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Abstract
Human Enterovirus 71 (EV71) commonly causes Hand, Foot and Mouth Disease in young

children, and occasional occurrences of neurological complications can be fatal. In this

study, a high-throughput cell-based screening on the serine/threonine kinase siRNA library

was performed to identify potential antiviral agents against EV71 replication. Among the

hits, Misshapen/NIKs-related kinase (MINK) was selected for detailed analysis due to its

strong inhibitory profile and novelty. In the investigation of the stage at which MINK is in-

volved in EV71 replication, virus RNA transfection in MINK siRNA-treated cells continued to

cause virus inhibition despite bypassing the normal entry pathway, suggesting its involve-

ment at the post-entry stage. We have also shown that viral RNA and protein expression

level was significantly reduced upon MINK silencing, suggesting its involvement in viral pro-

tein synthesis which feeds into viral RNA replication process. Through proteomic analysis

and infection inhibition assay, we found that the activation of MINK was triggered by early

replication events, instead of the binding and entry of the virus. Proteomic analysis on the

activation profile of p38 Mitogen-activated Protein Kinase (MAPK) indicated that the phos-

phorylation of p38 MAPK was stimulated by EV71 infection upon MINK activation. Lucifer-

ase reporter assay further revealed that the translation efficiency of the EV71 internal

ribosomal entry site (IRES) was reduced after blocking the MINK/p38 MAPK pathway. Fur-

ther investigation on the effect of MINK silencing on heterogeneous nuclear ribonucleopro-

tein A1 (hnRNP A1) localisation demonstrated that cytoplasmic relocalisation of hnRNP A1

upon EV71 infection may be facilitated via the MINK/p38 MAPK pathway which then posi-

tively regulates the translation of viral RNA transcripts. These novel findings hence suggest

that MINK plays a functional role in the IRES-mediated translation of EV71 viral RNA and

may provide a potential target for the development of specific antiviral strategies against

EV71 infection.
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Author Summary

Since its first isolation, human Enterovirus 71 (EV71) has been known to cause hand, foot
and mouth disease in children, with some cases developing severe neurologic complica-
tions, leading to death. In the recent years, outbreaks within the Asia-Pacific region have
caused significant deaths, making EV71 a major public health risk. Despite the growing
threat from the spread of EV71 and increased research in this area, there are no clinically
approved vaccines or antiviral drugs available against EV71. Cellular signalling and host
kinases have been reported to play significant roles in the replication and propagation of
many different pathogens. In this paper, we show that a serine/threonine kinase, Misshap-
en NIK-related kinase (MINK), plays a role in the replication of EV71 by stimulating the
p38 mitogen activated protein kinase (p38-MAPK) pathway which in turns promotes the
translation efficiency of EV71 viral protein synthesis. As the synthesis of viral proteins is
crucial for the replication of the virus during infection, discovery of a crucial host kinase in
this process may provide insights on the replication of EV71. With deeper understanding
of the functions and regulation of MINK, this kinase may serve as a promising target for
the development of antiviral therapy.

Introduction
Human enterovirus 71 (EV71), a member of the Picornaviridae family and genus Enterovirus,
is the major causative agent of hand-foot-and-mouth disease (HFMD). In recent years, EV71
has emerged as an important global health problem, causing significant deaths especially with-
in the Asia-Pacific region [1]. Since its first isolation in 1969 in California [2], outbreaks have
been observed worldwide, affecting countries such as Singapore, Malaysia and Taiwan
[3,4,5,6]. EV71-associated HFMD often results in a higher risk of developing severe neurologi-
cal complications and cardiopulmonary failure [7] which can be fatal. Despite the growing
threat from the spread of EV71, there are no clinically approved vaccines or antiviral drugs
available against EV71 to date [8] and treatments mainly aim to alleviate the symptoms [9].

EV71 is a small (33–35nm), single-stranded, positive-sense, non-enveloped RNA virus with
a viral genome of approximately 7.5kb. The virions consist of an icosahedral capsid of 60 proto-
mers surrounding viral genomic RNA [10] that contains a single open reading frame (ORF)
flanked by the 5’ untranslated region (UTR) and the 3’UTR. The ORF encodes four structural
proteins (VP1, VP2, VP3 and VP4) that make up the viral capsid and seven non-structural pro-
teins (2A, 2B, 2C, 3A, 3B, 3C and 3D) which are involved in viral replication. Viral 2A and 3C
proteases are involved in the cleavage of the polyprotein precursor to release the mature viral
proteins while viral protein 3D is the RNA-dependent RNA polymerase (RdRp) that plays a
major role in the synthesis of negative- and positive-sense viral RNA [11]. Upon EV71 infection,
the viral genome is translated into the viral polyprotein and the 3D protein participates in the
transcription of the positive-sense genomic viral RNA into the complementary negative-sense
viral RNA, which serves as a template for the synthesis of more positive-sense genomic viral
RNA. The genomic RNA is then translated into more viral polyproteins in a cap-independent
manner and the polyproteins are subsequently processed into the structural capsid proteins and
non-structural proteins [11]. The 5’UTR of the EV71 genomic RNA contains a cloverleaf struc-
ture involved in viral RNA replication and an internal ribosomal entry site (IRES) which directs
viral protein translation in a cap-independent manner [12,13]. The picornavirus IRES have
been classified into three types based on its structure and enteroviruses (and rhinoviruses) have
the type 1 IRES which requires certain eukaryotic initiation factors (eIFs) and IRES-specific
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transacting factors (ITAFs) to initiate viral protein translation. In contrast to cellular cap-
dependent translation, the host 40S ribosomal subunit is recruited at the IRES without the need
for eIF4E to initiate viral polyprotein translation [14]. A number of ITAFs have been identified
to interact with picornavirus IRES and mediate translation initiation of the viral polyprotein.
These ITAFs include polypyrimidine tract-binding protein (PTB) [15,16,17], heterogeneous nu-
clear ribonucleoprotein E (hnRNP E) [18], far-upstream element-binding protein 1 (FBP1) and
FBP2 [19]. Among these ITAFs, hnRNP A1[20],and FBPs [19] have been reported to interact
with EV71 IRES.

Given the small genome size of EV71, the virus depends on several cellular proteins and ma-
chineries in the host cell to complete its replication. In search for host cellular factors that play
a role in EV71 replication, an understanding of the cellular proteins involved in different stages
of viral replication would be useful for the identification of potential targets for the develop-
ment of antiviral strategies. In this study, an immunofluorescence cell-based virus infection
assay was set-up to screen the human serine/threonine kinase siRNA library using a set of vali-
dated small interfering RNAs (siRNAs) targeting the host serine/threonine kinases. Several
candidate kinases that showed significant inhibition of EV71 replication upon gene knock-
down were identified and among the hits, Misshapen/NIKs-related kinase (MINK), a novel
sterile 20 (Ste20) family kinase, was chosen for further evaluations. MINK, also known as
MAP4K6, is a germinal center kinase (GCK) from the Ste20 family of kinases that includes
more than 30 serine/threonine kinases with catalytic domains that are homologous to the yeast
Ste20 kinases. MINK is structurally similar to the Nck-interacting kinase (NIK) which has pre-
viously been proposed to link the protein tyrosine kinase signals to the activation of c-Jun
N-terminus kinases (JNK) pathway via the SH2-SH3 domain of Nck [21]. As a member of the
GCK class of kinases, MINK has an N-terminal kinase domain and a C-terminal regulatory do-
main. The intermediate domain consists of multiple proline rich motifs that are putative SRC
homology 3 (SH3) binding sites [22]. The MINK1 gene encodes a polypeptide of 1312 amino
acids and is expressed in most tissues in at least five alternatively spliced isoforms [22]. Studies
on cells under environmental stress [23] revealed that MINK activates the JNK and p38 MAPK
pathway, which are important signalling pathways involved in various cellular functions such
as apoptosis, protein translation and cell differentiation [24]. Apart from cellular functions,
p38 MAPK pathway has also been reported to play a role in the IRES-mediated viral protein
translation of Encephalomyocarditis virus (EMCV) viral RNA [25]. In this study, we revealed
the involvement of MINK in EV71 replication and further elucidated the mechanism through
which MINK regulates the synthesis of EV71 viral polyprotein upon viral infection.

Results

Development of a screening assay for EV71 replication based on
indirect immunofluorescence
A screening assay was previously developed to screen for host factors involved in EV71 replica-
tion using targeting siRNA [26]. In this screen, a similar screening approach was adopted
based on immunofluorescence assay to detect EV71 structural protein expression as an indica-
tor of successful EV71 infection and replication. Positive control wells containing EV71-
infected cells without siRNA treatment had a mean of 51.600% antigen positive cells with a
standard deviation of 5.407%. Mock-infected cells were used as negative controls to verify the
specificity of the antibody. In addition, the data were analysed by applying Z-score statistics
and a Z’ factor of 0.673 was obtained from the primary screen, indicating that the screening
platform was sufficiently robust and was suitable for the high-throughput screening of the
human serine/threonine kinase siRNA library.
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MINK plays an essential role in EV71 replication
A human serine/threonine kinase siRNA library that targets 47 serine/threonine kinases
(S1 Table) was utilised in the primary screen in search for human serine/threonine kinases in-
volved in EV71 replication. Using the criteria of�40% inhibition to identify positive hits in the
primary screen, 6 serine/threonine kinases were identified as positive hits (Fig. 1). The top
three targets identified, PAK1, MINK and MAP4K2, were first analysed. PAK1 was observed
to cause the highest level of virus inhibition but closer analysis led to the removal of this target
from further downstream studies due in part to the large standard error in the results obtained
and lower cell density observed in all the PAK1 replicate wells. MINK and MAP4K2 were iden-
tified as putative targets crucial to EV71 replication and validation of their involvement was
carried out using both immunofluorescence assay and viral plaque assay.

Increasing concentrations of siRNA resulted in a reduction of immunofluorescence-
detectable EV71 replication for cells treated with siRNA against either MINK or MAP4K2
(Fig. 2A). This coincided with the dose-dependent reductions up to 1.5 log for both siRNAs at
45nM in infectious virus released from the cells as indicated by viral plaque assays (Fig. 2B). As
the siRNA targeting cyclophilin B has been utilised previously in the primary screen as an
siRNA control, it was also included in the secondary assay to ensure that the effect of infectious
virus titre reduction was not due to off-target effects. Furthermore, minimal cellular cytotoxici-
ty was observed across the concentrations of both MINK and MAP4K2 siRNAs (Fig. 2B), indi-
cating that the inhibition of EV71 replication was not due to the cytotoxic effects of the siRNAs
at the range of concentrations used.

