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Many works have reported that protein folding rates are influenced by the characteristics
of amino acid sequences and protein structures. However, few reports on the problem
of whether the corresponding mRNA sequences are related to the protein folding rates
can be found. An mRNA sequence is regarded as a kind of genetic language, and its
vocabulary and phraseology must provide influential information regarding the protein
folding rate. In the present work, linear regressions on the parameters of the vocabulary
and phraseology of mRNA sequences and the corresponding protein folding rates
were analyzed. The results indicated that D2 (the adjacent base-related information
redundancy) values and the GC content values of the corresponding mRNA sequences
exhibit significant negative relations with the protein folding rates, but D1 (the single
base information redundancy) values exhibit significant positive relations with the protein
folding rates. In addition, the results show that the relationships between the parameters
of the genetic language and the corresponding protein folding rates are obviously
different for different protein groups. Some useful parameters that are related to protein
folding rates were found. The results indicate that when predicting protein folding rates,
the information from protein structures and their amino acid sequences is insufficient,
and some information for regulating the protein folding rates must be derived from the
mRNA sequences.

Keywords: protein folding rate, genetic language, single base information redundancy, adjacent base related
information redundancy, mRNA sequence

INTRODUCTION

Proteins cannot function properly if they do not fold into their individual structures, and inactive
proteins may be produced by misfolding (Price et al., 2018; Wangeline and Hampton, 2018; Jo et al.,
2019). Cell deaths or tissue damage may be caused by misfolded proteins (Soto and Pritzkow, 2018;
Lee et al., 2020), and misfolded proteins are related to fatal prion diseases (Eraña et al., 2017). It
is a great challenge to discover the mechanism of protein folding, and a key step is to find useful
factors that are related to protein folding rates. Since 1998, many studies (Plaxco et al., 1998; Mirny
and Shakhnovich, 2001; Zhou and Zhou, 2002; Gong et al., 2003; Kuznetsov and Rackovsky, 2004;
Punta and Rost, 2005; Choi, 2020; Li et al., 2020,b) have shown that protein folding rates are related
to the corresponding protein structures. However, all the above studies required knowledge of the
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native structures of proteins. There have also been some
investigations regarding the prediction of protein folding rates
based on amino acid sequences, demonstrating that a protein
folding rate depends substantially on the corresponding amino
acid sequence (Ivankov and Finkelstein, 2004; Gromiha, 2005;
Gromiha et al., 2006; Ouyang and Liang, 2008; Razban, 2019;
Szczepaniak et al., 2019).

It is currently believed that many proteins start folding
while they synthesize on the ribosome (Komar, 2009; Kemp
et al., 2020; Liu, 2020; Walsh et al., 2020) and that mRNA
sequences and structures influence the rate of ribosome
appearances along mRNA; they then influence the emergence
rates of proteins (Razban, 2019). We think that protein folding
rates are influenced by the corresponding mRNA sequences
in addition to the characteristics of protein structures and
amino acid sequences (Li and Li, 2011; Li et al., 2020).
mRNA is regarded as a kind of genetic language, and we
think that its vocabulary and phraseology must provide some
influential information related to protein folding rates. In the
present work, we constructed a large dataset and analyzed the
relationships between the parameters of genetic language and
protein folding rates to determine the influence of mRNA.
We determined that protein folding rate is also influenced
by the corresponding mRNA sequence in addition to the
characteristics of amino acid sequence and protein structure.
If we can add the influential factors of mRNA sequences
into the protein folding rate prediction, its accuracy would be
greatly improved.

