Collectively, these results dem-
onstrated that intact NLRP11 was necessary for the oligomerization 
of NLRP3.

NLRP11 promotesNLRP3 inflammasome assembly. Next, we 
investigated whether NLRP11 interacted with NLRP3 using a prox-
imity ligation assay (PLA). A specific PLA signal was detected in 
primed and nigericin-activated NLRP11Flag cells, but not in primed 
cells (Fig. 6a). NLRP3 immunoprecipitation further corroborated 
the nigericin-dependent interaction of NLRP3 with endogenous 

NLRP11 in THP-1 cells (Fig. 6b). The reduced expression of NLRP3 
and NLRP11 in TCL after prolonged activation (45 min) was likely 
the result of partially released NLRP3 inflammasome components 
(Fig. 6b). Accordingly, Flag immunoprecipitation from the SNs of 
primed and nigericin-activated, but not from primed, NLRP11Flag 
cells copurified NLRP3 (Fig. 6c), indicating that NLRP11 and 
NLRP3 were released as a complex by pyroptosis. To determine 
whether the NLRP3–NLRP11 interaction occurred independently 
of ASC, we expressed NLRP11Flag in ASCKD cells (Extended Data 
Fig. 5b) and immunoprecipitated NLRP3. NLRP3 coimmunopre-
cipitated NLRP11 in primed and nigericin-activated NLRP11Flag 
cells, and this interaction was also observed in ASCKD cells express-
ing NLRP11Flag (Fig. 6d), suggesting that NLRP11 interacted with 
NLRP3 independently of ASC. NLRP3 oligomerization is mediated 
by the NACHT domain8. In HEK293 cells, the NLRP11NACHT bound 
directly to the NLRP3NACHT, as demonstrated by coimmunopre-
cipitation of transiently transfected NLRP11NACHT and NLRP3NACHT 
domains (Fig. 6e), but the NLRP11NACHT also bound to the 
NLRP12NACHT and NOD1NACHT domains (Fig. 6f). Binding was still 
observed under very stringent conditions in RIPA buffer (Extended 
Data Fig. 7a) and in buffers with up to 800 mM NaCl (Extended Data 
Fig. 7b), indicating that the NLRP11NACHT bound with high affinity 
to other NACHT domains. To address whether isolated NACHT 
domains were more easily accessible for interactions in the absence 
of intramolecular interactions with the LRR and/or the PYD in the 
intact protein9,29, we tested the interaction of the NLRP11NACHT with 
full-length NLRP3 and NLRC4 by transient transfection of HEK293 
cells. The NLRP11NACHT coimmunoprecipitated NLRP3 and NLRC4 
(Fig. 6g), even though the NLRC4 inflammasome was not affected 
by NLRP11 (Fig. 1j), confirming previous reports of spontane-
ous interactions between NLR NACHT domains in HEK293 
cells30. The NLRP11NACHT did not interact with pyrin, which lacks 
a NACHT domain (Fig. 6g). These results suggested that although 
the NLRP11NACHT can interact with the NLRP3NACHT, additional 
events may facilitate and determine the specificity of these interac-
tions in macrophages. NEK7 promotes NLRP3 oligomerization and 
ASC polymerization but cannot mediate NLRP3 activation on its 
own20–22. NEK7 binds to the LRR and NACHT domains of NLRP3 
to bridge two adjacent NLRP3 molecules23. NEK7 interacted with 
NLRP3 in LPS-primed and LPS-primed and nigericin-activated 
Cas9Ctrl and NLRP11KO cells (Extended Data Fig. 7c), indicating that 
NLRP11 does not mediate the NEK7–NLRP3 interaction. We did 
not observe substantial NLRP3 localization to the mitochondria 
in untreated, primed and primed and nigericin-activated Cas9Ctrl 
and NLRP11KO cells (Extended Data Fig. 8a), but, as previously 

Fig. 6 | NLRP11 acts as a scaffold for NLRP3 inflammasome assembly. a, Confocal microscopy of PLA (green) between NLRP3 and Flag and DAPI using 
PMA-differentiated CtrlFlag and NLRP11Flag cells left untreated, primed with LPS (200 ng ml−1, 4 h) and primed and activated with nigericin (5 μM, 20 min); 
scale bar, 50 μm; (right), and quantification of PLA+ cells per view (left) (n = 4, mean ± s.d.); *P = 0.0004; **P = 0.0001. b, Immunoprecipitation with 
immobilized anti-NLRP3 antibodies using TCLs from untreated, LPS-primed (200 ng ml−1, 4 h) and primed + nigericin (5 μM, 20 min and 45 min) activated 
THP-1 cells and immunoblot of immunoprecipitates and TCLs for NLRP11 and NLRP3. Arrowheads indicate the correct-size proteins. c, Immunoprecipitation 
with immobilized anti-Flag antibodies using SNs of NLRP11Flag cells primed with LPS (200 ng ml−1, 4 h) and primed and activated with nigericin (5 μM, 
10 min) and immunoblot of immunoprecipitates and TCLs for NLRP3 and Flag. d, Immunoprecipitation with immobilized anti-NLRP3 antibodies using TCLs 
from NLRP11KO and ASCKD THP-1 cells restored with NLRP11-Flag left untreated, LPS-primed (200 ng ml−1, 2 h) and primed and activated with nigericin  
(5 μM, 10 min), and immunoblot of immunoprecipitates and TCLs by immunoblot for Flag, NLRP3, ASC and tubulin loading control. e–h, Immunoprecipitation  
with immobilized anti-HA (e), anti-Flag (f,g) and anti-eGFP (h) antibodies using TCLs from HeK293 cells transiently transfected with Flag-NLRP11NACHT and 
HA-NLRP3NACHT (e) ; Flag-NLRP11NACHT, HA-NLRP3NACHT, HA-NLRP12NACHT and HA-NOD1NACHT (f); Flag-NLRP11NACHT, Myc-NLRP3, Myc-NLRC4 and Myc-pyrin 
(g); and eGFP-NLRP11LRR, Myc-NLRP3, Myc-NLRC4 and Myc-pyrin as indicated (h); and immunoblot of immunoprecipitates and TCLs for HA-, Flag-, Myc- 
and eGFP. Asterisk denotes modified pyrin (g,h). The gap in the TCLs in panel h marks an empty lane between NLRC4 and pyrin. i, Immunoprecipitation 
with immobilized anti-NLRP3 antibodies using TCLs from NLRP11Flag and NLRP11ΔPYD- Flag cells left untreated, primed with Pam3CSK4 (1 μg ml−1, 2 h) and 
primed and activated with nigericin (5 μM, 10 min) and immunoblot of immunoprecipitates and TCLs for Flag, NLRP3 and tubulin loading control.  
j, Confocal microscopy of PLA (red) between NLRP3 and caspase-1 and DAPI of PMA-differentiated Cas9Ctrl, ASCKD and NLRP11KO cells primed with LPS 
(200 ng ml−1, 4 h) and primed and activated with nigericin (5 μM, 20 min); scale bar, 50 μm; (left), and quantification of PLA+ cells per view (right) (n = 4, 
mean ± s.d.); *P = 0.0021; **P = 0.0006, ***P = 0.0003. k, IL-1β eLISA of SNs from Cas9Ctrl and NLRP3KO cells stably expressing NLRP11-Flag left untreated, 
primed with LPS (200 ng ml−1, 4 h) and primed and activated with nigericin (5 μM, 30 min) (n = 3, mean ± s.d.); *P = 0.0006, **P = 0.0003.
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described31, NLRP3-activating stimuli caused the disassembly of 
the trans-Golgi network (TGN), and NLRP3 localization to the dis-
persed TGN in Cas9Ctrl cells and also in NLRP11KO cells (Extended 
Data Fig. 8b), indicating that NLRP11 did not affect the intracellular 
localization of NLRP3. Because the LRR has a key role in assembling 
mouse NLRP3 oligomers32, we tested whether the NLRP11LRR was 
involved in the NLRP3–NLRP11 interaction. Transient transfection  

