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Background
Antimicrobial peptides (AMPs) are natural and vital defence substances involved in 
innate immunity to certain diseases. Anticancer peptides (ACPs) are a class of antimi-
crobial peptides composed of 10–50 amino acids that have a killing effect on cancer cells 
[1]. ACPs interact with the cancer cell membrane and effectively destroy its structure, 
thereby inhibiting the proliferation and growth of cancer cells and inducing apoptosis [2, 
3]. Studies have shown that ACPs have clear inhibition and elimination effects on cer-
vical cancer cells, rectal cancer cells, and hepatocellular carcinoma cells [4]. ACPs can 
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effectively remove cancer cells from the body and improve the body’s immune function 
to resist invasion by tumour cells. Presently, many ACPs targeting different types of can-
cer have undergone clinical application [5–8]. Therefore, for the treatment and research 
of cancer, it is important to determine whether AMPs have antitumour activity, which 
would provide a new development direction for novel ACPs.

As small molecular peptides, ACPs have specific rules governing their peptide chains, 
and many researchers have conducted related studies [9, 10]. Hajisharifi et al. introduced 
peptide sequences as characteristic information to develop a model that successfully 
predicted ACPs [11]. To compensate for the uniqueness of peptide sequences, Tyagi 
et al. added information such as the dipeptide compositions and amino acid composi-
tional differences between the N-terminal and C-terminal as features, achieving a higher 
accuracy than that of Hajisharifi [12]. Chen et al. combined the pseudo amino acid com-
position, mean chemical shift, and simplified amino acid composition to significantly 
improve ACP prediction accuracy [13]. However, these methods considered only origi-
nal sequences and physicochemical properties of amino acids and neglected peptide 
structural characteristics at the spatial level.

Studies have shown that although the types and sequence length of ACPs vary, most 
ACPs contain characteristic structural information, such as α-helix or β-chain structures 
[14–16], which allow ACPs to act selectively on cancer cells [17]. With the development 
of protein structural property prediction techniques [18], researchers have begun to 
examine the role of protein structural information in AMPs. Chen et  al. changed the 
hydrophobicity and amphiphilicity of peptide molecules by amino acid substitution in 
different regions of the peptide sequences [19, 20], which proved that the secondary 
structures play a critical role in the antitumour activity of ACPs. Based on the mech-
anisms of ACPs, Hammami et  al. analysed the direct involvement of structural infor-
mation in the formation of amphiphile side chains of ACPs [21]. They concluded that 
protein structural characteristics are the basis of the selective action of ACPs on cancer 
cells. Therefore, protein structural properties contain highly potent local and global fea-
tures that provide strong evidence for the prediction of ACPs.

Most ACP prediction models are designed based on traditional machine learning algo-
rithms such as Support Vector Machine (SVM), Random Forest (RF), Naive Bayesian 
(NB) or statistical models. Chen et al. used SVM to predict ACPs and achieved a high 
prediction accuracy [13]. Wei et al. used amino acid compositions and other informa-
tion, combined with SVM to construct 40 submodels to predict ACPs and achieved good 
results [22]. In addition, some ACP prediction methods are based on the combination of 
multiple classifiers and the fusion of multiple sequence features [23–25]. Although these 
methods have made some achievements, the feature construction and extraction process 
is still tedious and depends on feature design and prior knowledge to some extent. In 
addition, the algorithm designs of these models are relatively complex, and their perfor-
mances depend mainly on the number of feature types and the scale of the models.

A neural network can automatically learn advanced representation from raw data, 
providing a suitable means to solve the problems mentioned above. These networks have 
been successfully applied in many fields, such as image recognition, machine reading 
and bioinformatics [26–30]. Yi et  al. predicted ACPs by integrating binary profile fea-
tures and a k-mer sparse matrix with simplified amino acid identification and realised 
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automatic feature extraction by long short-term memory (LSTM) to address the time-
dependence problem in sequences [31]. Yi’s work was the first attempt to apply a deep 
recurrent neural network (RNN) to predict ACPs. Wu et al. mapped peptide sequences 
to word vectors using the word2vec [32] tool and obtained multiangle features from dif-
ferent sizes of receptor fields using a text-convolutional neural network (text-CNN) [33, 
34].

Feature extraction methods vary among different neural networks. LSTM automati-
cally learns dependencies in sequence data through its memory units and gate mech-
anism. However, the limitation of its learning mechanism causes difficulty in learning 
local features in sequence data. As compensation, CNN compensate for this limitation 
by capturing local relevant features in input through convolution kernels. Therefore, a 
combined network can effectively improve model prediction abilities [35]. Wang et al. 
proposed a hybrid deep learning model for miRNA prediction based on integrating 
CNN and bidirectional long short-term memory (BILSTM) [27], which improved the 
prediction quality by capturing complex local features of nucleotides via CNN and long-
term interdependence between nucleotides by BILSTM. Guo et  al. developed DeepA-
CLSTM by combining an asymmetric CNN and a BILSTM network to predict protein 
secondary structures effectively [28]. Therefore, the combination of CNN and LSTM can 
simultaneously focus on the local spatial and long-term dependence information in the 
original data, effectively reducing information loss and improving the ACP prediction 
performance.