MATERIALS

Dataset
In recent years, some experimental data on protein folding
rates had been reported, Ouyang and Liang (2008) developed a
method that could predict the folding rates for proteins based
on the amino acid sequences of 80 proteins. Ivankov et al.
(2009) studied the coupling between properties of the protein
shape and the rate of protein folding based on a dataset of 84
proteins. Guo et al. (2011) predicted folding rates of 99 proteins.
But information on the corresponding mRNA sequences not
contained within such datasets. In the present work, we collected
these data, eliminated redundant data and found information
regarding the corresponding mRNA sequence of each protein.
Finally, we constructed a new dataset containing 100 proteins,
of which 56 are two-state folders (proteins that could fold
rapidly without populating any intermediate states) and 44 are
multistate folders (proteins that fold to their native states via a
populated intermediate state), and according to their structural
classifications, they were divided into three groups (21 are all-α
proteins, 39 are all-β proteins, and 40 are α-β proteins). It should
be noted that the values of protein folding rates vary greatly from
a few microseconds to several hours. So, in order to compare
them in a table or a figure, the natural logarithm of protein folding
rate [ln(kf )] was usually used to represent protein folding rate in
previous studies. In the present study, we also defined the value
of protein folding rate with its natural logarithm.

Amino Acid Sequences and Their
Corresponding mRNA Sequences
The corresponding mRNA sequences of the proteins were
taken from the European Molecular Biology Laboratory (EMBL)
through cross-referencing with the Protein Data Bank (PDB).
Some of the proteins were protein segments, so we intercepted
these protein sequences and their corresponding mRNA
sequences. Information about the 100 proteins and segments is
given in Supplementary Appendix Table 1.

METHODS

mRNA Properties
From the related studies, we learned that the properties
extracted from 3D structures and the primary sequences of
proteins are very useful for predicting their folding rates.
However, we think the above properties are not enough
for such predictions; here, let us focus on the properties
derived from mRNA sequences. The basic information of
an mRNA sequence is its base composition and the base
relations, which represent the vocabulary and phraseology of
the genetic language, respectively. Luo observed that the base
relations are mainly embodied in the adjacent relations and
proposed some parameters (Luo et al., 1998), such as the
single base information redundancy (D1), the adjacent base
related information redundancy (D2), and two other parameters
derived from, D1and D2. All these parameters were proven to
be related to evolution. In the present work, we selected the
GC content of mRNA sequences, D1and D2, which represent
the information regarding the genetic language of the mRNA
sequence to analyze the relations between mRNA sequence and
protein folding rate. The parameters are described in detail as
follows:

Single Base Information Redundancy
An RNA sequence is a kind of genetic language; D1is the single
base information redundancy, which was introduced to describe
the composition of the vocabulary of the genetic language, and
it indicates the differences in the base distributions between the
observed sequence and a random sequence. It can be calculated
by equation (1).

D1 = 2+
∑
i

pi log2 pi (1)

where D1is the single base information redundancy and pi is the
probability of base i (i = A, U, G or C).

Adjacent Base Related Information
Redundancy
mRNA sequences contain much information, most of which
is contained in the base correlation, especially in the adjacent
base correlation. D2 is the adjacent base related information
redundancy, which was introduced to describe the phraseology
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of the genetic language. D2 can be calculated by equation (2).

D2 = −2
∑
i

pi log2 pi +
∑
i,j

pij log2 pij (2)

pij = pipj|i (3)

where D2 is the adjacent base related information redundancy, pi
is the probability of base i (i = A, U, G or C), pijis the probability
of dinucleotide ij, and pj|i is conditional probability of base j
occurred after base i.

GC Content
In the present work, another derived parameter is the GC
content, which can be calculated by equation (4).

CGC = (NG + NC)/N (4)

where CGC is the GC content of an mRNA sequence, NG and NC
are the amounts of base G and base C, respectively, and N is the
total base number of the mRNA sequence.

The Information Parameters of
Subsequences
An increasing number of people are realizing the differences
between the 3 positions of a codon. For the mRNA sequence
of each protein, we picked out all the nucleotides in the first
positions of the codons in the sequence and made a new sequence.
The new sequence was named subsequence 1, and likewise, we
obtained subsequence 2 and subsequence 3. Then, we defined
the corresponding parameters of each subsequence according to
equations (1), (2), (3) and (4). They are: D1

1, D1
2,C1

GC, D2
1, D2

2, C2
GC,

D3
1, D3

2 and C3
GC.