of HEK293 cells with NLRP11LRR and NLRP3, NLRC4 (which 
has a LRR) or pyrin (which lacks a LRR) demonstrated that 
the NLRP11LRR coprecipitated NLRP3, but not NLRC4 or pyrin  
(Fig. 6h). NLRP3 coimmunoprecipitated NLRP11 in primed and 
nigericin-activated NLRP11Flag cells, but not in NLRP11ΔPYD-Flag cells 
(Fig. 6i). To test whether NLRP11 directly controlled the assembly 
of the NLRP3 inflammasome, we performed a PLA between NLRP3 
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and caspase-1. A positive PLA signal was detected in primed and 
nigericin-activated Cas9Ctrl cells, but not in NLRP11KO or ASCKD 
cells (Fig. 6j). However, expression of NLRP11 cannot compensate 
for the loss of NLRP3, as NLRP11 overexpression could not induce 
IL-1β release in primed and nigericin-activated NLRP3KO cells (Fig. 
6k). Collectively, these results showed that NLRP11 interacts with 
NLRP3 independently of ASC through its NACHT and LRRs, but 
an intact NLRP11, including the NLRP11PYD, was nevertheless 
required for promoting nigericin-induced interactions between 
NLRP11 and NLRP3.

NLRP11 is necessary for IL-1β release in CAPS. qPCR analysis 
indicated that NLRP11 mRNA was induced in primed THP-1 cells, 
similar to the inducible expression of NLRP3 (Fig. 7a). In primed 
NLRP11KO cells restored with low or high amounts of NLRP11 pro-
tein to mimic the inducible expression of NLRP11-primed cells (Fig. 
7b), we observed an NLRP11 concentration-dependent increase in 

IL-1β secretion in response to nigericin treatment (Fig. 7c), indicat-
ing that the activation of the NLRP3 inflammasome was influenced 
by the amount of NLRP11. In patients with CAPS, myeloid-lineage 
restricted mutations in NLRP3 and somatic mosaicism6 allow 
NLRP3 activation in the absence of an activation signal, and prim-
ing alone is sufficient to trigger NLRP3 inflammasome-mediated 
IL-1β release33. The majority of CAPS mutations are localized within 
the NACHT domain and prevent the autoinhibited conformation of 
NLRP3 (ref. 34). Accordingly, stable expression of the CAPS muta-
tion NLRP3R260W-EGFP in HEK293 cells resulted in spontaneous oligo-
merization of NLRP3 (Fig. 7d), whereas wild-type NLRP3EGFP was 
distributed diffusely throughout the cells (Fig. 7d). Coexpression 
of NLRP11 in HEK293 cells further increased the aggregation of 
NLRP3R260W-EGFP (Fig. 7d), indicating that NLRP11 even enhanced 
the oligomerization of the constitutively active NLRP3R260W. Stable 
expression of NLRP3R260W also resulted in spontaneous oligomeriza-
tion of NLRP3R260W in Cas9Ctrl cells when immunostained for NLRP3 
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Fig. 7 | NLRP11 is necessary for IL-1β release in CAPS. a, qPCR of NLRP3 and NLRP11 mRNA levels from THP-1 cells primed with LPS (200 ng ml−1) as 
indicated, presented as fold expression to average mRNA levels present in uninduced cells (n = 3, mean ± s.d.); *P < 0.0001, **P = 0.0103, ***P = 0.0145, 
****P = 0.0037. b, IL-1β eLISA of SN from Cas9Ctrl, NLRP11KO, NLRP3KO, ASCKD, NLRP11Flag(lo) and NLRP11Flag(hi) cells primed with LPS (200 ng ml−1, 4 h) and 
primed and activated with nigericin (5 μM, 30 min) (n = 3, mean ± s.d.); *P = 0.0006; **P = 0.0012, ***P < 0.0001, ****P = 0.0021. c, Fluorescence 
microscopy of eGFP and DAPI in HeK293NLRP3-eGFP and HeK293NLRP3R260W-eGFP cells transiently cotransfected with empty vector (Ctrl) or NLRP11; scale bars, 
100 μm (left), and quantification of NLRP3 oligomer+ cells per view (right) (Ctrl: n = 3, NLRP11: n = 5, mean ± s.d.); *P < 0.0001; **P = 0.029. d, Confocal 
microscopy of DAPI and NLRP3 immunostained PMA-differentiated Cas9Ctrl, NLRP11KO, NLRP11Flag(lo) and NLRP11Flag(lo) and NLRP3KO cells stably expressing 
NLRP3R260W left untreated (Ctrl) or primed with LPS (200 ng ml−1, 4 h); scale bars, 50 μm (left), and quantification of NLRP3 oligomer+ cells per view (right) 
(n = 5, mean ± s.d.); *P = 0.0017; **P = 0.0046, ***P < 0.0001, ****P = 0.0153, *****P = 0.0003, ******P = 0.0001, *******P = 0.0427, ********P = 0.0002. e, 
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mean ± s.d.). *P < 0.0001.

NATuRE ImmuNoLoGy | VOL 23 | JUNe 2022 | 892–903 | www.nature.com/natureimmunology 901

http://www.nature.com/natureimmunology


Articles NAtuRE ImmuNoLogY

(Fig. 7e), but not in NLRP11KO cells (Fig. 7e), whereas stable reex-
pression of NLRP11Flag in NLRP11KO cells restored NLRP3R260W oligo-
merization in a dose-dependent manner (Fig. 7e). Priming further 
increased the number of NLRP3R260W oligomers in Cas9Ctrl cells, but 
not in NLRP11KO cells (Fig. 7e). IL-1β was already released in primed 
NLRP11Flag cells, but not in NLRP11KO cells expressing NLRP3R260W 
(Fig. 7f). These results indicated that NLRP11 was also necessary 
for facilitating oligomerization and promoting IL-1β release from 
mutant NLRP3 that causes CAPS. Therefore, NLRP11 is an essential 
component of the NLRP3 inflammasome (Extended Data Fig. 9).