In view of the higher levels of virus inhibition upon the silencing of MINK and its unknown
function in virus replication, MINK was selected for further investigation. Western blotting
was carried out to verify the gene knockdown efficiency. Dose-dependent reduction in the pro-
tein expression level of MINK was observed upon MINK siRNA treatment, suggesting that the
range of siRNA concentration used in this study was effective in silencing the MINK gene
(Fig. 2C panel i and Fig. 2D). This was further verified by the scrambled siRNA treatment, as

Fig 1. Human serine/threonine kinase siRNA library screen. Effect of gene knockdown by siRNA on EV71 replication analysed from primary screen. 40%
reduction in viral antigen positive cells was considered as the acceptable level of virus inhibition and positive hits are genes which resulted in a percentage of
viral antigen positive cells of less than 60% upon the knockdown of these genes. As such, 6 genes have been identified as positive hits from the primary
screen. First 6 bars represent siRNA controls used while the other bars represent the host serine/threonine kinases targeted in the screening. siRNA controls
utilised included non-targeting siRNAs as well as siRNAs targeting several housekeeping genes. Values obtained in the graph were normalised against the
mean of the transfection control (EV71-infected cells treated with only the transfection reagent).

doi:10.1371/journal.ppat.1004686.g001
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there was no reduction in MINK protein levels observed across the siRNA concentration range
used in the study (Fig. 2C panel ii, and Fig. 2D). To further validate the specificity of the MINK
SMARTpool siRNAs, deconvolution assay was performed with 45nM concentrations of each
specific individual siRNA of the SMARTpool (four specific siRNAs). This approach would
help to ensure that inhibitory effects of the targeting siRNAs on EV71 infection observed in the
secondary assay was specific and not due to off-target gene effects. Before a viral plaque assay
was performed to determine the virus titre upon gene knockdown using the individual siRNAs
within the SMARTpool, gene knockdown efficiency of each individual siRNAs was assessed.
From theWestern blot analysis, it was observed that all four individual siRNAs directed against
MINK were effective in reducing MINK protein levels at a concentration of 45nM (Fig. 2E and
Fig. 2F). Coinciding with the knockdown efficiency of individual siRNA, viral plaque assay re-
sults showed that all four individual siRNAs resulted in significant reduction in virus titre of at
least 1.3 log at 45nM concentration (Fig. 2G). Taken together, these findings demonstrated
that the inhibition on EV71 propagation was a result of the targeted siRNA knockdown of
MINK and thus, MINK is essential for the replication of EV71.

MINK is essential for the replication of other human enteroviruses
To investigate if MINK plays a role in other human enteroviruses as well, MINK siRNA-treated
cells were infected with various human enteroviruses: a different strain of EV71 (EV71 strain
41), Coxsackievirus A6 (CA6) and Echovirus 7 at MOI 1. The dose-dependent reduction in in-
fectious virus titres upon the siRNA knockdown of MINK was reproduced with all three virus-
es as demonstrated in Fig. 2H. As shown in Fig. 2H, the knockdown of MINK resulted in the
reduction of infectious virus titre by approximately 2.3 log units. 1.5 log unit and 1.5 log unit
respectively for EV71 strain 41, Echovirus 7 and CA6 relative to the scrambled siRNA controls
(Scr). This suggested that the involvement of MINK is not restricted to EV71, but may extend
to other human enteroviruses as well.

Silencing of MINK does not affect EV71 entry
Further experiments were performed to elucidate the involvement of MINK within the differ-
ent stages of the EV71 replication processes (viral entry, viral RNA replication and viral protein
synthesis). To assess the involvement of MINK in viral entry, viral RNA was extracted and
transfected into cells which were pre-treated with MINK siRNA to bypass the normal viral
entry processes ie. clathrin-mediated endocytosis for EV71 [26]. As such, infectious virus titre
obtained from viral plaque assays would assist in the elucidation of the potential involvement
of MINK in the viral entry stage. In this assay, a dose-dependent reduction in the virus yield
was observed across the siRNA concentrations with a maximum reduction of ~1.8 log at 45nM
(Fig. 3A), indicating that the silencing of MINK continued to cause virus inhibition despite by-
passing the viral entry stage. This result suggested that MINK might play a more essential role
at the post-entry stage.

MINK plays an essential role in EV71 viral protein synthesis and viral
RNA synthesis
To examine the involvement of MINK in the post-entry stages of EV71 replication, viral RNA
synthesis of EV71 was determined by quantitative RT-PCR on viral RNA samples extracted
from infected RD cells pre-treated with either MINK siRNA (M) or scrambled siRNA (S) con-
trol at 25nM (M25 and S25) and 45nM (M45 and S45). A background control measuring the
viral RNA levels at 0h post-infection was included to account for the background viral RNA re-
sulted from virus entry and the binding of residual virions on the cell surfaces. The infected
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Fig 2. Silencing of MINK significantly reduced EV71 replication in a siRNA concentration-dependent manner. (A) siRNA-treated EV71 infected cells
were fixed at the same time-points and intracellular viruses were detected by immunofluorescence assay. Immunofluorescence detection of EV71 VP2
proteins (green) with the nuclei stained with DAPI (blue) is shown. The images were taken at 10X magnification. Cells in both the negative and transfection
controls were not infected with EV71 while cells in the positive control were infected with EV71 in the absence of siRNA. (B) Cell viability of siRNA-treated
cells was measured in relation to untreated cells using alamarBlue assay after 72h incubation. Virus titres in the supernatant of siRNA-treated cells were
analysed via viral plaque assay. Error bars represent standard deviation (SD) of triplicate data and values obtained were normalised against the transfection
control. Statistical analyses were performed using one-way ANOVA and Dunnett’s test (Graphpad software) against untreated control. *P<0.05 (n = 3), **P
<0.01 (n = 3). (C) Verification of gene knockdown efficiency of MINK siRNA SMARTpool at concentrations ranging from 0nM to 45nM.Western blot analysis
was performed to detect protein expression levels of MINK, with β-actin as the loading control. Parallel transfection of scrambled siRNA served as a
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cells pre-treated with the siRNA were harvested at 8h and 10h post-infection to examine the
relative amount of viral RNA. Fold change in RNA level for all samples was calculated relative
to the RNA level in the transfection control (PTC/ 0nM) at 0h post-infection. Comparison of
RNA level was made between the samples treated with MINK siRNA (M25 and M45) or
scrambled siRNA (S25 and S45) and their PTC at each time-point. Results showed increase in
the level of viral RNA at 8h and 10h post-infection, relative to 0h background control, indicat-
ing that there was viral RNA replication upon siRNA treatment. The viral RNA level in MINK
siRNA-treated cells was significantly lower than that in the transfection control (PTC) at both
8h and 10h post-infection (Fig. 3B), with fold reductions of 6.8 and 18.4 at 8h and 10h post-in-
fection at 45nM concentration, respectively. On the contrary, there was no significant change
in the viral RNA level in the samples treated with the scrambled siRNA control at both concen-
trations compared to PTC. These results indicated that the silencing of MINK has inhibitory
effects on the production of viral RNA.

Since the production of viral proteins precedes and is essential for the synthesis of viral
RNA, the influence of MINK silencing on EV71 replication at the level of translation was deter-
mined. A time course study was first conducted to identify the time period during which EV71
viral protein expression occurs (Fig. 3C and 3D). Across a time course of 12h after EV71 infec-
tion, greatest increase in the EV71 structural viral protein expression, VP0 (~36kDa) and VP2
(~28kDa), was observed between 4 and 8h post-infection (Fig. 3C and 3D). As such, 8h post-
infection was selected as the time-point for further analysis on the role of MINK in viral pro-
tein synthesis. At 8h post-infection, a dose-dependent reduction in the VP0 and VP2 was ob-
served in EV71-infected cells pre-treated with MINK siRNA (Fig. 3E panel i and 3F) as
opposed to the constant protein expression level of VP0 and VP2 in cells treated with scram-
bled MINK siRNA (Fig. 3E panel ii and 3F). Similarly, reduction in non-structural protein level
such as the 3D protein (RNA-dependent RNA polymerase) was observed in cells pre-treated
with MINK siRNA but not in cells treated with scrambled siRNA (S2A-C Fig). The reduction
in the 3D protein level also corresponded with the reduction in the viral RNA level. Since the
depletion of MINK protein in cells led to a corresponding reduction in the viral proteins
synthesised, MINK is likely to be involved in the stage of viral protein synthesis.

Silencing of MINK does not block virus release
To further confirm the stage of involvement of MINK in the replication of EV71, intracellular
and extracellular EV71 virions were quantified at 12h post-infection to determine whether
MINK plays a role in viral packaging and release. Although a significant reduction of ~1.5 log
was observed in the extracellular virions upon the siRNA knockdown of MINK at 45nM, a sig-
nificant reduction in virus titre was also observed in the intracellular virions (Fig. 3G). Hence,
we concluded that the reduction in the amount of virus released was not due to a blockage in

knockdown control. MINK protein expression was observed to decrease in a dose-dependent manner across siRNA concentration. (D) Band intensity of
MINK gene knockdown verification. The band intensities representing MINK protein expression level were quantitated with reference to actin control bands
(for each individual concentration) and PTC. The intensities of protein bands were quantitated using ImageJ Gel Analysis program. (E) Verification of gene
knockdown efficiency of individual siRNA within the siRNA SMARTpool directed against MINK at 45nM.Western blot analysis was performed to detect
protein expression levels of MINK, with β-actin as the loading control. (F) Band intensity of MINK gene knockdown verification in deconvolution assay. The
band intensities representing MINK protein expression level were quantitated with reference to actin control bands (for each individual siRNA) and PTC. (G)
Virus titres in the supernatant of cells treated with individual siRNAs within siRNA SMARTpool were analysed via viral plaque assay. Error bars represent
standard deviation (SD) of triplicate data. Statistical analyses were performed using one-way ANOVA and Dunnett’s test (Graphpad software) against
untreated control. ***P<0.0001 (n = 3). (H) Virus titres of other human enteroviruses (Echovirus 7, Coxsackievirus A6 and EV71 strain 41) in the
supernatant of siRNA-treated cells were analysed via viral plaque assay. Error bars represent standard deviation (SD) of triplicate data. Statistical analyses
were performed using one-way ANOVA and Dunnett’s test (Graphpad software) against scrambled control (Scr). *P< 0.05, **P< 0.01 and ***P< 0.0001
(n = 3) versus scrambled control.

doi:10.1371/journal.ppat.1004686.g002
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Fig 3. MINK plays an essential role in EV71 viral protein synthesis. (A) EV71 viral RNA was transfected into RD cells pre-treated with MINK siRNA and
supernatant was harvested from cells at 12h post-infection (hpi) for viral plaque assay. Silencing of MINK with targeting siRNA continued to cause inhibition
of virus replication. Statistical analysis was performed using one-way ANOVA with Dunnett’s test (Graphpad software). *** P< 0.0001 (n = 3) versus
untreated control (0nM). (B) EV71 RNA synthesis was sensitive to silencing efficiencies of MINK. Quantitative RT-PCR assay revealed significant reduction
in levels of EV71 RNA across increasing siRNA concentration in MINK siRNA-treated cells. Total RNA was extracted for all samples at 0, 8 and 10hpi and
EV71 RNA levels were measured. CT values were normalised against actin and relative quantification of viral RNA level was determined. The ΔΔCt data
were calculated from three independent experiments and error bars represent standard deviation for triplicate data sets. Fold difference of viral RNA for all
samples was calculated relative to the RNA level in the transfection control (PTC) at 0hpi. Statistical analyses were carried out using one-way ANOVA with
Dunnett’s test (Graphpad software). *P<0.05 and *** P< 0.0001 (n = 3) vs the respective PTC at each time-point. (C) Time course study of EV71 structural
protein expression via Western blot analysis. Upper band (36kDa) represents VP0 while lower band (28 kDa) represents VP2. β-actin was used as the
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the virus release process upon the silencing of MINK, but was due to a decrease in the total pro-
duction of virus particles.