The values of the above parameters for each protein
were calculated, and the values are shown in Supplementary
Appendix Table 2.

Linear Regression Procedures
First, for all 100 proteins, we performed linear regression analysis
on the values of each parameter (CGC, D1, D2, D1

1, D1
2, C1

GC, D2
1,

D2
2, C2

GC, D3
1, D3

2and C3
GC) and the experimental protein folding

rates. Second, we performed the same linear regression analysis
separately for 56 two-state folders and 44 multistate folders.
Finally, the same linear regression analysis was performed
separately for 21 all-α proteins, 39 all-β proteins, and 40 α-β
proteins. Then, we verified the statistical significance of the
regression models with their p-values.

RESULTS

The Correlations of all the 100 Proteins
According to the above discussion, we selected 12 properties
extracted from the mRNA sequences. Each of these properties
may be correlated with protein folding rates. First, for all 100
proteins, linear regression analyses were performed on the values
of each parameter and the protein folding rates. Previous related
works demonstrated that two-state folders and multistate folders
represent different features in terms of predicting protein folding
rates. Second, we divided the proteins into two-state proteins and
multistate proteins, and then, the same linear regression analyses
were performed for each type of protein. The results are presented
in Table 1.

To show the correlations between the parameters of the
corresponding mRNA sequences and the protein folding rates
clearly, we drew figures of the protein folding rates along with
their corresponding parameters (see Figures 1–3).

As we can see from Table 1 and Figure 1, the parameter CGC
is negatively correlated with the protein folding rates, and further
analysis showed that the effect of GC content on the protein
folding rates is mainly derived from the first and third positions of
the codons. The parameter D1 is positively related to the protein
folding rates, and we found that the parameters D2

1 is strongly and
positively related to the protein folding rates, this phenomenon
is shown in Table 1 and Figure 2. Parameter D2 is negatively
correlated with the protein folding rates. In addition, parameter
D2

2 exhibited significant negative relations with the protein
folding rates. In addition, parameter D2

2 exhibited significant
positive relations with the protein folding rates. Multistate folders
yielded the highest correlation coefficients, reaching 0.44, as
shown in Table 1 and Figure 3. At the same time, we noticed that
the correlation was more significant for multistate folders than
for two-state folders, and this can be seen in Table 1, Figures 1–3.
Our results indicated that increasing the GC content and the D2
values may hinder the protein folding process, and increasing the
D1 values may enhance the protein folding process; however, the
influence of parameter D1 on the two-state folders is the opposite
of its influence on the multistate folders. The results proved that
the protein folding rates are also influenced by the vocabulary and
phraseology of mRNA sequences.

The Correlations of Proteins in Different
Structural Classes
In previously published related work, it was found that the valid
parameters for predicting protein folding rates are distinct for

TABLE 1 | Results of linear regression between the protein folding rates and the parameters of the corresponding mRNA sequences of the 100 proteins.

CGC D1 D2 C1
GC D1

1 D1
2 C2

GC D2
1 D2

2 C3
GC D3

1 D3
2

All −0.19∗ 0.29∗∗ −0.23∗∗ −0.28∗∗ 0.11 −0.04 −0.05 0.33∗∗∗ −0.29∗∗ −0.12 0.08 −0.08

Two-state −0.09 0.23 −0.19 −0.09 0.07 −0.06 −0.17 0.40∗∗ −0.37∗∗ −0.02 0.12 −0.10

Multi-state −0.34∗ 0.24 −0.28∗ −0.41∗∗ 0.13 0.09 0.09 0.14 −0.06 −0.32∗ 0.02 −0.01

Note: the numbers are the correlation coefficients, Two-tailed significance: the symbol “∗” means P < 0.05, the symbol “∗∗” means P < 0.01, and the symbol “∗∗∗” means
P < 0.001.
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FIGURE 1 | Changes of protein folding rates with the values of GC content in mRNA. (A) Changes of protein folding rates with the values of GC content (CGC,C1
GC

,

C2
GC and C3

GC) in mRNA of all the 100 proteins. (B) Changes of protein folding rates with the values of GC content (CGC) in mRNA of the two-state folders and
multistate folders.