Discussion
Here, we identified NLRP11 as an essential component of the 
NLRP3 inflammasome in human macrophages, which was required 
for caspase-1 activation, release of IL-1β and IL-18 and pyroptosis. 
NLRP11 bound to ASC through homotypic PYD–PYD interac-
tions, which was required for nigericin-induced ASC polymeriza-
tion. NLRP11 also independently interacted with NLRP3, which 
involved the NLRP11LRR and the NLRP11NACHT domains and facili-
tated NLRP3 oligomerization.

The NLRP11NACHT did not specifically interact with NLRP3 in 
HEK293 cells. This unspecific affinity of NACHT domains when 
expressed in HEK293 cells has been reported earlier30. In THP-1 
cells, the interaction between NLRP11 and NLRP3 occurred after 
NLRP3 activation. Therefore, we speculate that in macrophages 
additional unknown signals may be required to confer specific-
ity to NLRP11NACHT domain interactions. Additional specific-
ity is provided by the NLRP11LRR, which interacted with NLRP3, 
but not with NLRC4. Taken together, it is very likely that the 
NLRP11LRR and the NLRP11NACHT domains both contributed to 
the specific interaction between NLRP3 and NLRP11, reminis-
cent of the interaction between NLRP3 and NEK7 (ref. 23). Other 
NACHT domain-mediated NLR hetero-oligomerizations have been 
described, including NLRC4-NLRP3 (refs. 28,35), NAIP-NLRC4 
(refs. 36,37) and Nod2-NLRP1 (ref. 38). NLRC5 also interacts with the 
NLRP3NACHT to regulate NLRP3 by an unknown mechanism39 but 
has more recently been linked to major histocompatibility complex 
class I transactivation40,41. Even though NLRP11 and NLRP3 did not 
interact through their PYDs, the NLRP11PYD was still crucial for 
complex formation, because deletion of the PYD prevented NLRP11 
recruitment to the NLRP3 inflammasome, NLRP3 oligomerization 
and NLRP3 inflammasome responses, which required an intact 
NLRP11 protein. NLRP3 can nucleate ASC polymerization in vitro, 
and we observed this ability in HEK293 cells, but only if NLRP3 was 
overexpressed. Increasing the expression of NLRP3 during inflam-
masome priming contributes to, but is not sufficient for, inflamma-
some activation3–5. Low-level expression of NLRP3 did not nucleate 
ASC polymerization in HEK293 cells, and even priming-induced 
elevation of NLRP3 expression was insufficient in THP-1 cells in the 
absence of NLRP11. NLRP11 was required for NLRP3 inflamma-
some responses in a dose-dependent manner, but NLRP11 expres-
sion was not able to compensate for the loss of NLRP3, indicating 
that NLRP11 alone could not assemble an inflammasome under 
these conditions. This mode of activation is unique, because NLRP11 
interacted with NLRP3 as well as ASC, and all three were required 
for NLRP3 inflammasome assembly in THP-1 cells. Other described 
mechanisms for inflammasome activation require bridging of 
the NLRP3–ASC interaction by GBP524, or bridging NLRP3 mol-
ecules through NACHT-LRR interaction by NEK7 (ref. 23). NLRP11 
uniquely combines these mechanisms. NLRP11 was required for the 
response to all tested soluble and crystalline NLRP3 triggers, sup-
porting its essential role within the NLRP3 inflammasome.

NLRP11 is encoded in humans and absent from mice42, but 
whether this mechanism is unique to human macrophages will 
require additional studies. Nevertheless, several other examples 
exist for increased complexity of inflammasome regulation in 

humans, including the family of PYD- and CARD-only proteins43. 
In addition to its function in NLRP3 inflammasome activation, 
NLRP11 could potentially function as an inflammasome sensor. 
Arguably, this would require the ability of NLRP11 to nucleate 
ASC polymerization, and based on our ASCEGFP polymerization 
assays in HEK293 cells, some NLRP11-mediated ASC polymeriza-
tion was possible, especially in cells with sufficiently high NLRP11 
expression. However, expression of NLRP11 in THP-1 cells failed to 
polymerize ASC in the absence of activated NLRP3, suggesting that 
physiological amounts of NLRP3 require the cooperation between 
NLRP3 and NLRP11, even though macrophages are the cells with 
the highest expression of NLRP3 (ref. 44).

Little is known about NLRP11, and there are conflicting reports 
on its role in type I interferon (IFN) or NF-κB signaling26,27,45. 
NLRP11 causes degradation of TRAF6 to inhibit TLR-mediated 
NF-κB activation27, and we observed slightly elevated TNF release in 
NLRP11KO cells. However, NF-κB-dependent IL-6 release and IL1B 
transcription were not impacted. NLRP11 also binds to DDX3X and 
inhibits IFN-β and reduces caspase-1 activity in HEK293T cells46. 
siRNA-mediated silencing of NLRP11 in THP-1 cells slightly ele-
vates Sendai virus-induced IFN-β production and does not affect 
IL-1β release45, but Sendai virus already completely prevents NLRP3 
inflammasome assembly47. Several other NLRs, including NLRP2, 
NLRP3, NLRP6, NLRP7, NLRP12 and NLRC5, have been linked to 
inflammasomes, as well as transcriptional responses through regu-
lating NF-κB, mitogen-activated protein kinase and IFN signaling48. 
Overall, our identification of NLRP11 as an essential adaptor or scaf-
fold for NLRP3 inflammasome assembly and activation provides 
important insights into the still incompletely understood NLRP3 
inflammasome response in humans. NLRP3 is uniquely positioned 
as a central sensor for infections and cellular stress and has been 
implicated in a wide range of inflammatory diseases ranging from 
crystal arthropathies to hereditary autoinflammatory disorders49. 
NLRP11 may provide an important checkpoint control for NLRP3 
inflammasome assembly. Intriguingly, NLRP11 is also necessary for 
NLRP3 inflammasome responses initiated by CAPS-linked NLRP3 
mutations, which may have important clinical implications.
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methods
Reagents and antibodies. The following antibodies were used: custom-raised 
NLRP11 rabbit polyclonal (AAMRTSNTASRQPL) and mouse monoclonal 
(recombinant, amino acids 105–624 and WSLKEGREIGVTPA), NLRP11 rabbit 
polyclonal antibodies (ab105408, Abcam; HPA046402, Millipore-Sigma and NBP1-
92186, Novus Biologicals), NLRP3 mouse monoclonal (Cryo-2, Adipogen) and 
rabbit monoclonal (D4D8T, Cell Signaling Technology), ASC rabbit polyclonal (N-
15, Santa Cruz Biotechnology), ASC rabbit polyclonal and mouse monoclonal13,50, 
caspase-1 rabbit monoclonal (D7F10, Cell Signaling Technology), cleaved 
caspase-1 rabbit monoclonal (D57A2, Cell Signaling Technology), GSDMD 
rabbit monoclonal (L60, Cell Signaling Technology), cleaved GSDMD rabbit 
monoclonal (E7H9G, Cell Signaling Technology), caspase-4 rabbit polyclonal 
(4450, Cell Signaling Technology), NEK7 rabbit monoclonal (EPR4900, Abcam), 
TGN46 rabbit monoclonal (JF1-024, Invitrogen, rabbit polyclonal Tom20 (FL-
145, Santa Cruz Biotechnology), c-myc mouse monoclonal (9E10, Santa Cruz 
Biotechnology and 9B11, Cell Signaling Technology), HA mouse monoclonal 
(F-7, Santa Cruz Biotechnology), mouse monoclonal Flag (M2, Millipore-Sigma), 
mouse monoclonal tubulin (AA12.1, DSHB), rabbit polyclonal vinculin 
(AB6039, Millipore-Sigma) antibodies, mouse monoclonal Flag agarose (M2, 
Millipore-Sigma), mouse monoclonal HA agarose (HA-7, Millipore-Sigma) and 
HRP-conjugated anti-mouse, anti-rabbit and anti-goat IgG (H + L) (Invitrogen), 
and goat anti-rabbit and anti-mouse Alexa Fluor 488-, 546- and 647-conjugated 
antibodies (Invitrogen). Antibodies were also used as directly HRP-conjugates for 
western blot detection of coimmunoprecipitation experiments.