Replication of EV71 triggers MINK phosphorylation
As a MAP kinase kinase kinase kinase (MAP4K), MINK is activated upstream in MAPK path-
ways and thus we hypothesised that the early events in EV71 infection could be responsible for
the activation of MINK. To investigate if virus binding and entry triggered the phosphorylation
of MINK, Western blot analysis on phospho-MINK was conducted after the transfection of
viral RNA into cells to bypass the normal entry processes of EV71. Since phospho-MINK anti-
bodies are not available commercially, a phosphate-binding tag (Phos-Tag) [27] was used to
separate the phosphorylated proteins from the unphosphorylated proteins. 6h and 8h were se-
lected as the time-points for harvest of cell lysates due to the significant increase in phospho-
MINK levels at these time-points after infection (S1 Fig). As shown in Fig. 4A and Fig. 4B, cells
transfected with viral RNA displayed similar phospho-MINK levels at 6h and 8h as the infec-
tion control (EV71-infected), suggesting that initial binding and entry processes of the virus
was not required for the activation of MINK upon EV71 infection.

To further ascertain that initial binding of the virus was not required for the activation of
MINK, an infection inhibition assay was performed. It has been well-established that scavenger
receptor class B2 (SCARB2) is the cellular receptor for EV71 on RD cells [28], hence an anti-
body to SCARB2 was used to block the cellular SCARB2 receptors to prevent virus binding.
Viral plaque assay was first conducted to confirm the efficacy of the anti-SCARB2 antibody in
blocking EV71 infection. A corresponding control IgG antibody that does not bind specifically
to any proteins was used as a negative control. Results from the infection inhibition assay
showed that pre-treatment of RD cells with the anti-SCARB2 antibody blocked EV71 infection
in a dose-dependent manner as the virus titre was significantly reduced by ~1.5 log at the high-
est concentration of anti-SCARB2 antibody used (Fig. 4C). On the other hand, treatment with
the control IgG antibody did not affect the binding and entry of virus into the cells (Fig. 4C) as
the virus titres remained constant across increasing concentrations of IgG antibody.

To investigate if virus binding to cellular SCARB2 triggered the activation of MINK, EV71-
infected RD cells pre-treated with the anti-SCARB2 antibody were lysed at 6h after addition of
virus for Western blot analysis. Our results indicated that inhibition of the virus binding to
SCARB2 with increasing concentration of the antibody did not reduce the phospho-MINK lev-
els in the cells as the phospho-MINK levels in cells treated with 25 and 50μg/mL of anti-
SCARB2 antibody showed similar level as that in cells treated with 50μg/mL of control IgG an-
tibody (Fig. 4D and 4E). As such, virus binding was unlikely to be the triggering event of the
phosphorylation of MINK. Together, the activation profile of MINK (S1 Fig) and the entry as-
says suggested that the phosphorylation of MINK was stimulated post-entry, in the early phase
of viral replication which occurs during the 6h period after addition of virus.

loading control. (D) Band intensity of VP0 and VP2 in time course study. The band intensities representing VP0 and VP2 protein expression level were
quantitated with reference to actin control bands (for each time-point) and 0hpi using ImageJ Gel Analysis program. (E) Viral protein expression levels upon
the silencing of MINK. VP0 and VP2 viral protein expression was observed to decrease with increasing concentration of siRNA targeting MINK. (F) Band
intensities of VP0 and VP2 upon siRNA knockdown of MINK. The band intensities representing VP0 and VP2 protein expression level were quantitated with
reference to actin control bands (for each siRNA concentration) and 0nM using ImageJ Gel Analysis program. (G) Extracellular and Intracellular virion levels
upon the silencing of MINK. Extracellular EV71 virions in the supernatant and intracellular virus particles were harvested separately at 12hpi for viral plaque
assay to assess the effect of siRNA knockdown of MINK on virus packaging and release. Silencing of MINK resulted in significant reduction in both
intracellular and extracellular virions. Statistical analysis was performed using one-way ANOVA with Dunnett’s test (Graphpad software). **P< 0.01 and ***
P< 0.0001 (n = 3) versus untreated control (0nM).

doi:10.1371/journal.ppat.1004686.g003
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Fig 4. Phosphorylation of MINK is triggered post-entry by early replication events. Phos-tag acrylamide binds phosphorylated proteins and retards
their migration to separate the phosphorylated proteins from their unphosphorylated counterparts. Total MINK antibody was used to detect both
phosphorylated (upper bands) and unphosphorylated MINK (lower bands). β-actin was used as a loading control. (A) Viral RNA was transfected into cells
and cell lysates were harvested at indicated time-points to assess the phospho-MINK levels. Phospho-MINK levels in RNA-transfected cells were
comparable to the infection control at the same time-points. (B) The band intensities representing MINK phosphorylation level were quantitated with
reference to actin control bands (for each time-point) and 0h using ImageJ Gel Analysis program. (C) Virus titres in the supernatant of cells treated with the
anti-SCARB2 and anti-IgG antibodies were analysed via viral plaque assay. Blocking SCARB2 receptors with increasing concentration of SCARB2 antibody
resulted in a significant reduction in virus titres. Error bars represent standard deviation (SD) of triplicate data. Statistical analyses were performed using one-
way ANOVA and Dunnett’s test (Graphpad software) against untreated control. ***P<0.0001 (n = 3) (D) Blocking SCARB2 receptors with increasing
concentration of SCARB2 antibody did not affect the phosphorylation of MINK in cells at 6h after addition of virus. (E) The band intensities representing MINK
phosphorylation level were quantitated with reference to actin control bands (for each concentration) and 0μg/mL using ImageJ Gel Analysis program.

doi:10.1371/journal.ppat.1004686.g004
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EV71 infection activates p38 MAPK in RD cells
After determining the triggering event of MINK upon EV71 infection, we next investigated the
mechanism of action of MINK on EV71 viral protein synthesis. It has been reported that
MINK activates the p38 MAPK pathway [23], a signalling pathway that has also been shown to
play a role in the replication of Encephalomyelitis virus (EMCV), a member of the Picornaviri-
dae family [25]. As such, we examined the activation profile of p38 MAPK upon EV71 infec-
tion to assess whether the p38 MAPK signalling pathway is activated during EV71 replication.
As serum has also been reported to induce phosphorylation of certain proteins [29], fecal calf
serum (FCS) was removed from the virus stock and growth media in the course of this experi-
ment to reduce the additional activation of p38 MAPK by the serum. Cell lysates were analysed
at indicated time-points post-infection for 12h by Western blotting to examine the changes in
the phosphorylation levels of p38 MAPK (phospho-p38). Constant and basal phosphorylation
of p38 MAPK was observed in mock-infected cells throughout the 12h time course (Fig. 5B
and 5D). In contrast, the EV71-infected cells showed an increase in the phosphorylation level
of p38 MAPK between 6 to 8h post-infection (Fig. 5A and 5D), followed by a subsequent de-
crease from 8 to 12h post-infection. To demonstrate the dependency of p38 MAPK phosphory-
lation on EV71 replication, we also examined the phospho-p38 MAPK profile in RD cells
infected with UV-inactivated EV71 (Fig. 5C and 5D). Similar to the mock-infected control,
cells exposed to UV-inactivated EV71 showed constant phosphorylation level of p38 MAPK
throughout the 12h time course, indicating that attachment of the virions to cell surface recep-
tors or virus entry process were not sufficient to trigger the phosphorylation of p38 MAPK.
Total p38 MAPK was also assessed to ensure that the changes in phospho-p38 MAPK levels
were not due to differences in p38 MAPK expression levels. Phospho-p38 MAPK levels at 0h
post-infection appears higher in Fig. 5A in EV71-infected samples than that in the mock-
infected samples (Fig. 5B) and samples exposed to UV-inactivated EV71 (Fig. 5C) probably
due to more total proteins loaded as seen from the total p38 and β-actin levels. However, it is
evident in the trend of p38 MAPK activation profile that phospho-p38 MAPK levels were sig-
nificantly increased upon EV71 infection (Fig. 5D). Hence, these results suggested that activa-
tion of p38 MAPK signalling pathway requires the active replication of EV71.

MINK contributes to the activation of p38 MAPK during EV71 infection
To establish a link between the activation of MINK and p38 MAPK phosphorylation upon
viral infection, cells were pre-treated with either scrambled MINK or MINK siRNA prior to
EV71 infection and lysed at 8h post-infection for Western blot analysis. Efficacy of the MINK
siRNA was demonstrated with a dose-dependent reduction in MINK protein levels upon
knockdown (Fig. 5E and 5F). Dose-dependent reduction in phospho-p38 MAPK protein levels
was also observed with increasing MINK siRNA concentration (25nM and 45nM) in both
EV71-infected (Fig. 5E left panel and 5G) and mock-infected samples (Fig. 5E right panel and
5G). In contrast, increasing the concentration of scrambled siRNA control (25nM and 45nM)
did not affect the phosphorylation levels of p38 MAPK (Fig. 5E and 5G), suggesting a correla-
tion between MINK expression levels and p38 MAPK phosphorylation levels. As such, these
results confirmed that MINK plays a role in the downstream triggering of p38 MAPK phos-
phorylation during EV71 replication.

The p38 MAPK signalling pathway is essential for EV71 replication in
RD cells
To ascertain the role of p38 MAPK signalling pathway in EV71 replication, the p38 MAPK in-
hibitor SB203580 [30] was examined for its impact on EV71 replication. To verify the efficacy
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Fig 5. EV71 infection triggers p38 MAPK phosphorylation downstream of MINK.Western blot analysis
was performed to assess the levels of phosphorylated p38 MAPK (phospho-p38) at 0, 2, 4, 6, 8, 10 and
12hpi. Total p38 (t-p38) was probed as an internal control for p38 MAPK protein expression and β-actin was
used as a loading control. (A) Infection with infectious EV71 was observed to activate p38 MAPK
phosphorylation from 6hpi and was most significant at 8hpi. (B) Phosphorylation levels of p38 MAPK in mock-
infected cells was basal and constant across the 12h. (C) Cells exposed to UV-inactivated EV71 virus also
displayed basal and constant level of p38 MAPK phosphorylation of p38 MAPK. (D) Quantification of
phospho-p38 MAPK (Thr180/Tyr182) protein bands. The band intensities representing phospho-p38 MAPK
level were quantitated with reference to actin control bands (for each time-point) and 0hpi using ImageJ Gel
Analysis program. (E) Western blot analysis of the phosphorylation levels of p38 MAPK at 8hpi in siRNA-
treated cells. The left panel shows the phospho-p38 levels in EV71-infected under three different treatments:
no treatment, scrambled siRNA treatment and MINK targeting siRNA treatment. The right panel shows the
phospho-p38 levels in mock-infected cells under the same treatments. (F) Quantification of MINK protein
bands with reference to actin control bands (for each concentration) and PTC using ImageJ Gel Analysis
program. (G) Quantification of phospho-p38 MAPK (Thr180/Tyr182) and total p38 protein bands with
reference to actin control bands (for each concentration) and PTC using ImageJ Gel Analysis program.

doi:10.1371/journal.ppat.1004686.g005
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of SB203580 in inhibiting the p38 MAPK pathway, we measured the phosphorylation levels of
p38 MAPK via Western blot analysis. A dose-dependent reduction in the phosphorylation of
p38 MAPK was observed with increasing concentration of SB203580 and significant inhibition
was noticed at a concentration of 50μM (Fig. 6A and 6B). Consistent expression levels of total
p38 MAPK at different concentrations of SB203580 suggested that SB203580 inhibited p38
MAPK phosphorylation but not its expression.