FIGURE 2 | Changes of protein folding rates with the values of the single base information redundancy in mRNA. (A) Changes of protein folding rates with the values
of the single base information redundancy (D1, D1

1, D2
1 and D3

1) in mRNA of all the 100 proteins. (B) Changes of protein folding rates with the values of the single base
information redundancy (D1) in mRNA of the two-state folders and multistate folders.

FIGURE 3 | Changes of protein folding rates with the values of the adjacent base related information redundancy in mRNA. (A) Changes of protein folding rates with
the values of the adjacent base related information redundancy (D2, D1

2, D2
2 and D3

2) in mRNA of all the 100 proteins. (B) Changes of protein folding rates with the
values of the adjacent base related information redundancy (D2) in mRNA of the two-state folders and multistate folders.
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different structural classes. Therefore, it is necessary to classify
the proteins into different structural classes. In the present work,
we divided the 100 proteins into groups of all-α proteins, all-β
proteins, and α-β proteins. In each group, we performed the same
regression analyses as in the above section, and the results are
presented in Tables 2–4.

As we hypothesized, the results are different for different
protein groups. For example, GC content has different influences
on proteins in different structural classes. In detail, the influence
of parameter CGC is mainly derived from the third positions of
the codons for all-α proteins, but it is mainly derived from the
first positions of the codons for α-β proteins, and parameter
CGC has little influence on the protein folding rates for all-
β proteins. In addition, we noticed that for all-α multistate
folders, parameter C3

GC exhibited significant correlations with the
protein folding rates, yielding the highest correlation coefficient
(reaching 0.80). This indicates that this kind of effect mostly
comes from synonymous codon usage and not from the
information of amino acids.

Of course, some results were the same for different protein
groups. For example, the parameter D2

1 exhibited an excellent
positive relations with the folding rates of each structural
class. Furthermore, parameter D2

2 exhibited significant negative
relations with the folding rates of all-α proteins and β proteins.
In addition, it is obvious that the correlations are more
significant for multistate folders in each structural class than for
two-state folders.

The mRNA sequence and its subsequences are regarded
as genetic language. The above results indicate that both

the vocabulary and phraseology of mRNA may influence the
corresponding protein folding rate, and parameters such as C3

GC,
D1

1 and D2
2 may be influential parameters for protein folding

rate prediction.

DISCUSSION

In theory, mRNA structures may be influenced by the vocabulary
and phraseology of their mRNA sequences. In detail, the
complexity and variability of mRNA secondary or higher
structures are determined partly by the base relations in
the mRNA sequence. We think that mRNA structures must
influence the rate of ribosome appearances along mRNA;
and then influence the emergence rates of proteins, and we
also think that the base relations are mainly embodied in
adjacent relations. Therefore, the two parameters (single base
information redundancy and adjacent base related information
redundancy) provide information regarding the variability and
complexity of mRNA structures, and the results show that the
above two parameters may be effective factors for predicting
protein folding rates.

It is interesting that for the multistate folders, the influence
of GC content is outstanding. In detail, for all-α proteins, the
influence of parameter CGC is mainly derived from the third
positions of the codons, but for α-β proteins, it is mainly derived
from the first positions of the codons. The composition of
the second codon position is incredibly stable, with very little
deviation in composition across the species, but the composition

TABLE 2 | Results of linear regression between the protein folding rates and the parameters of the corresponding mRNA sequences of the 21 all-αproteins.