Cell culture. THP-1 cells (TIB-202, ATCC) were maintained in RPMI 1640 
media, supplemented with 10% FBS, 1 mM HEPES buffer, 2 mM glutamine, 1 mM 
sodium pyruvate, 100 IU ml−1 penicillin, 1 mg ml−1 streptomycin and 0.05 mM 
2-mercaptoethanol; used at low passage numbers; and screened routinely for 
mycoplasma infections (MycoAlert, Lonza). Blood from healthy donors was drawn 
by the Cedars Sinai Blood Bank after obtaining informed consent under a protocol 
approved by Cedars Sinai Institutional Review Board and deidentified. Human 
peripheral blood mononuclear cells were isolated by Ficoll-Hypaque centrifugation 
(Millipore-Sigma) from healthy donor buffy coats and countercurrent centrifugal 
elutriation in the presence of 10 μg ml−1 polymyxin B using a JE-6B rotor 
(Beckman Coulter), as described earlier51. To ensure the purity of peripheral 
blood mononuclear cells, cells were washed in Hank’s buffered salt solution and 
resuspended in serum-free RPMI for 1 h, followed by culturing in complete 
medium supplemented with 20% FBS for 7 days to differentiate peripheral blood 
macrophages, which were then cultured in medium supplemented with 10% 
FBS. Isolated and differentiated peripheral blood macrophages were routinely 
phenotyped to ensure >85% purity, as determined by flow cytometry for CD45 
and CD14. HEK293 cells (CRL-3216, ATCC) and Lenti-X HEK293 cells (632180, 
Takara Bio) were maintained in DMEM containing 10% FBS, 100 IU ml−1 penicillin 
and 1 mg ml−1 streptomycin. THP-1 cells or primary human macrophages were 
primed with ultrapure LPS (0111:B4, 200 ng ml−1, Invivogen, 4 h) or Pam3CSK4 
(1 μg ml−1, Invivogen, 4 h). Where indicated, cells were also treated with nigericin 
(5 μM, Invivogen, 10–45 min), CTB (20 μg ml−1, List Biological Laboratories, 6 h), 
silica (200 μg ml−1, Invivogen, 6 h), TcdB (10 μg ml−1, R&D Systems, 8 h) and ATP 
(5 mM, Millipore-Sigma, 25 min); cultured in K+-free medium (0.8 mM MgCl2, 
1.5 mM CaCl2, 10 mM HEPES, 5 mM glucose and 140 mM NaCl, pH 7.2, 3 h)50; 
or transfected with flagellin (500 ng ml−1, Invivogen, 4 h), poly(dA:dT) (1 μg ml−1, 
Invivogen, 4 h) or FSL-1 (0.2 μg ml−1, Invivogen, 4 h) and ultrapure LPS (1 μg ml−1, 
4 h) with Lipofectamine 2000 (Invitrogen) or as otherwise indicated.

Gene expression, silencing and knockout. NLRP11 cDNA was amplified 
by PCR from a human cDNA library cloned into custom pcDNA3 or pLEX 
expression vectors with Myc, Flag or EGFP tags. NLRP11-TAP was cloned 
into pHIV-IRES-dTomato (a gift from B. Welm, Addgene, plasmid 21374). 
Myc-tagged NLRP3R260W was generated previously13 and subcloned into pCIG3 
(pCMV-IRES-GFPv3; a gift from F. Goodrum, Addgene, plasmid 78264)52. 
NLRP11ΔPYD (aa 104–1,033), NLRP11ΔNACHT (Δ aa 104–560), NLRP11ΔLRR (aa 
1–560), NLRP11PYD (aa 1–91), NLRP11NACHT (aa 105–624), NLRP11LRR (aa 560–
1,033), NLRP3PYD (aa 1–89), NLRP3NACHT (aa 220–389), NOD1NACHT (aa 133–435), 
NLRP12NACHT (aa 212–528) and NLRC4 were synthesized (IDT, Genewiz) or 
generated by PCR, cloned into modified pcDNA3 and pHIV-IRES-dTomato 
expression plasmids. pcDNA3-ASCPYD (aa 1–91), NLRP3 and pyrin have 
been described earlier51,53,54. All expression constructs were sequence verified. 
To express or restore NLRP11, NLRP11ΔPYD, NLRP11ΔNACHT, NLRP11ΔLRR, 
NLRP11PYD, NLRP11NACHT, NLRP11LRR or NLRP3R260W in THP-1 cells, recombinant 
lentivirus was produced in Lenti-X HEK293 cells by Xfect (Takara Bio) or 
Lipofectamine 2000 (Invitrogen)-based transfection with modified pLEX (Open 
Biosystems), pHIV-IRES-dTomato or pCIG3 expression plasmids encoding 
NLRP3R260W, Myc-NLRP11, NLRP11-Flag, NLRP11ΔPYD-Flag, NLRP11ΔNACHT-Flag, 
NLRP11ΔLRR-Flag, NLRP11PYD-Flag, NLRP11NACHT-Flag or NLRP11LRR-Flag using 
empty Myc and Flag vector controls and the viral packaging plasmids psPAX2 (a 
gift from D. Trono, Addgene, plasmid 12259) and psPAX2 (a gift from D. Trono, 
Addgene, plasmid 12260), followed by 0.45 μm filtration of virus-containing 
culture SNs. THP-1 cells were transduced with lentiviral particles in the 

presence of polybrene (0.45 μg ml−1) and MISSION ExpressMag magnetic beads 
(Millipore-Sigma). Cells were puromycin selected (1 μg ml−1) 48 h after infection 
for 2 weeks and sorted by flow cytometry for comparable NLRP3R260W, NLRP11 or 
truncated NLRP11 expression. NLRP11- and NLRP11ΔPYD-expressing THP-1 cells 
were further sorted into low- and high-expressing cell populations and expression 
verified and normalized by immunoblot.