Based on the above problems, we effectively combined CNN and LSTM to propose a 
new neural network model, CL-ACP, for ACP recognition (Fig. 1). The CL-ACP model 
constructed a feature space from two aspects—ACP sequences and secondary struc-
tures. In addition, it used multi-head self-attention [36] to enhance peptide sequence 
representations. Finally, the CNN and LSTM parallel combined network model was 
applied to effectively capture the temporal and spatial feature information of peptide 
sequences and structural characteristics. To evaluate the predictive performance of CL-
ACP, we conducted an experiment on the datasets of Yi et al. and compared CL-ACP 
with existing methods. The fivefold cross-validation experimental results show that CL-
ACP can automatically learn the effective characteristics of complex correlation patterns 
in the data and further identify ACPs effectively.

Methods
In this paper, we introduced the secondary structure information of ACPs and the multi-
head self-attention mechanism and proposed a parallel combination of CNN and LSTM 
to predict ACPs. We evaluated the model predictive performance on the benchmark 
datasets ACP736 and ACP240 and compared it with machine learning and neural net-
work models.

Datasets

In this paper, we selected the ACP736 and ACP240 datasets collected by Yi et al. as the 
benchmark datasets and constructed a new dataset, ACP539. These ACP datasets con-
tain the most experimentally verified positive samples in the literature thus far, as shown 
in Table 1.
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Positive samples from the ACP736 and ACP240 datasets were experimentally veri-
fied, and negative samples were AMPs without anticancer functions. The bench-
mark datasets were all passed through the CD-HIT [37] tool to remove redundant 
sequences, with the threshold set to 0.9 to ensure that there were no duplicates. We 
also constructed a supplementary dataset, ACP539, to further verify the performance 

Fig. 1  CL-ACP model framework

Table 1  Summary of the scale of AMP datasets supplied in this work

Peptides Number Positive Negative

AAP 214 107 107

ABP 1600 800 800

ACP240 240 129 111

ACP736 736 375 361

ACP539 539 189 350

CPP 740 370 370

QSP 400 200 200

PBP 160 80 80
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of the model. We generated positive samples by utilizing the previous works [12, 13, 
22, 38] and the Antimicrobial peptide date (APD), which contain a total of 793 experi-
mentally verified ACPs. For the collection of negative samples, we utilized AMPs and 
random peptides from the previous works [12, 38], wherein AMPs had been extracted 
from several databases including, the antimicrobial peptide date (APD), collection of 
anti-microbial peptides (CAMP) and database of anuran defense peptides (DADP), 
for which no anticancer activity has been reported in the literature. For random pep-
tides, we assume that they are non-ACPs. Subsequently, we eliminated the duplicate 
samples of ACP739 and ACP240 from all the samples. To avoid performance over-
estimation introduced by the homology bias, the remaining peptide sequences in 
both the positive and negative datasets with more than 90% sequence identity were 
removed using the CD-HIT program with the threshold set at 0.9. Finally, we obtained 
ACP539 dataset that contained 189 positive samples and 350 negative samples. The 
data volume ratio of positive and negative samples in ACP539 is approximately 1:2.

To verify the model generalizability, we selected other AMP datasets [39–45] to 
verify the prediction ability of the model for short peptide data. The AMP datasets are 
also shown in Table 1.

Extraction of peptide secondary structures

ACPs can target cancer cells because of their special mechanism of membrane cleav-
age. The main mechanism representations are the bucket plate model, blanket model, 
and annular pore model [46–48]. In the disintegration of the cancer cell membrane, 
the bucket plate and annular pore models form ionic channels penetrating the plasma 
membrane, which require at least three peptide molecules with a particular secondary 
structure. Relevant studies have proven that many ACPs exert their anticancer effects 
through the bucket plate and annular hole models. For example, melittin, which was 
discovered in 1994, has anti-inflammatory, analgesic, antibacterial, anti-HIV, antitu-
mour, and other pharmacological activities. It also has a broad spectrum of antitu-
mour activities, including against human hepatocellular carcinoma, leukaemia, and 
breast cancer [49, 50]. ACPs from Litoria raniformis have strong effects on leukaemia, 
lung cancer, colon cancer, and other diseases [51]. Magainins from Xenopus laevis 
can destroy the cell membrane of human cervical cancer cells through annular pore 
action [52]. Therefore, the action mechanism of most ACPs is based on their second-
ary structures, and the accurate extraction of peptide secondary structures thus plays 
a vital role.

To accurately extract peptide secondary structures, we analysed the performances of 
various secondary structure predictors and selected the SPIDER3 [18]. We also elimi-
nated four peptide sequences that lacked secondary structure from the ACP736 dataset.

Representation of the features

The input feature space of CL-ACP was composed of three kinds of feature information, 
including peptide original sequences and secondary structures encoded by one-hot cod-
ing [53] and peptide sequences enhanced by the multi-head self-attention mechanism.
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One‑hot coding and multi‑head self‑attention mechanism

ACPs are usually composed of 5–40 amino acids of 20 different types. Each amino acid 
was encoded using one-hot coding of length 20, representing 20 dimensions corre-
sponding to the 20 amino acids. Thus, an original sequence of length L was encoded 
as a vector representation of dimension L*20. The structure information included three 
exponents: α-helix P (H), β-chain P (C), and γ-strand P (E). Therefore, we obtained a 
vector representation of L*3-dimensional protein structure property information for 
motifs of length L.