Having confirmed the effectiveness of SB203580 in inhibiting the phosphorylation of p38
MAPK, RD cells were post-treated with SB203580 and the production of progeny virus in the
culture supernatant was assessed via viral plaque assay. A significant dose-dependent reduction
in the progeny virus production was observed after treatment with SB203580 with a 1.2-, 2.2-
and 3.3 log reduction at 25 μM, 75 μM and 100 μM, respectively (Fig. 6C). In addition, cell via-
bility of SB203580-treated cells was assessed to rule out the possibility of reduced viral growth
due to cytotoxicity after treatment with SB203580. Our results from the alamarBlue cytotoxici-
ty assay indicated that the concentration range of SB203580 used in this study did not lead to
significant reductions in cell viability and hence, the dose-dependent reduction of EV71 virus
titre by SB203580 was not complicated by its cytotoxic effects (Fig. 6C). Together, these results
indicated that blockage of the p38 MAPK signalling pathway can significantly reduce viral
growth and hence, p38 MAPK pathway is essential for EV71 propagation.

Inhibition of the p38 MAPK signalling pathway affects viral protein
synthesis
To further validate the involvement of p38 MAPK signalling pathway downstream of MINK in
the synthesis of viral proteins, time-of-addition studies were conducted to identify the window
period in the EV71 replication cycle when the p38 MAPK inhibitor, SB203580 exerts its antivi-
ral effects. 50 μM of SB203580 was added at different time points before and after infection
with EV71 (Fig. 6D). All cell culture supernatants were collected for viral plaque assay at 12h
post-infection. From the results in Fig. 6D, pre-treatment of cells with the p38 MAPK inhibitor
for 2h prior to EV71 infection showed minimal inhibitory effect against viral infection. A sig-
nificant reduction in EV71 titres was observed when SB203580 was added at 6h post-infection.
At 10h post-infection, the antiviral activity of SB203580 was reduced. This suggested that the
blocking of p38 MAPK signalling pathway inhibits EV71 replication during the early phase
after viral entry, between 0h and 8h post-infection. A co-treatment assay was conducted to
complement data from the pre-treatment assay to determine if SB203580 affected viral binding
and entry into the cells. Co-treatment of EV71 with SB203580 failed to inhibit viral infection,
further confirming the involvement of p38 MAPK signalling pathway in the post-entry stage in
EV71 replication cycle.

To reaffirm our hypothesis that MINK affects viral protein synthesis via p38 MAPK signal-
ling pathway, the effect of p38 MAPK inhibition on viral RNA production, protein synthesis
and viral release was investigated. In the analysis of viral RNA replication in SB203580-treated
infected cells, fold change in RNA level for all samples was calculated relative to that in the
DMSO control at 0h post-infection. Comparison of the relative RNA level was made between
the samples treated the p38 MAPK inhibitor (SB203580) and the respective DMSO control at
each time-point. Similar to what was observed for the siRNA knockdown of MINK (Fig. 3B),
there was increase in viral RNA level between time-points and viral RNA level in SB203580-
treated cells was significantly lower than that in the DMSO control at both 8h and 10h post-in-
fection, with fold reductions of 12.4 and 9.0 at 8h and 10h post-infection at 100μM concentra-
tion, respectively (Fig. 6E). These results indicated that the blocking of p38 MAPK pathway
also has inhibitory effects on the production of viral RNA. Significant reduction in the
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Fig 6. Treatment with p38 MAPK inhibitor (SB203580) inhibits EV71 replication at the viral protein
synthesis stage. (A) Mock-infected RD cells were treated with SB203580 at different concentrations (10, 25,
50 and 100μM) or 1.0% DMSO (negative control) and cell lysates were harvested for Western blotting at 6h
post-treatment. β-actin was included as a loading control. (B) Quantification of phospho-p38 MAPK (Thr180/
Tyr182) and total p38 protein bands with reference to actin control bands (for each SB203580 concentration)
and untreated control using ImageJ Gel Analysis program. (C) Cell viability of SB203580-treated cells and
untreated control cells were measured using alamarBlue assay at 12h post-treatment. Values obtained were
normalised against DMSO control. Virus titres in the supernatant of cells (denoted by bars) treated with
varying concentrations of SB203580 post-adsorption were analysed via viral plaque assay. Error bars
represent standard deviation (SD) of triplicate data. Statistical analyses were performed using one-way
ANOVA and Dunnett’s test (Graphpad software) against untreated control **P< 0.01 (n = 3), *** P<
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structural protein (VP0 and VP2, Fig. 6F and 6G) and non-structural protein levels (3D pro-
tein, S2D and S2E Fig) were also observed with increasing concentrations of SB203580. The ex-
tent of the reduction in 3D protein level upon SB203580 treatment corresponded to the
decrease in the viral RNA levels. Hence, we have shown that p38 MAPK signalling pathway is
involved in the viral protein synthesis stage.

As p38 MAPK signalling has been shown to play a critical role in the viral progeny release
of coxsackievirus B3 (CVB3) [31], we were interested to know if p38 MAPK was also involved
in the viral release of EV71 using the p38 MAPK inhibitor (SB203580). Intracellular and extra-
cellular EV71 virions were quantified at 12h post-infection to determine whether p38 MAPK
plays a role in viral packaging and release. Although a significant reduction of ~1.9 log was ob-
served in the extracellular virions upon the inhibition of p38 MAPK at 50μM, a significant re-
duction in virus titre was also observed in the intracellular virions (Fig. 6H). Hence, we
concluded that in accordance to what was observed with the siRNA knockdown of MINK, the
reduction in the amount of virus released was not due to a blockage in the virus release process
upon the inhibition of p38 MAPK signalling, but was due to a decrease in the total production
of virus particles.

Together, these results coincided with our previous observations with the siRNA knock-
down of MINK (Fig. 3) and supported our hypothesis that p38 MAPK signalling pathway is
very likely to be involved downstream of MINK in regulating EV71 viral protein synthesis.

MINK/p38 MAPK signalling positively regulates EV71 viral protein
translation efficiency
Translation initiation of the uncapped EV71 viral RNA is known to be mediated by a cap-inde-
pendent mechanism which involves the IRES situated in the 5’UTR of the viral genome [32].
Since the silencing of MINK reduced viral protein synthesis, we want to investigate if MINK/
p38 MAPK signalling was involved in the regulation of IRES efficiency during viral protein
synthesis. To determine if MINK/p38 MAPK is involved in IRES-mediated translation of

0.0001 (n = 3) versus 1.0% DMSO control. (D) RD cells were treated with 50uM SB203580 (p38 MAPK
inhibitor) at different time points before and after infection in time-of-addition assay. Cell supernatants were
harvested at 12hpi for quantification via viral plaque assays. Time-of-addition assay indicates that SB203580
acts between 2hpi and 10hpi to inhibit EV71 replication. In the co-treatment assay, SB203580 was added
with the virus and no significant inhibition of EV71 infection was observed. Statistical analyses were
performed using one-way ANOVA and Dunnett’s test (Graphpad software) against untreated control **P<
0.01 (n = 3), *** P< 0.0001 (n = 3) versus 0.5% DMSO control. (E) EV71 RNA synthesis was sensitive to
SB203580 treatment. Quantitative RT-PCR assay revealed significant reduction in levels of EV71 RNA
across increasing SB203580 concentration. Total RNA was extracted for all samples at 0, 8 and 10hpi and
EV71 RNA levels were measured. CT values were normalised against actin and relative quantification of viral
RNA level was determined. The ΔΔCt data were calculated from three independent experiments and error
bars represent standard deviation for triplicate data sets. Fold difference of viral RNA for all samples was
calculated relative to the RNA level in the DMSO control at 0hpi. Statistical analyses were carried out using
one-way ANOVA with Dunnett’s test (Graphpad software). *P<0.05, **P<0.01 and *** P< 0.0001 (n = 3)
vs the respective 1.0% DMSO control at each time-point. (F) Viral protein expression levels upon SB203580
treatment. EV71-infected RD cells were treated with SB203580 and cell lysates were harvested for Western
blotting at 8h post-treatment. VP0 and VP2 viral protein expression was observed to decrease with
increasing concentration of the p38 MAPK inhibitor. (G) Band intensities of VP0 and VP2 upon SB203580
treatment. The band intensities representing VP0 and VP2 protein expression level were quantitated with
reference to actin control bands (for each concentration) and DMSO control using ImageJ Gel Analysis
program. (H) Extracellular and intracellular virion levels upon p38 MAPK inhibition. Extracellular EV71 virions
in the supernatant and intracellular virus particles were harvested separately at 12hpi for viral plaque assay to
assess the effect of SB203580 treatment on virus packaging and release. p38 MAPK inhibition resulted in
significant reduction in both intracellular and extracellular virions. Statistical analysis was performed using
one-way ANOVA with Dunnett’s test (Graphpad software). **P<0.01, *** P< 0.0001 (n = 3) versus 1.0%
DMSO control.

doi:10.1371/journal.ppat.1004686.g006
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EV71 transcripts, a bicistronic luciferase reporter construct containing the EV71 IRES and two
luciferase reporter genes (firefly luciferase and Renilla luciferase, Fig. 7A) was transfected into
cells. The expression of Renilla luciferase (RLuc) is dependent on the cap-dependent mecha-
nism, while the translation of the firefly luciferase (FLuc) is IRES-dependent. The translation
efficiency directed by the 5’UTR of EV71 was determined by comparing the level of FLuc with
the level of RLuc after the transfection of the non-replicating bicistronic luciferase reporter
construct into RD cells that had been pre-treated with MINK siRNA. 0.5mg/ml of amantadine
was added as a negative control (Amantadine-treated) to inhibit the EV71-IRES [33] while un-
treated cells serve as a positive control. MINK siRNA-treated cells showed a dose-dependent
reduction in the EV71 IRES activity (FLuc level) and the relative translation efficiency of the
IRES with significant decrease observed at 15nM (Fig. 7B). Cells treated with non-targeting
siRNA (scrambled siRNA) showed minimal effect on the EV71 IRES activity as the relative
translation efficiency remained relatively constant across the concentrations of scrambled
siRNA with a non-significant decrease of 0.2 RLU at 45nM. In addition, a comparison of the
RLuc levels of the scrambled control and MINK siRNA-treated cells indicated that the siRNA
knockdown of MINK had minimal effect on cap-dependent translation.

To further confirm our hypothesis that p38 MAPK is involved in the translational regula-
tion of viral transcripts downstream of MINK activation, RD cells were transfected with the
bicistronic luciferase reporter construct before they were treated with different concentrations
of SB203580. Results showed significant dose-dependent reduction in the relative translation
efficiency of EV71 IRES in cells treated with SB203580 (Fig. 7C) relative to the DMSO control
without affecting the cap-dependent translation. Thus, these data indicated that MINK/p38
MAPK is involved in the positive regulation of IRES-mediated translation of EV71 RNA.