siRNA-mediated silencing of NLRP11 was achieved by electroporation or 
transfection of pooled NLRP11 siRNA#1 (sc-61142, Santa Cruz Biotechnology) 
and siRNA#2 (caacauaagauucgaguua; Thermo Scientific) and non-targeting 
control siRNAs (Santa Cruz Biotechnology and Thermo Scientific). The siRNA 
for NLRP3 has been described51. 1.5 ×106 THP-1 cells were electroporated with 
single or pooled siRNA duplexes (120 nM) using the Neon Transfection System 
(Invitrogen) (voltage, 1,600 V; width, 10 ms; three pulses). Primary human 
macrophages were transfected using F2/virofect (Targeting Systems) and analyzed 
72 h after transfection, as described earlier50,51,55,56.

shRNA-mediated NLRP11KD was achieved via recombinant lentiviral particles  
produced as described above. Four distinct shRNAs were cloned into pLKO.1  
vector (Addgene, plasmid 10878)57. shRNA#1: 5′-ccggcaacactcataaagaccgtta 
ctcgagtaacggtctttatgagtgttgttttttg-3′; shRNA#2: 5′-ccggccaactgcatgttggtgaatact 
cgagtattcaccaacatgcagttggttttttg-3′; shRNA#3: 5′-ccggccgttacaagttcatacacttctcga 
gaagtgtatgaacttgtaacggttttttg-3′; shRNA#4: 5′-ccgggatgcaagagaattaggactactcgagtag 
tcctaattctcttgcatcttttttg-3′ (Sigma: TRCN0000128196, TRCN0000149602, 
TRCN0000146572, TRCN0000128281, respectively). shNLRP11#1 was produced 
using shRNA#1 and shNLRP11#2 was produced from a virus pool containing  
all four shRNAs.

NLRP11KO THP-1 cells were generated by CRISPR/Cas9 targeting. 
Four gRNAs were designed with E-CRISP and CHOPCHOP: gRNA#1: 
5′-gagaagcaagatggcagaat-3′; gRNA#2: 5′-cgtgttgccaatctcttatg-3′; gRNA#3: 
5′-gtgttgccaatctcttatga-3′; gRNA#4: 5′-tgcgtaaggaagatctttgtagg-3′ using 
lentiCRISPRv1 (Addgene, plasmid 49535)58 and control lentiCRISPRv1 (Cas9Ctrl). 
Cells were puromycin selected (1 μg ml−1) and individual cells were sequence 
analyzed following PCR amplification of the targeting sequence (forward: 
5′-tgccaagatcagtcgacaag-3′; reverse: 5′-ggaagtgtgagagggaggtg-3). To eliminate 
potential expression of any alternative spliced NLRP11, we sequentially targeted the 
NACHT/NAD by transient electroporation of gRNAs cloned into pSpCas9(BB)-
2A-GFP (Addgene, plasmid 48138) or empty vector59 with 4–7 μg endotoxin-free 
plasmid as described above. gRNA#1: 5′-ggagaaaattcatgctgcaa-3′; gRNA#2: 
5′-gcagctgtcgaatgggaaga-3′; gRNA#3: 5′-gctcggcaaaagaatattcg-3′; gRNA#4: 
5′-cgatggtagacagcttcaag-3′. Cells were FACS selected and individual cells were 
sequence analyzed following PCR amplification of the targeting sequence (forward 
1: 5′-aatcgcttgaacctgggagg-3′; reverse 1: 5′-agaaacagtcctcctgcagc-3; forward 2: 
5′-ccgagtcgccatcttatgct-3′; reverse 2: 5′-aagttcttcatggccccgag-3). gRNA#4 resulted 
in a premature stop within the NACHT/NAD. CASP4KO THP-1 cells were generated 
by CRISPR/Cas9 using lentiCRISPRv1 (Addgene, plasmid 49535)58. CASP4 gRNA: 
5′-tggtgttttggataacttgg-3′ and Ctrl gRNA: 5′-acggaggctaagcgtcgcaa-3′. NLRP3KO, 
CASP1KO, and ASCKD cells were described earlier13,25.

Immunoprecipitation. HEK293 cells were transiently transfected with NACHT or 
PYD constructs in 12-well plates (Lipofectamine 2000, Invitrogen) and analyzed 
36 h post transfection. For coimmunoprecipitation of transiently transfected 
HEK293 cells, cells were washed and lysed in 50 mM HEPES, pH 7.4, 10% Glycerol, 
2 mM EDTA, 1% NP-40, supplemented with protease inhibitors using 100 mM 
NaCl (PYRIN domain), 150 mM NaCl (LRR), 180–800 mM NaCl (NACHT 
domain), or lysed in RIPA buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA, 0.5 mM 
EGTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS and 140 mM 
NaCl) supplemented with protease inhibitors (NACHT domain). THP-1 cells 
were treated as indicated, washed and lysed in 50 mM HEPES, pH 7.4, 50–150 mM 
NaCl, 10% glycerol, 2 mM EDTA, 0.5% Triton X-100, supplemented with protease 
inhibitors. For coimmunoprecipitation of culture SNs, conditioned media were 
adjusted to 0.1% Triton X-100 and supplemented with protease inhibitors and 
washed with 50 mM NaCl and 0.1% Triton X-100. For IP of endogenous NLRP11, 
cells were lysed in RIPA buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA, 0.5 mM 
EGTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS and 140 mM NaCl), 
supplemented with protease and phosphatase inhibitors. Cleared lysates were 
subjected to IP by incubating with immobilized antibodies or primary antibodies 
and agarose A/G beads (Santa Cruz Biotechnology) as indicated for 4–16 h at 
4 °C. Following extensive washing with lysis buffer, bound proteins in Laemmli 
sample buffer were separated by SDS/PAGE, transferred to polyvinylidene fluoride 
membranes, blocked (5% non-fat dry milk, 0.1 M Tris-buffered saline, pH 7.4, 0.1 
% Tween 20) and analyzed by immunoblotting as indicated using HRP-conjugated 
primary or secondary antibodies, ECL detection (SuperSignal West Femto, Thermo 
Scientific), and digital image acquisition (Thermo iBright and Ultralum Omega 
14vR). TCL (5%) were also analyzed where indicated. To re-use membranes, bound 
antibodies were stripped (0.1 M Glycine, 2% SDS) and washed (0.1 M Tris-buffered 
saline, pH 7.4, 0.1 % Tween 20).

Immunoblot. TCLs were directly collected in Laemmli buffer and serum-free 
culture SNs were collected, adjusted to 5% (v/v) ice-cold Trichloroacetic acid 
(TCA), incubated on ice for 10 min and centrifuged at 21,000×g for 5 min. Pellets 
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were washed twice with ice-cold acetone, briefly air-dried and resuspended in 
Laemmli buffer, sonicated and analyzed by SDS/PAGE/immunoblot as described 
above.