Although one-hot coding is a simple and effective coding method, its premise is to 
assume that coding elements are independent of each other; however, residues in pep-
tide sequences are not independent of each other. Moreover, the proportions of certain 
residues in peptide sequences are relatively high, which indicates that these residues play 
relatively important roles in antitumour activity. Obviously, using one-hot coding alone 
cannot reflect the degree of distance between elements and fully characterize sequences. 
To strengthen the expression of peptide sequences and extract high-quality feature infor-
mation, we introduced a multi-head self-attention mechanism to focus on the relatively 
important residues in the sequences. The multi-head self-attention mechanism is a vari-
ant of the attention mechanism, which has been widely used in tasks such as machine 
reading, text summarization, and image description. Compared with the self-attention 
mechanism, multiple heads can form multiple subspaces, allowing the attention mecha-
nism to evaluate the importance of residues from different subspaces [54]. To the best 
of our knowledge, this paper introduces the multi-head self-attention mechanism into 
peptide sequences coding for the first time. The input sequence vectors are calculated by 
the multi-head self-attention mechanism to obtain new characterization vectors, allow-
ing the model input to represent more context information. Moreover, the multi-head 
self-attention mechanism associates any two amino acid residues in the sequences by 
calculating the similarity between the elements without limiting the distance between 
them. Therefore, it does not need to fix the length of peptide sequences and can dynami-
cally adjust the weights of different amino acids in sequences to preserve complete fea-
ture information.

In addition, to select a suitable number of heads in the multi-head self-attention 
mechanism, we set the numbers of heads as 1, 2, 4, 8 and 16 and evaluated the proposed 
model performance, as shown in Additional file 2: Table S1. Compared with the model 
with a multi-head self-attention mechanism, the comprehensive performance of the 
model using the common self-attention mechanism (only 1 head) was relatively poor, 
which indicates that the multi-head self-attention mechanism can comprehensively 
evaluate the importance of residues in sequences from multiple perspectives. Moreover, 
the number of heads is an important hyperparameter in the multi-head self-attention 
mechanism, and the number of heads is not necessarily proportional to the effect of 
the model [55]. The results in Table S1 show that when the number of heads increased 
from 2 to 16, the performance of the model decreased. After we added regularization 
to each head [56], this phenomenon improved to some extent. As shown in Additional 
file 3: Table S2, when the number of heads was large, more redundant subspaces were 
generated, leading to high similarity between heads. Although heads regularization can 
increase the diversity among multiple attention heads, but it also increased time cost 
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when the number of heads was large. Therefore, we selected 2 as the optimal number of 
heads to avoid serious similarity problems among heads, and the resulting model had 
the best comprehensive performance and a low time cost.

The multi-head self-attention mechanism contains multiple identical self-attention 
structures, and each attention head uses different initialization parameters to learn dif-
ferent attention spaces. The self-attention mechanism uses scaled dot-product attention 
to calculate similarity scores. The calculation of similarity scores is shown in Eq. 1.

where Query represents an amino acid and Key represents each amino acid in a peptide 
sequence, dw represents the word vector dimension, and Score represents the similarity 
between the evaluated amino acid and each amino acid in a peptide sequence.

The similarity scores are then normalized by softmax and converted into a probabil-
ity distribution with the sum of weights equals to 1, thus highlighting the correlation 
between the two elements, as shown in Eq. 2.

Finally, the attention score of the current amino acid is obtained by multiplying the 
normalized similarity score by the current amino acid. The calculation process is shown 
in Eq. 3.

In the multi-head self-attention mechanism, Value represents the same value as Query.
Query , Key , and Value are mapped to multiple parallel heads for repeated attention 

calculations through different parameter matrices. Each head can process different 
information, and the calculation process is shown in Eq. 4.

The weight parameters WQuery
i ∈ Rdw/h∗dw , WKey

i ∈ Rdw/h∗dw and WValue
i ∈ Rdw/h∗dw are 

learnable parameters for linear calculation.
The multi-head self-attention mechanism can process different parts of a sequence to 

extract richer sequence features and combine the results of multiple attention opera-
tions into vector stitching, as shown in Eq. 5.

where h is the number of parallel heads, and WM ∈ Rdw∗dw is used to connect several 
attention results, which can maintain the original output dimension. The final calcula-
tion process of the multi-head self-attention mechanism is shown in Eq. 6.

In the multi-head self-attention mechanism, Query , Key , and Value all represent 
the original sequence S, and S′ is the output. wi is a new output of amino acids in the 

(1)Score =
Query ∗ KeyT

√
dw

(2)α = Softmax(Score)

(3)Attention
(

Query,Key,Value
)

= α · Value

(4)headi = Attention
(

Query ·WQuery
i ,Key ·WKey

i ,Value ·WValue
i

)

(5)MultiHead
(

Query,Key,Value
)

= WM[head1, head2, · · · headh]

(6)S′ =
{

w′
1,w

′
2, . . . ,w

′
n

}

= MultiHead(S, S, S)
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sequence calculated by the multi-head self-attention mechanism, which contains richer 
sequence information. The final S′ ∈ Rn*dw is a new representation of a peptide sequence.