Silencing of MINK and p38 MAPK inhibition reduced hnRNP A1 signals
in the cytoplasm upon EV71 infection
In a recent publication, phosphorylated eIF4E has been reported to improve viral protein trans-
lation via the IRES of rhinovirus by modulating the eIF4G:IRES interaction [34]. Hence, to in-
vestigate if eIF4E was the downstream effector of the MINK/p38 MAPK pathway that led to
the increase in IRES-mediated protein translation efficiency, a time course study was con-
ducted to examine the activation profile of downstream substrates of p38 MAPK in response to
EV71 infection. Contrary to the findings in the rhinovirus IRES-mediated protein translation,
we did not detect any increase in eIF4E phosphorylation levels upon EV71 infection. Instead,
eIF4E protein expression and phosphorylation levels were observed to decrease upon EV71 in-
fection (S4A and S4B Fig), suggesting that eIF4E might not be essential for EV71 replication.

Since eIF4E was unlikely to be the effector of the MINK/p38 MAPK pathway in our study,
we hypothesized that the MINK/p38 MAPK signalling pathway might activate an IRES tran-
sacting factor (ITAF) downstream, which thus resulted in the positive regulation of the EV71
IRES translation efficiency. Heterogenous nuclear ribonucleoprotein A1 (hnRNP A1) is pre-
dominantly a nuclear protein but shuttles back and forth between the nucleus and cytoplasm.
It has been reported that hnRNP A1 act as an ITAF that relocalises in the cytoplasm where it
interacts with the EV71 IRES upon infection, promoting its translation efficiency [20]. As pre-
vious study has also shown that p38 MAPK signalling is implicated in the cytoplasmic accumu-
lation of hnRNP A1 in uninfected cells [35], we were interested to know whether MINK/p38
MAPK signalling modulate the EV71 IRES activity by altering the subcellular localisation of
hnRNP A1. Fig. 8A shows the immunofluorescence staining of hnRNP A1 in EV71-infected
cells at 8h post-infection. The degree of colocalisation between the hnRNP A1 protein (stained
with rhodamine) and the cell nucleus (stained with DAPI) was quantified using Manders
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Fig 7. Silencing of MINK and inhibition of p38 MAPK phosphorylation reduces translation efficiency
of EV71 IRES. (A) Schematic diagram of the bicistronic construct containing the Renilla luciferase (RLuc) and
firefly luciferase (FLuc) genes controlled by the cytomegalovirus (CMV) promoter and 5’ UTR of EV71–26M
[67], respectively. (B) Effect of knockdown of MINK on EV71 IRES activity. RD cells were pre-treated with
MINK or scrambled siRNA. Three days after transfection, the bicistronic construct was then transfected into
the cells. Luciferase activity was measured 24h after transfection. Amantadine, an inhibitor of EV71 IRES
[33], was added to untreated cells to serve as negative control for IRES activity. Untreated cells that were
transfected with the bicistronic construct were used as positive control. The FLuc/RLuc ratio for each sample
were normalised to the FLuc/RLuc ratio of untreated control. Dose-dependent reduction in relative translation
efficiency of the IRES was observed in MINK siRNA-treated cells. Error bars represent standard deviation of
triplicate data sets. Statistical analyses were performed using one-way ANOVA with Dunnett’s test
(Graphpad software). *P< 0.05, **P< 0.01 and *** P< 0.0001 versus untreated control. (C) Effect of p38
MAPK inhibition on EV71 IRES activity. Relative translation efficiency was determined as the ratio of FLuc to
RLuc for each sample and the FLuc/ RLuc ratio for each sample were normalised to the FLuc/RLuc ratio of
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coefficient [36]. The level of the hnRNP A1 in the nucleus increased significantly upon the
siRNA-knockdown of MINK (74.8% colocalisation, Fig. 8A xiii-xvi) compared to the scram-
bled control (37.2% colocalisation, Fig. 8A ix-xii), resembling the state of hnRNP A1 in mock-
infected cells (80.1% colocalisation, Fig. 8A i-iv). These data demonstrated that the silencing of
MINK reduced the hnRNP A1 signals in the cytoplasm as the degree of colocalisation between
the hnRNP A1 signals and DAPI signals in the nucleus increased upon the siRNA knockdown
of MINK.

Similarly, we investigated the subcellular localisation of hnRNP A1 upon the inhibition of
p38 MAPK signalling pathway with the use of a p38 MAPK inhibitor (SB203580). Fig. 8B
shows the immunofluorescence staining of hnRNP A1 in EV71-infected cells at 8h post-infec-
tion. The level of the hnRNP A1 in the nucleus increased significantly upon SB203580 treat-
ment at 50μM (81.3% colocalisation, Fig. 8B ix-xii) compared to the DMSO control (52.9%
colocalisation, Fig. 8B v-viii). In addition, the level of hnRNP A1 in the nucleus was even higher
in cells treated with 100μM of SB203580 (92% colocalisation, Fig. 8B xiii-xvi), resembling the
state of hnRNP A1 in mock-infected cells (94.5% colocalisation, Fig. 8B i-iv). These data dem-
onstrated that the inhibition of p38 MAPK reduced the hnRNP A1 signals in the cytoplasm as
the degree of colocalisation between the hnRNP A1 signals and DAPI signals in the nucleus in-
creased upon SB203580 treatment. Together, we have shown in our study that it is likely that
hnRNP A1 was one of the targets downstream of MINK/p38 MAPK signalling which is in-
volved in promoting the translation efficiency of EV71 IRES as the relocalisation of hnRNP A1
to the cytoplasm where it binds to the IRES of EV71 RNA is required to facilitate translation
initiation of viral RNA.

Cytoplasmic localisation of hnRNP A1 resulted from MINK/p38 MAPK
signalling was not stimulated by Mnk1 activity
As Mnk1 has been implicated in the cytoplasmic localisation of hnRNP A1 downstream of p38
MAPK signalling in uninfected cells [37], we were interested to know if Mnk1 was the p38
MAPK substrate that triggered the increase of hnRNP A1 signals in the cytoplasm during
EV71 infection. A time course study was first conducted to examine the activation profile of
Mnk1. Compared to the mock-infected cells, EV71 infection resulted in increased Mnk1 phos-
phorylation levels at 8h post-infection with relatively constant Mnk1 protein expression levels
(S4A and S4B Fig). To determine if Mnk1 phosphorylation was triggered by the replication of
the virus, RD cells were exposed to UV-inactivated EV71. Cells exposed to UV-inactivated
EV71 showed constant phosphorylation level of Mnk1 throughout the 12h time course (S4A
and S4B Fig). This indicated that attachment of the virions to cell surface receptors or virus
entry process was not sufficient to trigger the phosphorylation of Mnk1, which corresponded
to what was observed previously for the activation of MINK and p38 MAPK upon EV71 infec-
tion (Fig. 4 and 5).

To investigate if Mnk1 was involved in the mechanism elucidated in this study, we blocked
Mnk1 kinase activity with a selective Mnk inhibitor (CGP57380) in RD cells and conducted
Western blot analyses with phospho-eIF4E antibody to determine the effectivity of the drug.
At 50μM, CGP57380 was effective in blocking the kinase activity of Mnk as indicated by the

DMSO control, expressed as percentage. Error bars reflect the standard deviation of triplicate data sets.
Transfected cells with the bicistronic construct without drug treatment (DMSO control) was used as positive
control. Error bars represent standard deviation of triplicate data sets. Statistical analyses were performed
using one-way ANOVA with Dunnett’s test (Graphpad software). *P< 0.05, **P< 0.01 and *** P< 0.0001
versus 1.0% DMSO control.

doi:10.1371/journal.ppat.1004686.g007
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Fig 8. MINK silencing and p38 MAPK inhibition in EV71-infected cells inhibits cytoplasmic localisation of hnRNP A1. (A) RD cells were pre-treated
with MINK targeting and scrambled siRNA and subjected to infection with EV71. siRNA-treated cells were fixed and the subcellular localisation of hnRNP A1
(red), an IRES-transacting factor, was investigated by indirect immunofluorescence assay. Immunofluorescence detection of double-stranded RNA (dsRNA,
green) with the nuclei stained with DAPI (blue) was shown to indicate EV71 infection. The images were taken at 100Xmagnification. Colocalisation
quantification was based on the Manders Overlap Coefficient (MOC) using whole-cell immunofluorescence (WCIF) ImageJ software [36] and represented as
percent colocalisation at the respective siRNA concentrations. Error bars represent the standard deviation of duplicate data. (B) RD cells were subjected to
infection with EV71 and post-treated with SB203580 (p38 MAPK inhibitor) for 8h. SB203580-treated cells were fixed and the subcellular localisation of
hnRNP A1 (red) was investigated by indirect immunofluorescence assay. Mock-infected and DMSO-treated cells were included as infection and solvent
control, respectively. The images were taken at 100X magnification. Colocalisation quantification was based on the MOC usingWCIF ImageJ software and
represented as percent colocalisation at the respective drug concentrations. Error bars represent the standard deviation of duplicate data.

doi:10.1371/journal.ppat.1004686.g008
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intensity of the phospho-eIF4E band (S4C and S4D Fig). However, there was no changes in the
viral protein levels (VP0 and VP2, S4E and S4F Fig) as well as the virus titre (S4G Fig) at effec-
tive concentrations of 50μM and 100μM. Moreover, inhibition of Mnk1 did not alter the sub-
cellular localisation of hnRNP A1 (S4H Fig). Thus, it is likely that the cytoplasmic localisation
of hnRNP A1 as a result of MINK/p38 MAPK signalling was not triggered by Mnk. Further in-
vestigation is required to identify the p38 substrates involved downstream of MINK/p38
MAPK signalling that modulates the cytoplasmic localisation of hnRNP A1.

Discussion
Viruses have been known to hijack cellular signalling pathways during viral infection to facili-
tate events such as viral entry, inhibition of apoptosis and to escape antiviral activities elicited
by host factors such as interferon [38,39,40]. In relation to EV71, the recent work conducted by
Hussain and colleagues (2011) identified several kinases with potential involvement in the cla-
thrin-mediated endocytosis of EV71 into RD cells [26]. Thus, host kinases may represent a
family of host factors which may play roles in facilitating EV71 replication and have the poten-
tial of becoming a viable antiviral target.

In this study, a novel mitogen-activated protein kinase kinase kinase kinase (MAP4K) has
been identified from our primary screen for further investigation as interest in the MAPK fami-
ly of kinases was sparked by previous studies on the involvement of MAPK family members in
viral replication [41] and the pathogenesis of viruses [42,43]. Here, we demonstrated that
MINK plays an essential role in EV71 replication and may be a potential target for
antiviral development.

Infected cells have been shown to induce the activation of kinases in early events of viral in-
fection, such as the activation of PAK1 upon Myxoma Virus infection [44]. Since MINK is a
MAP4K, an upstream regulator in the MAPK signalling cascade, it was hypothesised that
MINK might have been activated by early events of viral infection, such as the attachment of
the virus or the uncoating of the virions. Activation profiles of MINK and entry assays have re-
vealed that virus attachment and clathrin-mediated entry was not sufficient in triggering the
activation of MINK. Instead, active replication of the virus and the accumulation of viral RNA
or proteins might be potential inducers of MINK phosphorylation. To determine the exact cel-
lular or viral factor that activated MINK upon infection, further studies such as a co-immuno-
precipitation could be employed to identify viral factors that interact with MINK protein to
trigger its activation.