Immunofluorescence analysis. THP-1 cells were differentiated using 
PMA (20 nM, 16 h) on coverslips in 12-well plates (0.5 × 106 cells per well), 
washed in PBS and rested for 48 h before treatment. HEK293 cells were 
transiently transfected and then seeded onto coverslips. Cells were fixed (3.7% 
paraformaldehyde in PBS, 20 min, room temperature), permeabilized (0.5% 
Triton X-100 in PBS, 10 min, room temperature), blocked (2% BSA, 2% (v/v) 
goat sera, 0.5% Triton X-100 in PBS, 1 h, room temperature), immunostained 
overnight with primary antibodies in a humidified chamber, washed and 
subsequently incubated with Alexa Fluor-conjugated secondary antibodies for 
1 h, washed and mounted onto slides with Prolong glass antifade mountant with 
Nucblue stain (Invitrogen). Images were captured on a Nikon TE2000E2-PFS 
with ×60 and ×100 oil objectives) with image deconvolution (NIS Elements) and 
a Zeiss LSM 780.

qPCR. Total RNA was isolated from cells using the E.Z.N.A. total RNA isolation 
Kit (Omega Bio-tek), incubated with DNAse I and reverse transcribed (Verso 
cDNA Synthesis Kit, Thermo Scientific). Multiplexed gene expression analysis was 
performed on an ABI 7300 Real-Time PCR Machine (Applied Biosystems) and 
Quantstudio 3 (Thermo Scientific) and displayed as relative expression compared 
to ACTB, using FAM-labeled exon-spanning primers for IL1B (Hs01555410_m1), 
NLRP11 (Hs00935472_m1), and NLRP3 (Hs00918082_m1) in combination with 
VIC-labeled primers for ACTB (Hs99999903_m1) (Invitrogen).

ELISA. Cells were seeded into six-well plates (106 cells per well) and treated as 
indicated, and cleared culture SNs were analyzed for IL-1β (Invitrogen), IL-18 
(R&D Systems), IL-6 (BD Biosciences) or TNF (Invitrogen) secretion by ELISA 
according to the manufacturer’s instructions.

LDH cytotoxicity assay. LDH activity was determined using the LDH Cytotoxicity 
Detection Kit (Takara Bio) in freshly collected culture SNs. Cytotoxicity was 
defined as a percentage of released LDH compared to total LDH activity upon cell 
lysis with 1% Triton X-100.

Caspase-1 activity by FLICA. Primed THP-1 cells were treated with nigericin 
(5 μM, Invivogen, 45 min) or transfected with poly(dA:dT) (6 ng ml−1, Invivogen, 
4 h) and simultaneously incubated with a cell-permeable, biotin labeled irreversible 
caspase-1 inhibitor substrate (YVAD-CMK, 20 μM) (AnaSpec). Cells were washed 
twice with cold PBS, fixed with 2% paraformaldehyde (Electron Microscopy 
Sciences) for 20 min, washed twice with PBS, permeabilized with Cytofix/
Cytoperm (BD Biosciences) for 20 min at 4 °C, washed twice with Perm/Wash 
buffer (BD Biosciences), stained with Alexa Fluor 647-conjuagted Streptavidin 
(Invitrogen) and washed twice with Perm/Wash buffer. Cells were then washed 
twice with cold autoMACS Running Buffer (Miltenyi Biotec), resuspended in 
autoMACS Running Buffer and analyzed on an LSRII (BD Biosciences) and 
Northern Lights (Cytek) instruments. Data were analyzed with FlowJo v10 
software (TreeStar).

ASC polymerization assay (crosslinking of TCLs). Cells were rinsed with ice-cold 
PBS and lysed in 20 mM HEPES, pH 7.4, 100 mM NaCl, 1% NP-40, 1 mM sodium 
orthovanadate, supplemented with protease inhibitors, followed by shearing with 
a 27-gauge needle. Insoluble pellets were resuspended in PBS supplemented with 
2 mM disuccinimidyl suberate (Pierce) and incubated under rotation at room 
temperature for 30 min. Samples were centrifuged at 2,348×g for 10 min at 4 °C, 
and crosslinked pellets and cleared cell lysates were resuspended in Laemmli 
sample buffer and analyzed by immunoblot for ASC.

ASC polymerization and NLRP3 oligomerization by immunofluorescence. 
HEK293 cells were stably transfected with ASC-EGFP or transiently transfected 
for NLRP3-EGFP and low-expressing clones were selected by limited dilution to 
prevent spontaneous aggregation and were grown on poly-lysine-coated coverslips. 
THP-1 cells were differentiated using PMA (20 nM, 16 h) on coverslips, washed 
in PBS and rested for 48 h before treatment and stained with mouse monoclonal 
anti-NLRP3 and secondary anti-mouse Alexa Fluor 488-conjugated antibodies. 
Cells were processed as described above and ASC and NLRP3 oligomerization was 
quantified using Fiji and normalized to cell numbers60.

NLRP3 oligomerization by blue native polyacrylamide gel electrophoresis. 
For blue native polyacrylamide gel electrophoresis (Invitrogen), cells were lysed 
in 50 mM Bis-Tris, pH 7.2, 50 mM NaCl, 10% glycerol, 0.0001% Ponceau, 1% 
digitonin, 2 mM Na3VO4, 1 mM sodium fluoride and 1 mM PMSF, supplemented 
with 1× Protease Inhibitor Cocktail (Roche) for 30 min on ice. TCLs were 
triturated ten times per sample and clarified by centrifugation (16,000×g) for 
30 min at 4 °C and analyzed on blue native polyacrylamide gels (Invitrogen), 
transferred onto polyvinylidene fluoride membranes and analyzed for NLRP3 or 
NLRP11 (Flag) expression by immunoblot.

PLA. PLA (Duolink PLA, Millipore-Sigma) was performed according to the 
manufacturer’s instructions. Briefly, THP-1 cells were differentiated using 
PMA (20 nM, 16 h) on coverslips, washed in PBS and rested for 48 h. Following 
treatment, cells were washed with PBS, fixed with 3.7% paraformaldehyde for 
10 min at room temperature, permeabilized with 0.2% Triton X-100 for 10 min 
at room temperature and washed with PBS. All incubations were performed in a 
humidified chamber at 37 °C. Cells were blocked with Duolink Blocking Solution 
for 1 h, followed by incubation with primary antibodies in Duolink Antibody 
Diluent for 2 h, incubated with PLUS and MINUS PLA probes, washed (Buffer 
A) at room temperature, incubated with Ligase for 30 min, washed (Buffer A), 
incubated with polymerase for 100 min, washed (Buffer B) and mounted on slides 
using a Duolink In Situ Mounting Medium with DAPI. Cells were analyzed by 
confocal microscopy (Zeiss, LSM 780).