The framework of CL‑ACP

In this paper, we propose CL-ACP to effectively predict potential ACPs. To prevent 
cross-talk between the peptide original sequences and secondary structures, we used 
two sets of parallel CNN and LSTM composite structures to extract the features respec-
tively, and then combined the extracted features with the enhanced sequence features 
of multi-head self-attention to obtain advanced features. Finally, the advanced features 
were input to a fully connected layer to predict ACPs.

Convolutional neural network

Due to the different characteristics of the sequence information carried by the original 
sequences and secondary structures, we introduced two sets of single-layer two-dimen-
sional convolutional neural networks to extract features from the two types of infor-
mation, with each branch consisting of a convolutional layer and rectifying linear unit 
(ReLU). The convolutional layer can obtain local features by convolving the sequences 
encoding space and rectifying linear elements to sparse the convolution layer output. 
Due to the short length of the peptide sequences, we did not pool the features after con-
volution, thus preserving the feature integrity.

The convolutional layer of peptide sequence and structure information consists of 300 
and 150 convolution kernels, and the sizes of the convolution kernels are 5*5 and 3*3, 
respectively. The convolution kernels are convolved with the input peptide sequences 
to output a series of weight numbers indicating the convolution kernel matching degree 
with each window. The inner product of the output matrix of the convolutional layer is 
shown in Eq. 7.

where X ∈ {0, 1}T∗L is the input matrix after encoding, T is the number of different ele-
ments in the sequences, K is the convolution kernel of 5*5 or 3*3, and Cl eliminates the 
negative matches in the convolutional layer and maintains positive matches by ReLU 
processing. Finally, the original sequences and the convolution branch of the secondary 
structures are stitched and input to the fully connected layer.

Long short‑term memory network

To identify category information hidden in the original and secondary structure 
sequences, we added LSTM, which incorporates long-term dependence information 
to aid in prediction. As the LSTM scans each element of the input sequences, first, the 
forget gate determines what information to discard based on the previous input. Then, 
the input gate determines how much new information should be added to the cell state 
to update the current state value. Finally, the output gate arranges the values to deter-
mine which values to output. These gating operations enable the LSTM to automatically 

(7)Cı =
8

∑

b=1

20
∑

j=1

Kb,jXb,j+1
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extract and learn all relevant information from the sequences that is useful for the over-
all classification task.

The numbers of storage units in the LSTM hidden layer of CL-ACP are 45 and 20 for 
feature extraction in the original sequences and secondary structures, respectively. The 
gating mechanism of LSTM and the update state of each step are shown in Eqs. 8–12.

where σ is the sigmoid function, and it, ft, ot and ct represent the input gate, forget gate, 
output gate and cell activation vector, respectively. X, h, and c represent input vectors, 
hidden states, and memory locations, respectively. W and b are weights and offsets that 
need to be learned. We selected the sigmoid function as the activation function, and 
Eq. 13 shows the calculation process.

Simultaneously, we chose the corresponding binary cross-entropy loss function in the 
binary classification tasks to adjust the neural network. Equation 14 is the definition of 
the loss function.

where P and T represent the predicted and target values of the model, respectively. 
Finally, the Adam optimizer commonly adopted in the neural network was used to 
update the network weight.

Considering the limited ACP data and thcomplex network model structure that may 
lead to overfitting problems, we used dropout [57] and early stopping regularization 
methods to optimize the model and reduce the model parameters. The loss rate p was 
set to 0.45, and dropout was only used during training. In addition, the CNN, LSTM 
and the multi-head self-attention mechanism were combined in parallel to reduce the 
number of network layers, model complexity and time consumption and maintain the 
richness of feature dimensions.

Performance evaluation criteria

We considered several statistical measures to aluate the performance of the proposed 
model and other comparative models, including accuracy (Acc sensitivity (Sens), spec-
ificity (Spec), precision (Prec) and Matthew’s correlation coefficient (Mcc). Thr defini-
tions are shown in Eqs. 15–19.

(8)it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

(9)ft = σ
(

Wxf xt +Whf ht−1 +Wcf ct−1 + bf
)

(10)ct = ft ct−1 + it tanh (Wxcxt +Whcht−1 + bc)

(11)ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)

(12)ht = ot tanh (ct)

(13)σ = sigmoid(x) =
1

(

1+ e−x
)

(14)logloss(t, p) = −
(

(1− p)× log (1− p)+ t × log (p)
)
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where TP denotes true positives, TN denotes true negatives, FP denotes false positives, 
and FN denotes false negatives. Acc measures the total number of correctly identified 
ACPs and non-ACPs. Sens evaluates the accuracy of the model in identifying ACPs. 
Spec assesses the ability of predictors to recognize non-ACPs. Prec evaluates the number 
of correctly predicted ACPs in the identified data. When positive and negative samples 
are unbalanced, Mcc can measure the classification quality of a classifier. In addition, the 
area under the receiver operating characteristic (ROC) curve (AUC) was used to meas-
ure the overall performance of the model. The higher the values of these indicators are, 
the better the overall performance of the model.