Investigation into the stage of involvement of MINK in EV71 replication has also revealed
interesting findings on the functional role of MINK in the propagation of EV71. Prior to our
work, MINK has been suggested to play a role in the reorganisation of cytoskeleton such as
actin filaments [22] which have been implicated in the formation of clathrin-coated vesicles in
endocytosis pathways [45,46]. Since EV71 is known to enter RD cells via clathrin-mediated en-
docytosis [26], we first hypothesised that actin rearrangement induced by the activation of
MINK may play a role during the clathrin-mediated entry of EV71. However, results from the
viral entry study via viral RNA transfection were contrary to this hypothesis as silencing of
MINK continued to cause inhibition of progeny virus production despite bypassing the normal
entry pathway. Results from the real time RT-PCR analysis have also indicated that the silenc-
ing of MINK has an effect on the viral RNA levels. During EV71 replication, protein translation
of the viral genomic RNA has to precede viral RNA replication as the production of non-struc-
tural proteins such as the RNA-dependent RNA polymerase (Protein 3D) is essential for the
synthesis of viral RNA. As such, synthesis of viral proteins was also investigated upon the si-
lencing of MINK, structural viral protein (VP0 and VP2) and non-structural protein (3D)
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levels was significantly inhibited in a dose-dependent manner with increasing MINK siRNA
concentrations. However, since VP0 and VP2 are both products of proteolytic cleavage of the
viral polyprotein, there is a possibility that the siRNA knockdown of MINK affected the pro-
teolytic cleavage efficiency which led to the reduction in VP0 and VP2 levels. The VP2 anti-
body (MAB979) used in this study recognizes a specific epitope on the VP2 protein [47],
hence, larger incomplete processed viral polyproteins containing the VP2 epitope can also be
detected. In this study, we have demonstrated that the protein levels of larger incomplete pro-
cessed viral polyproteins (sizes coincided to that of P1 and VP4+VP3+VP2) [48] also showed
similar trend to that of VP0 and VP2 protein levels where a dose-dependent reduction in the
incomplete processed viral polyproteins levels was observed with the siRNA knockdown of
MINK but not in the scrambled control. This narrowed down the potential target event of
MINK involvement in the process of viral protein synthesis and not the proteolytic cleavage of
the viral polyprotein. In addition, siRNA knockdown of MINK did not lead to an accumulation
of intracellular virus, but instead, resulted in a global decrease in both extracellular and intra-
cellular virus titres. This demonstrated that the silencing of MINK suppressed the production
of progeny virus and not virus release.

Although the functional relationship between MINK and p38 MAPK in normal cellular
processes [23, 49] has already been established, this association has not been reported in virus
replication. Here, activation profile of p38 MAPK upon EV71 infection has suggested its essen-
tial role in EV71 replication and siRNA-mediated gene knockdown has demonstrated the cor-
relation between MINK protein expression (consequently its activation) and p38 MAPK
activation in the context of virus replication. The activation profile of MINK and p38 MAPK
has also ascertained that p38 MAPK was activated downstream of MINK, which corresponded
to what was reported in uninfected cellular conditions [23,49].

Involvement of p38 MAPK signalling pathway in virus replication has been well established
and this signalling cascade has been reported to promote viral RNA synthesis and protein syn-
thesis in some viruses such as the encephalomyocarditis virus (EMCV) [25], mouse hepatitis
virus (MHV)[50] and hepatitis B virus [51]. As shown previously by Hirasawa and his col-
leagues (2003), p38 MAPK signalling pathway promotes viral protein synthesis but not viral
RNA synthesis in EMCV, which also belongs to the same family as EV71. Their study has dem-
onstrated that p38 MAPK signalling pathway facilitates EMCV protein synthesis by promoting
the translation efficiency of the IRES in EMCV. Supporting this hypothesis, our study has dem-
onstrated the crucial role of p38 MAPK in the propagation of EV71 and that the activation of
the MINK/p38 MAPK signalling pathway promotes the translation efficiency of EV71 IRES
during EV71 replication. Time-of-addition assay conducted in our study verified that p38
MAPK inhibitor, SB203580, was effective in inhibiting the early events of EV71 replication
cycle post-infection and not late events such as virus release. Inhibition of p38 MAPK signal-
ling also demonstrated an inhibition in the synthesis of EV71 viral proteins (3D, VP0 and
VP2) and viral RNA replication which were in agreement with the results observed upon the si-
lencing of MINK. Contrary to what was observed with coxsackievirus B3 (CVB3) [31], the in-
hibition of p38 MAPK did not block the release of the virus. Hence, this further supported the
relationship between MINK and p38 MAPK signalling and the involvement of MINK/p38
MAPK in EV71 protein synthesis which resulted in a global decrease in the progeny
virus production.

As mentioned in this study, EV71 has a type 1 IRES that requires eukaryotic initiation factors
(eIFs) and IRES-specific transacting factors (ITAFs) to initiate viral protein translation [52]. Pre-
vious study on a poliovirus/rhinovirus chimera (PSRIPO) [34] has shown that signal transduc-
tion to Mnk1, a downstream substrate of p38 MAPK can favour viral, cap-independent
translation via eIF4E phosphorylation and expression. Contrary to this finding, our data showed
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a down-regulation in the protein expression of eIF4E which led to a consequent reduction in its
phosphorylation levels, suggesting that eIF4E phosphorylation and expression may not be cru-
cial for EV71 replication. This finding was supported by another study [53] that has demonstrat-
ed that induction of miRNA-141 during EV71 infection down-regulated eIF4E in an attempt to
suppress cap-dependent translation and promote the switch to cap-independent translation.

Apart from factor eIF4E, other canonical translation factor such as eIF2α has also been re-
ported to play a role in Picornavirus replication [54]. Factor eIF2α is a 36kDa protein that con-
tains a serine residue (Ser-51) which can be phosphorylated under nutrient deprivation or
cellular stresses such as virus infection or heat-shock. GCN2, PKR, PERK and HRI have been
shown to phosphorylated eIF2α in response to amino acid starvation, double-stranded RNA,
protein misfolding at the endoplasmic reticulum and the absence of HEME, respectively [55].
Phosphorylation of eIF2α inhibits the GDP-GTP recycling catalysed by eIF2B, hindering the
generation of the ternary complex Met-tRNAi-eiF2-GTP and binding of this complex to the
40S ribosome to initiate translation [56]. Although eIF2α is required for both cap-dependent
and IRES-mediated protein translation, studies have shown that some viral IRES elements can
translate independent of phosphorylation of eIF2α [57,58]. Consistent with studies on entero-
viruses [32], we observed an increasing level of phosphorylated eIF2α at late times post-infec-
tion (S3A and S3B Fig). Published studies on poliovirus have also demonstrated that resistance
to eIF2α phosphorylation increases as enteroviral infection progresses due to the cleavage of
initiation factor eIF5B by the viral 3C protease. As such, the induction of eIF2α phosphoryla-
tion at the late time-points of EV71 infection may also serve to promote the viral protein syn-
thesis indirectly by suppressing cellular cap-dependent protein synthesis [59]. Although p38
MAPK signalling has not been implicated in the phosphorylation of eIF2α and significant re-
duction in cap-dependent protein translation was not observed in our luciferase data, we have
conducted brief experiments to investigate the relationship between MINK expression and the
phosphorylation of eIF2α (S3C and S3D Fig). From the suppression of eIF2α phosphorylation
upon the silencing of MINK, it is tempting to speculate that the phosphorylation of eIF2αmay
be a minor side effect of the activation of MINK that serve to promote EV71 protein synthesis.
Future downstream studies have to be performed to elucidate the role and involvement of
eIF2α in EV71 replication in relation to MINK. Nonetheless, our findings on these canonical
translation initiation factors suggested that the increased EV71 IRES translation efficiency ob-
served in our study might have resulted from the activation of ITAFs downstream of MINK/
p38 MAPK signalling instead of the phosphorylation status of the eIFs.

Members of the heterogeneous nuclear ribonucleoprotein (hnRNP) classes have been iden-
tified as trans-acting factors that control translation initiation of various cellular and viral
mRNAs at the IRES [60]. Among the hnRNP family, hnRNP A1 has been reported to modulate
the IRES-mediated viral protein translation of various viruses such as the human rhinovirus
(HRV) [61] and EV71 [20]. Although, hnRNP A1 localises predominantly in the nucleus, it is
able to shuttle between the nucleus and cytoplasm in a regulated manner [62]. Infection of cells
with HRV and EV71 has shown to result in the cytoplasmic relocalisation of hnRNP A1 where
it interacts directly with the viral IRES sequences [20]. Apart from picornaviruses, cytoplasmic
accumulation of hnRNP A1 has also been reported to play a role in the positive regulation of
human immunodeficiency virus (HIV) [63] and Sindbis virus (SINV) [20] viral RNA transla-
tion. In uninfected cells, activation of the p38 MAPK pathway upon osmotic shock or UV irra-
diation has been revealed to result in a phosphorylation-dependent cytoplasmic accumulation
of hnRNP A1 [35]. Furthermore, a separate study has also demonstrated that the p38 MAPK
interacts and regulates the subcellular localisation of hnRNP A1 in a Mnk1-dependent manner
in senescent cells [37]. The cytoplasmic relocalisation of hnRNP A1 after EV71 infection may
therefore also be dependent on the p38 MAPK pathway and its downstream substrate Mnk1 as
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in uninfected cells. In our study, subcellular localisation studies unravelled the relationship be-
tween MINK protein expression and hnRNP A1 localisation in the cells. Interestingly, we have
found that the silencing of MINK upon EV71 infection did not result in the cytoplasmic
accummulation of hnRNP A1 which was usually observed in infected cells. The nuclear reten-
tion of hnRNP A1 could be due to either lower levels of EV71 replication as a result of MINK
silencing or a block in nuclear export signal [64] brought about by the siRNA knockdown of
MINK. Similarly, the inhibition of p38 MAPK with a specific p38 MAPK inhibitor (SB203580)
also resulted in the accumulation of hnRNP A1 signals in the nucleus. Although we have dem-
onstrated that inhibition of the MINK/p38 MAPK signalling pathway reduced the hnRNP A1
signals in the cytoplasm that was observed in control EV71-infected cells, we have no direct ev-
idence suggesting that MINK plays a direct role on the cytoplasmic relocalisation of hnRNP A1
where it binds directly to the IRES sequences of the viral genome to promote the IRES-mediat-
ed translation of the EV71 viral RNA. In addition, we have also shown that despite its activa-
tion during EV71, p38 MAPK substrate Mnk1 was not involved in the regulation of EV71
protein synthesis and the cytoplasmic relocalisation of hnRNP A1. Hence, the exact mecha-
nism of howMINK/p38 MAPK signalling pathway affected the cytoplasmic relocalisation of
hnRNP A1 during EV71 infection and the p38 MAPK substrates involved needs to be further
established. Nonetheless, we have shown in this study that a novel host kinase (MINK) medi-
ates the cap-independent translation of EV71 RNA, possibly by modulating the subcellular
localisation of hnRNP A1, which further supports its propagation (Fig. 9). As such, MINK can
be further explored as potential antiviral target for the inhibition of EV71 viral replication at
the viral protein translation stage.