Statistics and reproducibility. All representative results were independently 
repeated at least three times with similar results, and n indicates the number of 
biological replicates. Graphs were prepared in Prism 9 (GraphPad) and data are 
presented as mean values ± s.d. A standard two-tailed unpaired t-test was used for 
pairwise statistical analysis of all data. Values of P < 0.05 were considered significant 
(and marked by an asterisk), and P values are listed in the figure legends.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data sets are provided as source data, and additional information is available 
from the corresponding authors upon reasonable request. Source data of intact 
immunoblots are included for Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, 
Extended Data Fig. 1, Extended Data Fig. 2, Extended Data Fig. 5, Extended Data 
Fig. 6 and Extended Data Fig. 7. Source data of graphs are included for Fig. 1, Fig. 2, 
Fig. 4, Fig. 5, Fig. 6, Fig. 7, Extended Data Fig. 1 and Extended Data Fig. 3. Source 
data are provided with this paper.
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Extended Data Fig. 1 | Knockdown of NLRP11 impairs NLRP3-mediated cytokine release. (a) Immunoblot for NLRP11, NLRP3 and tubulin loading control 
using TCL of LPS-primed (200 ng/ml, 4 h) stable control (CtrlKD#1 and CtrlKD#2) and NLRP11 knockdown (KD) THP-1 cells (NLRP11KD#1 and NLRP11KD#2). (b) 
IL-1β and IL-6 eLISA of SN from CtrlKD#1, CtrlKD#2, NLRP11KD#1 and NLRP11KD#2 cells left untreated or primed with LPS (200 ng ml−1, 4 h) and primed+activated 
with Nig (5 µM, 30 min), CTB (20 µg ml−1, 6 h) and Silica (200 µg ml−1, 6 h); (n = 3, mean ± s.d.); *p = 0.0121; **p = 0.0068, ***p = 0.0101, ****p = 0.0018. 
(c) Quantitative real-time PCR of IL1B mRNA levels from CtrlKD and NLRP11KD cells left untreated and primed with Pam3CSK4 (1 μg ml−1, 2 h) and presented 
as fold induction compared to Ctrl cells (n = 3, mean ± s.d.). (d) Immunoblot for NLRP11 and tubulin loading control using TCL of primary human 
macrophages either not transfected (Ctrl), transfected with CtrlsiRNA or NLRP11siRNA and primed with LPS (200 ng/ml, 4 h).
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Extended Data Fig. 2 | NLRP11 knockout THP-1 cells. (a) PCR amplification and sequencing analysis of Cas9Ctrl, NLRP11KO#1 and NLRP11KO#2 THP-1 cells, 
showing two distinct deletions of 4 and 172 bp. (b) The predicted amino acid sequence and protein length of the resulting NLRP11 proteins are indicated, 
with the premature stop marked by an asterisk. (c) Domain architecture of the six predicted NLRP11 isoforms. A red arrowhead marks the 2 gRNA 
targeting sites. (d) PCR amplification and sequence analysis of Cas9Ctrl, NLRP11KO#1 and NLRP11KO#2 cells showing the 229 bp deletion in the NACHT/NAD. 
(e) The predicted amino acid sequence and protein length of the resulting NLRP11 proteins are indicated, with the premature stop marked by an asterisk. 
(f,g) Immunoblot for (f) ASC, NLRP3, Caspase-1 and tubulin loading control using TCL from Cas9Ctrl, NLRP11KO#1, NLRP3KO, ASCKD and CASP1KO cells and (g) 
caspase-4 and tubulin loading control from TCL of Cas9Ctrl and CASP4KO cells.

NATuRE ImmuNoLoGy | www.nature.com/natureimmunology

http://www.nature.com/natureimmunology


ArticlesNAtuRE ImmuNoLogY

Extended Data Fig. 3 | Knockdown of NLRP11 does not impair IL-1β release by non-NLRP3 inflammasomes. IL-1β eLISA of SN from CtrlKD and NLRP11KD 
cells left untreated or primed with LPS (200 ng ml−1, 4 h) and primed+activated with TcdB (10 μg ml−1, 8 h), transfected with poly(dA:dT) (1 μg ml−1, 4 h) or 
FSL-1 (0.2 μg ml−1, 4 h); (n = 3, mean ± s.d.).
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Extended Data Fig. 4 | FLICA gating strategy. Gating strategy used for the FLICA in Fig. 2a-d of CtrlKD#1 cells left untreated, primed with LPS (1 μg ml−1, 1 h) 
and primed+activated with Nig (5 μM, 45 min). Total cells were gated for singlets, intact cells and for Alexa Fluor (AF) 647+ cells. All samples were gated 
following this strategy.
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Extended Data Fig. 5 | NLRP11 silencing impairs ASC polymerization. (a) Immunoblot for Flag and tubulin loading control using TCL from NLRP11Flag and 
NLRP11ΔPYD-Flag cells sorted into low (lo) and high (hi) expressing populations. The gap in the blot indicates removal of additional NLRP11-expressing cell 
populations not included in this study. (b) Immunoblot for Flag, ASC, NLRP3, caspase-1 and tubulin loading control using TCL from NLRP11KO, ASCKD and 
NLRP3KO cells restored with NLRP11-Flag. (c) ASC crosslinking and immunoblot for ASC using TCL and crosslinked TCL from CtrlKD, NLRP11KD#1, NLRP11KD#2, 
and NLRP3KO cells left untreated, primed with LPS (200 ng ml−1, 4 h) or primed+activated with Nig (5 μM, 20 min). Arrowheads mark crosslinked ASC 
polymers.
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Extended Data Fig. 6 | NLRP11 domain expression for NLRP3 oligomerization. (a) Immunoblot for Myc, Flag and tubulin loading control using TCL from 
HeK293NLRP3-eGFP cells transiently cotransfected with empty vector (Ctrl), Myc or Flag-tagged NLRP11 or NLRP11 domains as indicated. (b) Immunoblot 
for Flag and tubulin loading control using TCL from NLRP11KO THP-1 stably restored with NLRP11-Flag or truncated NLRP11-Flag, as indicated. *marks a 
cross-reactive protein.
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Extended Data Fig. 7 | NLRP11 NACHT interactions and NLRP11 does not affect NEK7 recruitment to NLRP3. (a,b) Immunoprecipitation with 
immobilized anti-Flag antibodies using TCL from HeK293 cells transiently transfected with Flag-NLRP11NACHT, HA-NLRP3NACHT and HA-NLRP12NACHT, as 
indicated (a) using RIPA buffer and (b) washed with increasing NaCl concentrations (200 mM, 400 mM, 600 mM and 800 mM) and immunoblot of IP 
and TCL for HA and Flag. (c) IP with immobilized anti-NeK7 antibodies using TCL from untreated, Pam3CSK4 primed (1 μg ml−1, 2 h) and primed+Nig (5 
μM, 10 min) activated Cas9Ctrl, NLRP11KO and NLRP3KO cells and immunoblot of IP and TCL for NLRP3, NeK7 and tubulin loading control.
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Extended Data Fig. 8 | NLRP11 does not affect TGN localization of NLRP3. (a,b) Confocal microscopy of PMA-differentiated Cas9Ctrl, NLRP11KO and 
NLRP3KO cells left untreated, primed with Pam3CSK4 (1 μg ml−1, 2 h) or primed+activated with Nig (5 μM, 20 min) immunostained for (a) Tom20 (green), 
NLRP3 (red) and DAPI (blue), and (b) TGN46 (green), NLRP3 (red) an d DAPI (blue).
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Extended Data Fig. 9 | Low and high-expressing NLRP11Flag cells. Immunoblot for Flag and tubulin loading control using TCL of CtrlFlag, NLRP11Flag(lo) and 
NLRP11Flag(hi) cells.
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Extended Data Fig. 10 | An updated model for NLRP3 inflammasome assembly and activation. Human NLRP11 binds ASC by PYRIN domain 
(PYD)-PYD interaction and to NLRP3 through its NACHT-LRR region, thereby acting as a scaffold for bridging ASC and NLRP3, which facilitates efficient 
oligomerization of NLRP3 and consequently, enables caspase-1 activation, IL-1β and IL-18 release and pyroptosis by promoting the polymerization of ASC.
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Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Rabbit polyclonal anti-NLRP11 (Novus Biologicals, NBP1-92186), (1:1000) 