Results
The performances of CL‑ACP on the benchmark datasets

To evaluate the CL-ACP model ACP predictive ability, we conducted fivefold cross-vali-
dation on the benchmark datasets ACP736 and ACP240. Detailed information about the 
fivefold cross-validation experiment on the benchmark datasets is shown in Table 2.

The average Acc of fivefold cross-validation on ACP736 was 83.83%, the average Sens 
was 82.93%, the average Spec was 84.76%, the mean Prec was 85.15% and the average 
Mcc was 67.86%. CL-ACP had an AUC of 0.909, as shown in Fig. 2a. On dataset ACP240, 
the average Acc of fivefold cross-validation was 87.92%, the average Sens was 90.74%, the 
mean Spec was 84.72%, the average Prec was 88.41%, the average Mcc was 76.56%, the 
AUC was 0.935, and the ROC curve is shown in Fig. 2b. The CL-ACP model achieved a 
good prediction performance on both datasets, especially on the smaller ACP240 data-
set, indicating that CL-ACP has good ACP prediction ability and robustness.

To further verify the CL-ACP model performance, we conducted experiments on the 
newly constructed ACP539 dataset. The ratio of positive samples to negative samples in 
the ACP539 dataset is 1:2. Table 2 shows the fivefold cross-validation results of CL-ACP 
on ACP539. As Table  2 shows, on dataset ACP539, the average Acc of fivefold cross-
validation was 84.41%, the average Prec was 78.46%, the average Sens was 77.48%, the 
average Spec was 88.23%, and the average Mcc was 65.98%. The AUC was 0.921, and 
the ROC curve is shown in Fig. 2c. The results of fivefold cross-validation show that the 

(15)Acc =
TP + TN

TP + FN + TN + FP

(16)Sens =
TP

TP + FN

(17)Spec =
TN

TN + FP

(18)Prec =
TP

TP + FP

(19)Mcc =
TP × TN − FP × FN

√
(TP + FP)× (TP + FN )× (TN + FN )× (TN + FP)
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accuracy, specificity, and ROC value of CL-ACP on the ACP539 dataset were promis-
ing. However, the accuracy and sensitivity were lower than those on the two benchmark 
datasets, mainly because the ACP539 dataset was slightly unbalanced and contained 
noise in the negative samples.

In addition, to analyse the robustness of the proposed model, we further performed 
k-fold cross-validation, setting k = 6, 8 and 10. The results are shown in Additional file 4: 
Table S3. From Additional file 4: Table S3, we can see that there was no significant fluc-
tuation among the index values with different values of k. The congruence of k-fold 
cross-validation results indicates the promising performance and robustness of CL-ACP.

Ablation experiments

To verify the vital role of protein structural characteristic information in predicting 
ACPs and each CL-ACP component’s necessity, we used fivefold cross-validation to con-
duct ablation experiments on the benchmark datasets. The procedure mainly included 
the introduction of two-dimensional CNN, the use of multi-head self-attention mech-
anism, and the introduction of peptide secondary structures. The experimental results 
are shown in Table 3. The baseline model used the original sequence information of the 
motifs as input and applied LSTM to extract features and predict ACPs.

The introduction of two-dimensional convolution dramatically improved all indica-
tors of the baseline model for ACP736 and ACP240, as shown in the fourth column 
of Table 3. The improvements show that the two-dimensional convolutional network 
can capture spatial feature information in peptide sequences. Compared with the 
model using LSTM alone, the CNN and LSTM parallel combined structure can fully 

Table 2  The 5-fold cross-validation details in the ACP datasets

Fold Acc(%) Sens(%) Spec(%) Prec(%) Mcc(%)