Materials and Methods

Cell line and viruses
Human rhabdomyosarcoma (RD) cells (CCL136TM, ATCC) cells were maintained in Dulbec-
co’s Modified Eagle’s Medium (DMEM, Sigma-Aldrich) enriched with 10% fetal calf serum
(FCS, PAA Laboratories) in T75 at 37°C in an atmosphere of 5% CO2. Human Enterovirus 71
(EV71) strain H (VR-1432) was obtained from ATCC (GenBank accession no. AY053402.1)
and EV71 strain 5865/sin/000009 (designated as strain 41, GenBank accession no. AF316321)
was a kind gift from Dr Vincent Chow [65], Department of Microbiology, National University
of Singapore. Coxsackivirus A6 (CA6, GenBank accession no. KC866983) and Echovirus 7
Wallace strain (Eo7-Wallace, GenBank accession no. AF465516) were obtained from the de-
partment collection and the viruses were propagated in RD cells. UV-inactivated EV71 was
prepared by subjecting the virus stock to UV light irradiation for 2h before performing viral
plaque assay to ensure complete inactivation.

siRNA
Dharmacon siGENOME Human SMARTpool custom siRNA library targeting human serine/
threonine kinases was obtained from Dharmacon RNA Technologies (Thermo Scientific,
Dharmacon RTF # H-004405). The library contains a total of 47 siRNA cocktails with each
cocktail consisting of 4 siRNA sequences targeting a specific gene and resuspended at a concen-
tration of 2μM in 96-well plates. The separate and individual siRNA pools that were used to
validate the hits identified from the screen was also obtained from Dharmacon (siGENOME
SMARTpool): MINK (M-004861–03–0005), MAP4K2 (M-003587–01–0005). The sequences
of the respective scrambled siRNA obtained from Origene are: 5’-GAUUAAACGCAUGGC-
CUUU-3’, 5’-GUAAGAGCACAAGUCGUGG-3’, 5’-UCUAGAAGACUUUGGAAGA-3’ and

MINK in the IRES-mediated Protein Translation of Human Enterovirus 71

PLOS Pathogens | DOI:10.1371/journal.ppat.1004686 March 6, 2015 23 / 33



Fig 9. Proposedmechanism of action of MINK in the EV71 replication cycle. EV71 infection stimulates MINK activation which in turn triggers the
phosphorylation of p38 MAPK downstream. The phosphorylation of p38 MAPK triggers a kinase cascade which results in the cytoplasmic relocalisation of
hnRNP A1. hnRNP A1 binds to the viral IRES and promotes the recruitment of ribosomes at the IRES at the 5’ untranslated region (UTR) of EV71 genome,
stimulating the IRES-mediated viral protein translation.

doi:10.1371/journal.ppat.1004686.g009
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5’-GGCUAUAUUCUCUGUUGAC-3’. For the deconvolution of MINK siRNA SMARTpool,
individual siRNAs were also obtained from Dharmacon (MQ-004861–03–0005).

siRNA reverse transfection
A reverse transfection protocol was used to perform the siRNA screen. The primary screen was
performed in a 384-well format at a final concentration of 25nM siRNA using lμl of Dharma-
FECT-1 transfection reagent (Thermo Scientific) per well. Specific targeting siRNAs and
scrambled siRNAs were dissolved in diethyl pyrocarbonate (DEPC)-treated reverse osmosis
(RO) water to a stock concentration of 100μM. The siRNAs were then diluted to desired work-
ing concentrations with DharmaFect Cell Culture Reagent (DCCR) and DharmaFect-1 trans-
fection reagent. The siRNAs were transfected into RD cells for 72h at 37°C in a 5% CO2

atmosphere prior to infection.

Immunofluorescence assay
In the primary screen, cell monolayers were washed twice with PBS and fixed in cold absolute
methanol (Sinopharm Chemical) at -20°C for 10 min at 12h post-infection. The cells were then
washed thrice with PBS using the automated plate washer (Molecular Device) and incubated
for 1h with 10μl of mouse monoclonal anti-EV71 antibody (#MAB979, Millipore). Cells were
then washed thrice with PBS and incubated for another 1h with 10μl of secondary antibody,
goat anti-mouse (Millipore) fluorescein isothiocyanate (FITC). DAPI (4’, 6-diamidino-2-
phenylindole, Invitrogen) was used to stain cell nuclei for 15 min at room temperature. The
images for the immunofluorescence assay were obtained using an automated Cellomics
ArrayScan VTI HCS System and the auto-focusing parameters were preset from Cellomics
Arrayscan Instrument using module ‘Target Activation Bio-Application Version 3’. For the
validation of primary screening hits, stained cells were visualised and images were captured
using an Olympus 1X81 inverted fluorescence microscope (Olympus).

For the study on hnRNP A1 localisation, RD cells grown on coverslips were pre-treated
with either scrambled or MINK siRNA for 72h. At 72h post-transfection, the cells were in-
fected at MOI 1 for 8h. After washing thrice with PBS, the mock-infected and virus-infected
cells on the coverslip were fixed with 4% paraformaldehyde (Sigma-Aldrich) at room tempera-
ture for 15 min. After three washes with PBS, the cells on the coverslip were permeabilised in
0.1% Triton X-100 at room temperature for 10 min and washed for another three times with
PBS. The samples were then blocked in PBS containing 5% bovine serum albumin (BSA, MP
Biomedicals) for 1h at 4°C and then incubated with primary antibodies at appropriate dilution:
rabbit monoclonal anti-hnRNP A1 antibody (#ab177152, Abcam) and mouse monoclonal
anti-dsRNA antibody (SCICONS) at 37°C for 1h. Upon removal of the primary antibodies, the
samples were washed thrice with PBS. The samples were then incubated with secondary anti-
bodies at appropriate dilution: Rhodamine-conjugated goat anti-rabbit IgG (Millipore), fluo-
rescein isothiocyanate (FITC)-conjugated goat anti-mouse IgG (Millipore) at 37°C for 1h.
Subsequently, Duolink In Situ mounting medium with DAPI (OLink BioSciences) was used to
stain the cell nuclei and mount the coverslip on a microscope slide. The specimens were viewed
with a 100X oil immersion lens with a numerical aperture (NA) of 1.6 of Olympus IX81. Colo-
calisation was quantified based on fluorescence microscopy images using the NIH ImageJ soft-
ware (Wright Cell Imaging Facility) via the colocalisation analysis plug-in. Manders overlap
coefficient (MOC) represents the proportion of normalised pixels in which the two signals
overlap and was used as a measure of colocalisation [36]. MOC ranges from 0 for no colocalisa-
tion between the signals and 1 for perfect overlap. The percentage of colocalisation between the
hnRNP A1 signals and nucleus was determined based on the MOC.
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Viral plaque assays
Plaque assay was performed on monolayers of RD cells in 24-well plates for the quantification
of virus titre. Supernatants from EV71-infected samples were diluted in 10-fold dilutions with
DMEM supplemented with 2% FCS before infection. The cells were incubated with the super-
natant for 1h at 37°C with gentle rocking during the adsorption period. Infected cells were
washed twice with PBS and overlaid with 1% carboxymethyl-cellulose (CMC) in DMEM with
2% FCS. Plaques were allowed to form for 4 days at 37°C in an atmosphere of 5% CO2. After
which, the cells were fixed and stained with 10% paraformaldehyde/1% crystal violet (Sigma-
Aldrich) solution. Virus titres were expressed as plaque forming units per millilitre (PFU/ml).

Cell extract preparation and western blot analyses
Whole cell extracts were prepared with ice cold lysis buffer cocktail containing Halt phospha-
tase and protease inhibitor cocktail (100X), 0.5M EDTA (100X) and Mammalian Protein Ex-
traction Reagent (mPER) (Thermo Scientific). For samples separated using the Phos-tag
technology (Phos-tag AAL-107, Wako), cells were lysed in mPER with the addition of complete
protease inhibitor cocktail tablet (Roche). Extracts were separated on classical SDS-PAGE or
using the Phos-tag technology (Wako, Phos-tag AAL-107) which allows the mobility shift de-
tection of phosphorylated proteins in SDS-PAGE.

The proteins in the cell lysates were resolved by SDS-PAGE and immobilised on nitrocellu-
lose membrane (Bio-Rad). Blocking was performed at room temperature in 5% BSA for 1h and
then incubated with one of the following primary antibodies overnight at 4°C: Rabbit polyclon-
al anti-MINK (#ab86385), rabbit polyclonal anti-MAP4K2 (#ab82870), rabbit polyclonal anti-
phosphoeIF4E (S209, #ab76256), mouse monoclonal anti-eIF4E (#ab130210), rabbit polyclonal
anti-phospho-eIF2α (S51, #ab47769) and anti-eIF2α (#ab5269) were obtained from Abcam.
Mouse monoclonal anti-EV71 (#MAB979) was obtained from Millipore. Rabbit polyclonal
anti-p38 (#9212), rabbit polyclonal anti-phospho-p38 (p-p38, Thr180/Tyr182, #9211), rabbit
monoclonal anti-MNK1 and rabbit polyclonal anti-phospho-Mnk1 (p-Mnk1, Thr 197/202,
#2111) antibodies were obtained from Cell Signalling Technology. Mouse monoclonal anti-3D
antibody (#GTX630193) was obtained from Genetex. The blots were subsequently incubated
with the following secondary antibodies at 37°C for 1h: Polyclonal Goat anti-mouse IgG (H+L)
Horseradish peroxidase (HRP, Thermo Scientific) and polyclonal Goat anti-rabbit IgG (H+L)
HRP (Thermo Scientific). SuperSignal West Dura chemiluminescent substrate (Thermo Scien-
tific) was used in the enhanced chemiluminescent detection (ECL) of the protein bands on the
membranes. Restore PLUS stripping buffer (Thermo Scientific) was used for effective removal
of bound antibodies on the blot for reprobing. Chemiluminescent Western blot imaging is
done using C-digit Chemiluminescence Western Blot Scanner (LI-COR).

Cell viability assay
Cell viability profiles of siRNA-treated or drug-treated cells were assessed using the AlamarBlue re-
agent (Invitrogen) as recommended by the manufacturer’s protocol. AlamarBlue reagent was added
to each well and the plates were incubated at 37°C supplemented with 5% CO2 for 4h and fluores-
cence measurements were taken using the Infinite 200 series microplate reader (Tecan). The mea-
surements were performed at excitation wavelength of 570 nm and emission wavelength of 585 nm.

Infection inhibition assay
Monolayers of RD cells were treated with increasing concentrations of antibody to SCARB2 (5,
25 or 50μg/ml, #AF1966, R&D Systems) for 30min at 37°C. As a control, a normal goat IgG
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(#AB-108-C, R&D Systems) was used in a similar assay. The cells were washed with cold PBS
thrice and infected with EV71 at MOI 1 at 4°C for 1h. After 1h of incubation, the cells were
washed with cold PBS thrice and incubated at 37°C supplemented with 5% CO2 for 6h before
the cells were lysed.

Viral RNA transfection into RD cells
Viral RNA was isolated and purified from EV71 viral supernatants using the QIAamp viral
RNAminikit (Qiagen) according to the manufacturer's instructions. siRNA-treated RD cells
were transfected with 2μg of EV71 viral RNA. During the transfection, EV71 viral RNA was di-
luted in reduced serum OPTI-MEM I (Gibco, Invitrogen) with the addition of Plus reagent
(Invitrogen) added and left to incubate at room temperature for 5 mins. The diluted viral RNA
solution was then added to the diluted Lipofectamine LTX and incubated at room temperature
for 30 min. Growth medium was removed from the wells on the 24-well plate and 1ml of
DMEM supplemented with 2% FCS was added into each well. Following incubation, viral RNA-
Lipofectamine mixture was added into each well, giving a final amount of 2μg of viral RNA per
well. Supernatants and cell lysates were harvested at indicated time-points post-transfection.