Rabbit polyclonal anti-NLRP11 (Abcam, ab105408), (1:1000) 
Rabbit polyclonal anti-NLRP11 (Sigma-Aldrich, HPA046402), (1:1000) 
Mouse monoclonal anti-NLRP11 (custom), (1:1000) 
Rabbit polyclonal anti-NLRP11 (custom), (1:1000) 
Rabbit polyclonal anti-ASC (Adipogen, AG-25B-0006-C100, AL177), (1:1000) 
Rabbit polyclonal anti-ASC (custom), (1:1000) 
Mouse monoclonal anti-ASC (custom), (1:1000) 
Mouse monoclonal anti-NLRP3 (Adipogen, Cryo-2), (1:1000) 
Rabbit polyclonal anti-NLRP3 (Cell Signaling Technology, D4D8T), (1:1000) 
Rabbit monoclonal anti-caspase-1 (Cell Signaling Technology , D7F10), (1:1000) 
Rabbit monoclonal anti-cleaved caspase-1 (Cell Signaling Technology, D57A2) (1:1000) 
Rabbit monoclonal anti-GSDMD (Cell Signaling Technology, L60), (1:1000) 
Rabbit monoclonal anti-cleaved GSDMD (Cell Signaling Technology, E7H9G), (1:1000) 
rabbit polyclonal anti-Caspase-4 (Cell Signaling Technology , 4450), (1:1000) 
rabbit monoclonal anti-NEK7 (Abcam, EPR4900), (1:1000) 
rabbit monoclonal anti-TGN46 (Invitrogen, JF1-024), (1:100) 
rabbit polyclonal anti-Tom20 (Santa Cruz Biotechnology, FL-145, ), (1:100) 
Mouse monoclonal anti-cMyc (Santa Cruz Biotechnology, 9E10), (1:1000) 
Mouse monoclonal anti-cMyc (Cell Signaling Technology, 9B11), (1:1000) 
Mouse monoclonal anti-HA (Millipore-Sigma, F-7), (1:1000) 
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Mouse monoclonal anti-FLAG (Millipore-Sigma, M-2), (1:1000) 
Monoclonal anti-FLAG M2-Peroxidase HRP (Sigma, A8592), (1:2000) 
Mouse monoclonal anti-tubulin (DSHB, AA12.1), (1:1000) 
Goat anti-mouse IgG1 HRP (Santa Cruz Biotechnology, sc-2060), (1:10,000) 
Protein A/G PLUS-Agarose (Santa-Cruz Biotechnology, sc-2003), beads 
Anti-HA Magnetic Beads (Thermo Fisher, PI88836), beads 
Anti-DYKDDDDK Magnetic Agarose (Thermo Fisher, A36797), beads 
S-Protein Agarose (EMD Millipore, 69704-3), beads 
Goat anti-Rabbit IgG (H+L) Alexa Fluor 488 (Invitrogen, A32731), (1:100) 
Goat anti-Rabbit IgG (H+L) Alexa Fluor 546  (Invitrogen, A11035), (1:100) 
Goat anti-Rabbit IgG (H+L) Alexa Fluor 647  (Invitrogen, A21245), (1:100) 
Goat anti-Mouse IgG (H+L) Alexa Fluor 488 (Invitrogen, A11029), (1:100) 
Goat anti-Mouse IgG (H+L) Alexa Fluor 546 (Invitrogen, A11030), (1:100) 
Goat anti-Mouse IgG (H+L) Alexa Fluor 647 (Invitrogen, A21235), (1:100) 
PLA probes Rabbit plus (Millipore-Sigma, DUO92002), (1:5) 
PLA probes Mouse Minus (Millipore-Sigma, DUO92004), (1:5) 
In Situ Detection Reagents Green (Millipore-Sigma, DUO92014),  
In Situ Detection Reagents Red (Millipore-Sigma, DUO92008), 
AlexaFluor 647 Streptavidin (Invitrogen, S21374), (1:10000) 
Goat anti-Rabbit IgG (H+L) HRP (Invitrogen , 31460), (1:10000) 
Goat anti-Mouse IgG (H+L) HRP (Invitrogen, A15999), (1:10000) 
VeriBlot for IP Detection Reagent HRP (Abcam, ab131366), (1:200) 
 
 

Validation except well established antibodies (tubulin) we tested all antibodies using one of these approaches: epitope tag antibodies: using 
transient transfection of tagged cDNAs and controls and western blot analysis. Antibodies to inflammasome components were tested 
in cells with shRNA knock-down or CRISPR/Cas9 knock-out as well as using resting cells and cells with active  inflammasome for 
testing cleaved caspase-1 and GSDMD, release of inflammasome components as well as ELISA assays.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) HEK293T (ATCC, CRL-3216), 
Lenti-X HEK293 (Takara Bio, 632180), 
THP-1 (ATCC, TIB-202),

Authentication cell lines were directly obtained from the vendor or ATCC and those with a known genotype (stable expressing cells, knock 
out cells), were routinely tested by western blot for validation.

Mycoplasma contamination we routinely test cell lines for Mycoplasma contamination, a statement is included in the methods section. Cells used for 
experiments tested negative for Mycoplasma.

Commonly misidentified lines
(See ICLAC register)

cell lines used in this study are not commonly misidentified and are not included in this database.

Human research participants
Policy information about studies involving human research participants

Population characteristics unknown

Recruitment as part of blood donation at the Cedars-Sinai Blood Bank or buffy coats purchased from the Red cross

Ethics oversight  The Cedars Sinai Blood Bank  obtained informed consent under a protocol approved by Cedars Sinai Institutional Review 
Board. All samples were de-identified for research staff

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Methodology

Sample preparation THP-1 cells were incubated with a cell-permeable, biotin labeled irreversible caspase-1 inhibitor substrate (YVAD-CMK, 20 
uM) (AnaSpec). Cells were washed twice with cold PBS, fixed with 2% paraformaldehyde (Electron Microscopy Sciences) for 
20m, washed twice with PBS, permeabilized with Cytofix/Cytoperm (BD Biosciences) for 20m at 4°C, washed twice with 
Perm/Wash buffer (BD Biosciences), stained with Alexa Fluor 647-conjuagted Streptavidin (Invitrogen), and washed twice 
with Perm/Wash buffer. Cells were then washed twice with cold autoMACS Running Buffer (Miltenyi Biotec), resuspended in 
autoMACS Running Buffer and analyzed

Instrument BD LSRII

Software BD FACSDiva

Cell population abundance this was a simple 1 color analysis and 100% of singlets were included

Gating strategy FSC-H vs. FSC-A density plot gating was performed to identify singlets and SSC-A vs. FSC-A used to gate on intact cells and 
gate boundaries were defined based on untreated cells and then AF-647+ cells quantified

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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