ACP736

  1 83.78 84.00 83.56 84.00 67.56

  2 83.00 85.33 80.55 82.05 66.00

 3 85.03 82.67 87.50 87.32 70.19

 4 84.35 86.67 81.94 83.33 68.73

 5 82.99 76.00 90.28 89.06 66.82

 Average 83.83 82.93 84.76 85.15 67.86

ACP240

 1 89.58 96.15 81.82 86.21 79.45

 2 81.25 92.31 68.18 77.42 63.02

 3 89.58 84.62 95.45 95.65 79.86

 4 91.67 84.62 99.89 99.89 84.62

 5 87.50 96.00 78.26 82.76 75.86

 Average 87.92 90.74 84.76 88.41 76.56

ACP539

 1 87.04 81.58 90.00 81.58 71.58

 2 80.56 65.79 88.57 75.76 56.36

 3 83.33 74.37 88.41 78.38 63.52

 4 89.81 84.62 92.75 86.84 77.82

 5 81.31 81.08 81.43 69.77 60.64

 Average 84.41 77.48 88.23 78.46 65.98
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Fig. 2  ROC curves of CL-ACP on the ACP datasets. a ROC curve of the CL-ACP model on ACP736. b ROC 
curve of the CL-ACP model on ACP240. c ROC curve of the CL-ACP model on ACP539
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extract sequence feature information from multiple angles and obtain a higher-quality 
abstract representation. In the fifth column of Table 3, we found that the introduction 
of a multi-head self-attention mechanism improved multiple indicators of the model. 
These improvements show that the multi-head self-attention mechanism can focus 
the model on more critical residue information in peptide sequences and strengthen 
the peptide character representations, thereby enhancing the representation ability of 
the network. Yi’s work indicated that the contents of amino acids Cys (C), Phe (F), Gly 
(G), His (H), Ile (I), Asn (N), Ser (S), and Tyr (Y) accounted for a significantly higher 
proportion of ACPs than non-ACPs. However, the amino acids Glu (E), Leu (L), Met 
(M), Gln (Q), Arg (R), and Trp (W) accounted for a greater proportion in non-ACPs 
than ACPs. Visualization shows that the multi-head self-attention mechanism could 
effectively capture essential features of peptide sequences, as shown in Fig. 3. In the 
multi-head self-attention visualization diagram of randomly selected an ACP, the 
weights of amino acids Phe and Gly with respect to the whole sequence (the blue row 
in the matrix) are larger than those of other amino acids, as shown in Fig. 3a. Simi-
larly, in randomly selected a non-ACP, the weight of the amino acid Leu in the whole 
sequence was higher than those of other amino acids, as shown in Fig. 3b. These visu-
alizations are consistent with the findings of the previous study [31]. Considering that 
ACPs are relatively short, the model combination will not only yield more abundant 
characteristic information but also increase the input noise and useless information. 
Therefore, we added the multi-head self-attention mechanism to the fully connected 
layer by skip connection. The skip connection reduced the parameters and time cost 
of the model and improved the model efficiency. As shown in the sixth and seventh 
columns of Table 3, the performance of cascading multiple self-attention mechanism 
into a parallel network was poorer than that of using a skip connection. In addition, 

Table 3  Ablation experiment results on the benchmark datasets

Bold indicates the results of the final model (CL-ACP)

Component  LSTM √ √ √ √ √

 CNN √ √ √ √

 Multi-SA (skip-
connection)

√ √

 Structure 
information

√ √

 Multi-
SA(cascade)

√

ACP736  Acc (%) 78.94 82.88 83.55 83.55 83.83
 Sens (%) 78.66 80.06 82.26 83.20 82.93
 Spec (%) 79.21 80.62 82.82 83.94 84.76
 Prec (%) 80.04 82.12 84.00 84.54 85.15
 Mcc (%) 58.12 65.84 67.37 67.27 67.86
 AUC​ 0.862 0.897 0.904 0.900 0.909

ACP240  Acc (%) 83.33 85.66 86.25 85.83 87.92
 Sens (%) 88.43 89.93 90.00 86.89 90.74
 Spec (%) 77.55 81.00 82.05 84.74 84.76
 Prec (%) 82.77 84.01 86.34 87.86 88.41
 Mcc (%) 67.83 73.03 73.18 72.23 76.56
 AUC​ 0.867 0.915 0.920 0.914 0.935
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as shown in Additional file  5: Table  S4, the number of parameters in the cascading 
mode was 2.16 times that of the skip connection mode, and the running time of the 
former was approximately 4 times that of the skip connection mode. These results 
show that the introduction of skip connection is effective. As shown in the seventh 
column of Table 3, the addition of peptide secondary structures caused a significant 
increase in the model indicators. Compared with using original sequence informa-
tion alone, the values of Acc, Sens, Spec, Prec, Mcc and ROC on ACP736 increased 
by 0.15%, 0.77%, 0.94%, 1.39%, 0.21% and 0.5%, respectively. Similarly, the values of 
Acc, Sens, Spec, Prec, Mcc and ROC on ACP240 increased by 1.67%, 0.74%, 2.71%, 
2.07%, 3.38%, and 1.5%, respectively. Compared with the model without secondary 
structure information, all model indicators significantly improved after secondary 

Fig. 3  Self-attention weights of ACP and non- ACP. a Multi-head self-attention weight diagram of ACP. b 
Multi-head self-attention weight diagram of non-ACP
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structure information was added, with most improved by approximately 2%. These 
improvements indicate that ACP secondary structures contain critical information 
about antitumour activity. The introduction of ACP secondary structures enriches the 
feature space and facilitates ACP identification.