CGC D1 D2 C1
GC D1

1 D1
2 C2

GC D2
1 D2

2 C3
GC D3

1 D3
2

All −0.28 −0.05 0.20 −0.32 −0.08 −0.09 −0.15 0.34∗ −0.33∗ −0.21 −0.04 −0.07

Two-state −0.05 0.02 0.08 0.19 0.22 −0.24 −0.22 0.39 −0.37 −0.07 0.21 −0.22

Multi-state −0.75∗ 0.02 −0.02 −0.69 −0.21 −0.01 −0.20 0.44 −0.48 −0.80∗ −0.57 −0.24

Note: the numbers are the correlation coefficients, Two-tailed significance: the symbol “∗” means P < 0.05, the symbol “∗∗” means P < 0.01, and the symbol “∗∗∗” means
P < 0.001.

TABLE 3 | Results of linear regression between the protein folding rates and the parameters of the corresponding mRNA sequences of the 39 all-β proteins.

CGC D1 D2 C1
GC D1

1 D1
2 C2

GC D2
1 D2

2 C3
GC D3

1 D3
2

All −0.10 0.15 −0.09 −0.19 0.29 −0.29∗ 0.17 0.14 −0.13 −0.13 −0.03 −0.04

Two-state 0.01 0.18 −0.13 −0.04 0.24 −0.27 −0.07 0.43∗ −0.37∗ 0.05 0.10 −0.05

Multi-state −0.21 0.45 0.46 −0.48 0.37 −0.41 0.35 −0.31 0.12 −0.25 −0.51 0.05

Note: the numbers are the correlation coefficients, Two-tailed significance: the symbol “∗” means P < 0.05, the symbol “∗∗” means P < 0.01, and the symbol “∗∗∗” means
P < 0.001.

TABLE 4 | Results of linear regression between the protein folding rates and the parameters of the corresponding mRNA sequences of the 40α-β proteins.

CGC D1 D2 C1
GC D1

1 D1
2 C2

GC D2
1 D2

2 C3
GC D3

1 D3
2

All −0.16 0.23 −0.22 −0.35∗ −0.12 0.28 −0.30∗ 0.39∗∗ −0.21 0.02 0.26 −0.23

Two-state −0.01 0.08 −0.04 0.06 −0.32 0.38 −0.48 0.31 −0.34 0.13 0.26 −0.25

Multi-state −0.33 0.24 −0.31 −0.60∗∗∗ −0.05 0.30 −0.09 0.34 −0.01 −0.17 0.22 −0.16

Note: the numbers are the correlation coefficients, Two-tailed significance: the symbol“∗” means P < 0.05, the symbol “∗∗” means P < 0.01, and the symbol “∗∗∗” means
P < 0.001.
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of the third codon position has a large deviation because of the
bias of the synonymous codon usage (Gibson et al., 2005). We
think that the large deviation of base composition results in a
large range of regulating, Therefore, the effect of GC content on
the protein folding rates is mainly derived from the first and third
positions of the codons.

The influence of the third positions of codons is inspiring
because the third positions take information regarding
synonymous codon bias but not amino acid bias. This means
that this part of the information is only obtained from the mRNA
sequence, not from amino acids. This additionally proves that
the folding rates are also influenced by the non-random usage of
synonymous codons.

CONCLUSION

To conclude, in this work, some parameters of the vocabulary
and phraseology of mRNA sequences were selected, and then,
the relationships of these parameters with protein folding rates
were analyzed. The results showed that the vocabulary and
phraseology of mRNA sequences are significantly correlated with
protein folding rates to different degrees. This suggests that the
evaluated mRNA sequence plays an important role in regulating
protein folding.

Although our parameters are simple parameters for
representing mRNA information, their influences are significant.
If we can find better parameters to represent the mRNA
information, we believe that more detailed and clearer
relations between mRNA sequences and protein folding rates
will be discovered.
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