Comparison with other classification models on benchmark datasets
To further assess the prediction performance of the proposed model, we compared it on 
the benchmark datasets with other models, including SVM, RF, NB, AntiCP2.0, ACP-
DL, PTPD and iACP-DRLF models [24, 25]. The first four models are machine learning 
methods, and the last three models are neural network methods. Among them, AntiCP 
2.0 and iACP-DRLF only provide web servers or trained models; thus, we used the data 
from each fold in the fivefold cross-validation to evaluate the trained model and took the 
average value as the result. This verification method was also used in related works [58, 
59]. In addition, iACP_DRLF provided two trained models, with one trained by a dataset 
composed of ACPs and non-ACPs and the other trained by a dataset composed of ACPs 
and AMPs, which were denoted as iACP_DRLF(a) and iACP_DRLF(b), respectively. 
Similar to iACP_DRLF, AntiCP2.0 also provided two trained models, AntiCP2.0(a) and 
AntiCP2.0(b). We validated all four models on our ACP datasets, and the detailed results 
are shown in Additional file  6: Table  S5. Considering the similar compositions of the 
datasets, we chose iACP_DRLF(a) and AntiCP2.0(a) for comparison with the proposed 
method using the baseline datasets and iACP_DRLF(b) and AntiCP2.0(b) for compari-
son with the proposed method using ACP539. All methods were evaluated with the 
same evaluation indicators. The comparison results are shown in Table 4. On the dataset 
ACP736 dataset, the specificity of CL-ACP was lower than that of the NB model, but 
the other indicators of CL-ACP were the highest. The NB sensitivity and other indica-
tors were lower than those of the other models. On dataset ACP240, all the indicators 
of CL-ACP were the highest. Overall, CL-ACP achieved better performance. Especially 
on ACP240, which contains a small amount of data, the CL-ACP model showed a better 
performance than the machine learning models. Although the results of AntiCP2.0 were 
better than those of other machine learning methods, its performance is based on fea-
ture construction, including location preference, which is a complex construction pro-
cess and has certain limitations. The comparison results show that CL-ACP can extract 
high-quality features better than the machine learning models using the same features 
and coding methods. In addition, CL-ACP does not require manual feature design, and 
it has better robustness even when the amount of data is small.

Among the neural network models, ACP-DL, PTPD and iACP-DRLF were selected 
for comparison. We used fivefold cross-validation and the same evaluation indicators 
to evaluate the models. Considering that we used the datasets collected by Yi et  al. 
as the benchmark datasets, we used ACP-DL as the main comparison method. On 
the ACP240 dataset, all indicators of CL-ACP were higher than those of the com-
parison models. Except for the sensitivity indicator, all indicators showed more than 
4% improvement compared with ACP-DL, and the ROC value was significantly 
improved. On the ACP736 dataset, the sensitivity and ROC values were improved by 
approximately 2% compared with ACP-DL, and the other indicators were improved 
by more than 3%. The experimental results of PTPD and ACP-DL were worse than 
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those of CL-ACP, mainly because CL-ACP’s LSTM component can capture impor-
tant sequence information. In contrast to the ACP-DL model, the CNN component of 
CL-ACP can capture ACP spatial information. Therefore, CL-ACP can be combined 
with neural networks with different structures to obtain sufficient characteristic 
information, which can be well applied to the identification and prediction of ACPs. 
The iACP-DRLF method performed well on both benchmark datasets. This mainly 
because it used two sequence embedding techniques and deep learning to character-
ize embedded sequences. However, sequence embedding required a high time cost, 
and the verification time of iACP-DRLF was the highest among all comparison meth-
ods (please see Additional file 5: Table S4).

To further verify the model prediction performance, we conducted a comparative 
experiment on ACP539 dataset, and the verification results are shown in Table 4. The 
average Acc of CL-ACP on the ACP539 dataset was 84.41%, the average Sens was 
77.48%, the average Mcc was 65.98%, and the ROC value was 0.921, all of which were 
the highest among all comparison models. For the evaluation of unbalanced data, 
the Mcc value can be used to measure the classifier’s quality, and the ROC value can 
measure overall model performance. It can be seen from Table 4 and Additional file 1: 
Figure S1 that the Mcc and ROC values of the machine learning models were lower 
among the comparison methods, and the ROC values of the neural network models 

Table 4  Performance of comparison models and CL-ACP on the ACP datasets

Bold indicates the highest value

Dataset Methods Acc (%) Sens (%) Spec (%) Prec (%) Mcc (%) AUC​

ACP736 SVM 80.97 81.86 80.06 81.06 61.97 0.810

RF 81.52 81.06 82.00 82.44 63.08 0.815

NB 75.41 90.13 60.14 70.34 52.87 0.751

PTPD 80.97 81.86 80.06 81.06 61.97 0.884

ACP-DL 80.81 81.39 80.22 81.00 61.67 0.890

AntiCP2.0 81.21 87.59 74.85 79.13 62.87 0.843

iACP-DRLF 80.72 86.68 74.24 78.74 61.38 0.859

CL-ACP 83.83 82.93 84.76 85.15 67.86 0.909
ACP240 SVM 79.58 83.01 75.61 80.22 59.59 0.793

RF 81.66 84.58 78.30 82.05 63.48 0.814

NB 70.83 88.40 50.43 67.35 43.01 0.694

PTPD 79.58 83.01 75.61 80.22 59.59 0.784

ACP-DL 83.75 88.40 78.45 83.16 68.29 0.903

AntiCP2.0 84.00 88.64 76.16 84.18 71.19 0.894

iACP-DRLF 84.11 88.01 74.35 84.03 70.35 0.903

CL-ACP 87.92 90.74 84.76 88.41 76.56 0.935
ACP539 SVM 76.80 38.71 97.70 89.88 48.34 0.682

RF 76.80 45.46 93.96 79.93 46.88 0.698

NB 75.41 55.13 90.14 78.34 50.87 0.606

PTPD 74.94 37.09 95.70 82.65 42.82 0.740

ACP-DL 72.72 60.08 80.34 65.43 41.37 0.831

AntiCP2.0 82.38 69.25 95.00 85.27 60.09 0.881

iACP-DRLF 82.56 65.21 92.00 82.16 60.99 0.882

CL-ACP 84.41 77.48 88.23 78.46 65.98 0.921
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were higher than those of the machine learning models. Moreover, the Mcc and ROC 
values of CL-ACP were the highest, indicating that CL-ACP still had a better perfor-
mance when the data were slightly unbalanced.

It is worth noting that the specificity of each model was higher than its respective sen-
sitivity for the ACP539 dataset because sensitivity and specificity are antagonistic to a 
certain extent [58]. This phenomenon also shows that these models missed some true 
positive samples. However, CL-ACP maintained high specificity with the highest sen-
sitivity and better recognized true positive and true negative data. There are two main 
reasons. The first reason is that the ACP539 was unbalanced. The number of negative 
samples was about twice that of positive samples, leading to more false negatives pre-
dicted by the model. Another reason was that since the negative samples in the ACP539 
dataset were composed of AMPs, which shared high similarity with ACPs [60]. This 
data-trained model may result in large false negatives for prediction. Especially when 
the dataset is small, the model will overfit the data and generate more false negative 
data, resulting in low sensitivity. As shown in Table 4, machine learning models have low 
sensitivity and high specificity because sensitivity and specificity are antagonistic. CL-
ACP adopted a variety of regularization methods to avoid overfitting ACP539, especially 
negative samples, so fewer false negatives were generated compared with the machine 
learning models and obtained higher sensitivity. Moreover, sensitivity and specificity are 
antagonistic, so the true positive and false positive data of CL-ACP were both higher, 
resulting in lower specificity and accuracy.

The performances of CL‑ACP on antimicrobial peptide datasets

To verify the generalization ability of CL-ACP on short peptide data, we used other 
AMP datasets collected from APD and previous related works, including AAP, ABP, 
ACP, AIP, AVP, CPP, QSP, and PBP. Since most ACP data were contained in the ACP736 
and ACP240 datasets, this procedure did not include testing on ACP datasets.

Figure 4 shows the ROC curves for various models. The AUC values of CL-ACP on 
ABP, CPP, and QSP were 0.945, 0.965, and 0.973, respectively, which were comparable 
to those on the ACP benchmark datasets, and these results were achieved by using only 
peptide sequence-level and structural information, as well as the advanced features auto-
matically extracted by the effective architecture of CL-ACP.

The areas under the ROC curve of the AMP datasets AAP, ABP, ACP736, ACP240, 
ACP539, AIP, AVP, CPP, PBP and QSP for CL-ACP were 0.793, 0.946, 0.909, 0.935, 0.921, 
0.739, 0.859, 0.965, 0.720 and 0.972, respectively. Compared with other models, the AUC 
values of CL-ACP were the highest, which further confirms the model generalizability 
and potential for the use of CL-ACP in AMP predictions. We will explore the incorpo-
ration of additional feature information to improve the model general AMP prediction 
performance in future work.

Discussion
Experiments showed that CL-ACP had a good predictive performance and robust-
ness relative to the comparison methods. In experiments on other AMPs, CL-ACP also 
showed better generalizability.
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Fig. 4  The ROC curves of the antimicrobial peptide datasets for CL-ACP and the comparison models
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The performance of CL-ACP benefits from several major factors. (1) The peptide 
secondary structures contain key information about antitumour activity of ACPs, and 
the introduction of peptide secondary structures improves the feature richness. (2) The 
introduction of the parallel combined network model can fully extract local features and 
long-term dependence information from the feature space, effectively reduce the model 
complexity and prevent the problem of overfitting. (3) The introduction of the multi-
head self-attention mechanism strengthens the representation of sequence information, 
as also indicated by its visualization. This is also the first attempt to introduce attention 
mechanism into ACP prediction.

Conclusions
In this paper, we proposed an ACP prediction model constructed with a hybrid CNN 
and LSTM, termed CL-ACP. It used a multi-head self-attention mechanism to enhance 
the peptide sequence expression and incorporated peptide secondary structure char-
acteristics to better characterize the feature space. CNN networks were used to obtain 
the local hidden characteristics of ACPs. The sequence dependence information of 
amino acid residues was captured by LSTM, which reduced information loss. Finally, 
the extracted advanced features were input to the fully connected layer for prediction. 
Comparative experiments on benchmark datasets showed that CL-ACP had a better 
predictive performance than existing prediction models, improving ACP identification. 
Comparative experiments on the ACP539 dataset showed that even when the negative 
data contained noise, the performance of CL-ACP was better than those of compari-
son models, indicating good robustness of CL-ACP. Comparative experiments on AMPs 
data showed that CL-ACP is not limited to the prediction of ACPs but can also auto-
matically extract practical features. CL-ACP can learn efficient abstract representations 
of short peptide data to discover novel ACPs and AMPs, providing helpful information 
for drug development to treat various cancers and other diseases.

Although CL-ACP had a good performance in predicting ACPs, it still lacked mean-
ingful biological explanation. For example, the multi-head self-attention mechanism can 
enhance weights of the essential residues in peptide sequences. However, the biologi-
cal rationale is unclear and will therefore be a focus of future work. Simultaneously, we 
will consider effective feature fusion methods and model structures, such as capsule net-
works [58], to improve the performance of the model.
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