Quantitative reverse transcription-PCR (qRT-PCR)
Total cell lysate was harvested at 0h, 8h and 10h post-infection and extraction was carried out
using Total RNAMini Kit (Blood/ Cultured Cell) (Qiagen). Extracted RNA was then subjected
to Reverse-Transcription Real-Time Polymerase Chain Reaction (qRT-PCR).

Samples were assayed in a 25μl reaction mixture containing 12.5μl of SYBR Green (Thermo-
Scientific) and reactions were carried out in the StepOne Plus Real-time PCR system (Applied
Biosystems). The primer sequences for the 5’untranslated region (UTR) used in this study
were: MD90 (5’-ATTGTCACCATAAGCAGCCA-3’) and MD91 (5’-
CCTCCGGCCCCTGAATGCGGCTAAT-3’) which have been mentioned previously in [66].

Treatment of cells with p38 MAPK inhibitor (SB203580) and Mnk1
inhibitor (CGP57380)
A working concentration of 10mM SB203580 (#5633S, Cell Signalling Technology) and
CGP57380 (ab120365, Abcam) was prepared in dimethyl sulfoxide (DMSO). RD cells were in-
fected with EV71 at MOI 1 for 1h before drug treatment for another 12h. After 12h of incuba-
tion, the supernatant were harvested for plaque assay.

Time-of-addition studies
Time-of-addition assay was performed for SB203580 (#5633S, Cell Signalling Technology) on
EV71-infected RD cells in 96-well plates. Cells treated with 0.5% DMSO were used as control.
For the pre-treatment assay, cell monolayers were treated with 50μM of SB203580 for 2h at 37°C
before being washed twice with PBS and infected with EV71 at MOI 1. After the 1h virus adsorp-
tion period, infected cells were washed with PBS and incubated in DMEM supplemented with
2% FCS at 37°C with 5% CO2 for 12h before supernatants were harvested for viral plaque assay.

For the co-treatment assay, SB203580 was added together with EV71 at MOI 1 to obtain a
final SB203580 concentration of 50μM. After incubating the cells with this mixture for 1h, in-
fected cells were washed with PBS and incubated in DMEM supplemented with 2% FCS at
37°C with 5% CO2 for 12h before supernatants were harvested for viral plaque assay.

For the post-treatment assays, RD cells were infected with EV71 at MOI 1 for 1h and 50μM
of SB203580 was added every 2h post-infection (0h, 2h, 4h, 6h, 8h, 10h and 12h)
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Transfection of bicistronic construct of EV71-IRES
The bicistronic construct of EV71 IRES (Fig. 7A) was a kind gift from Professor Peter C
McMinn, University of Sydney. The construct contains the 5’ untranslated region (UTR) of the
EV71–26M strain and two reporter genes, Renilla luciferase (RLuc) and firefly luciferase
(FLuc). The RLuc-reporter gene was positioned upstream of the EV71 5’ UTR controlled by
the cytomegalovirus promoter (CMV). The firefly luciferase (FLuc) reporter gene is ligated
downstream of the 5’UTR which controls its expression [67].

1μg of plasmid DNA was introduced into RD cells using 2μL of Lipofectamine 2000 (Invi-
trogen) in Opti-MEM I Reduced serum (Gibco) according to manufacturer’s instructions. The
cells were incubated for 12h and the media was replaced with DMEM 2% FCS growth medium.
As a negative control, 0.5mg/ml of amantadine (Sigma-aldrich) was added to the media of un-
treated cells to inhibit the EV71 IRES activity. The cells were incubated at 37°C for another 12h
before harvesting.

Luciferase assay
Cells were washed twice with PBS and lysed with 100μL of Passive Lysis Buffer (Promega) for
15 min at room temperature with shaking. After complete lysis, the lysate was transferred to an
opaque white 96-well plate. Luciferase activity was quantified using GloMax-Multi Detection
System (Promega) according to manufacturer’s instructions.

Statistical analysis
The Z’ factor, a statistical measurement of the distance between the standard deviations for the
signal versus the noise of an assay, was employed as an indicator for the robustness of the
screen. Experiments to determine the Z’ factor was conducted in a 384-well plate using positive
controls where virus-infected cells were not treated with siRNA (growth media, transfection re-
agent and DCCR) and mock-infected cells as negative controls. The Z’ factor was then comput-
ed using the equation: 1-(3 x S.D. positive control + 3 x S.D. negative control) / (mean positive
control—mean negative control). In other studies, one-way ANOVA test was used to compare
the data and the results were considered to be significant if p� 0.05.

Accession numbers
Accession numbers for genes discussed in this study based on GenBank: PAK1 (NM_002576),
MINK(NM_015716), MAP4K2(NM_004579), NEK3(NM_152720), NEK11(NM_145910),
STK3(NM_006281), MAP2K5(NM_002757), NEK7(NM_133494),PAK2(NM_002577),
MAP2K4(NM_003010), MAP4K3(NM_003618), MAP3K8(NM_005204),NEK9
(NM_033116),MAP3K14(NM_003954),NEK1(NM_012224), STK10(NM_005990),PAK3
(NM_002578),ALS2CR2(NM_018571),PAK4(NM_001014834),PAK7(NM_020341),PAK6
(NM_020168),MAP3K2(NM_006609), MAP3K3(NM_002401), NEK6(NM_014397),
MAP4K5(NM_006575),KIAA1361(NM_020791),MAP4K4(NM_004834),MAP2K3
(NM_002756),NEK2(NM_002497),MYO3A(NM_017433), RP6213H19.1(NM_001042452),
MAP3K5(NM_005923),OSR1(NM_005109),STK25(NM_006374),STK24(NM_003576),TNIK
(NM_015028),CDC7(NM_003503), NEK4(NM_003157),FLJ23074(NM_001018046),
MAP2K7(NM_145185),LYK5(NM_001003786),MAP3K4(NM_006724),JIK(NM_016281),
MAP2K1(NM_002755),MAP2K6(NM_002758), MAP2K2(NM_030662), SLK(NM_014720)

Accession numbers for proteins discussed in this study based on UniProt: p38α(Q16539),
p38β (Q15759), p38γ (P53778), EV71 VP0(A8Y8D7), VP2(Q9IWX5), VP1(Q80K68), Mnk1
(Q9BUB5), eIF4E (P06730), eIF2α (Q9BY44)
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Supporting Information
S1 Table. List of targeted genes in the human serine/threonine kinase siRNA library used
in primary screen.
(PPTX)

S1 Fig. Activation profile of MINK. (A) A sharp increase in MINK phosphorylation level was
observed at 8h after the addition of virus in EV71-infected samples. (B) Low constant levels of
phospho-MINK observed in mock-infected cells across the 8h time course. (C) Exposure to
UV-inactivated EV71 showed a similar trend of phospho-MINK levels in mock-infected sam-
ples. (D) Quantification of phospho-MINK protein bands with reference to actin control
bands (for each time-point) and 0h using ImageJ Gel Analysis program.
(PPTX)

S2 Fig. Treatment with MINK siRNA and SB203580 reduces EV71 3D protein expression
level. (A) Viral 3D protein expression levels upon the silencing of MINK. Viral protein expres-
sion was observed to decrease with increasing concentration of siRNA targeting MINK. (B)
Band intensities of 3D protein upon siRNA knockdown of MINK. The band intensities repre-
senting 3D protein expression level were quantitated with reference to actin control bands (for
each siRNA concentration) and 0nM using ImageJ Gel Analysis program. (C) Band intensities
of 3CD protein upon siRNA knockdown of MINK. The band intensities representing 3CD pro-
tein expression level were quantitated with reference to actin control bands (for each siRNA
concentration) and 0nM using ImageJ Gel Analysis program. (D) EV71 3D protein expression
levels upon SB203580 treatment. EV71-infected RD cells were treated with SB203580 and cell
lysates were harvested for Western blotting at 8h post-treatment. 3CD and 3D viral protein ex-
pression was observed to decrease with increasing concentration of the p38 MAPK inhibitor.
(E) Band intensities of 3D and 3CD upon SB203580 treatment. The band intensities represent-
ing 3D and 3CD expression level were quantitated with reference to actin control bands (for
each concentration) and 1.0% DMSO control using ImageJ Gel Analysis program.
(TIF)

S3 Fig. Phosphorylation profile of eIF2α. (A) A sharp increase in eIF2α phosphorylation
level was observed from 8h onwards after the addition of virus in EV71-infected samples. Low
constant levels of phospho-eIF2α observed in mock-infected cells with slight increase at 12h.
Exposure to UV-inactivated EV71 showed low basal phospho-eIF2α level across the 12h time
course. (B) Quantification of phospho-eIF2α and total eIF2α protein bands with reference to
actin control bands (for each time-point) and 0hpi using ImageJ Gel Analysis program. (C)
Western blot analysis of the phosphorylation levels of eIF2α at 8hpi in infected cells pre-treated
with either scrambled or MINK siRNA. β-actin was included as a loading control. (D) Quanti-
fication of phospho-eIF2α protein bands with reference to actin control bands (for each con-
centration) and PTC using ImageJ Gel Analysis program.
(PPTX)

S4 Fig. Cytoplasmic localisation of hnRNP A1 resulted fromMINK/p38 MAPK signalling
was not stimulated by Mnk1 activity. (A) Western blot analyses of the activation profile of
Mnk1 and eIF4E in cells subjected to the three treatments (EV71 infection, mock infection and
UV-inactivated EV71). β-actin was included as a loading control. EV71 infection induced the
phosphorylation of Mnk1 but downregulated eIF4E protein expression. (B) Quantification of
phospho-Mnk1 (Thr197/202) protein bands with reference to actin control bands (for each
time-point) and 0hpi using ImageJ Gel Analysis program. (C) Mock-infected RD cells were
treated with CGP57380 at different concentrations (25, 50 and 100μM) or 1.0% DMSO
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(negative control) and cell lysates were harvested for Western blotting at 8h post-treatment.
β-actin was included as a loading control. (D) Quantification of phospho-eIF4E (S209) and
total eIF4E protein bands with reference to actin control bands (for each CGP57380 concentra-
tion) and untreated control using ImageJ Gel Analysis program. (E) Viral protein expression
levels upon CGP57380 treatment. EV71-infected RD cells were treated with CGP57380 and
cell lysates were harvested for Western blotting at 8h post-treatment. Constant VP0 and VP2
viral protein expression was observed with increasing concentration of the Mnk1 inhibitor. (F)
Band intensities of VP0 and VP2 upon CGP57380 treatment. The band intensities representing
VP0 and VP2 protein expression level were quantitated with reference to actin control bands
(for each concentration) and 1.0% DMSO control using ImageJ Gel Analysis program. (G) Cell
viability of CGP57380-treated cells and untreated control cells were measured using alamar-
Blue assay at 12h post-treatment. Values obtained were normalised against 1.0% DMSO con-
trol. Virus titres in the supernatant of cells (denoted by bars) treated with varying
concentrations of CGP57380 post-adsorption were analysed via viral plaque assay. Error bars
represent standard deviation (SD) of triplicate data. Statistical analyses were performed using
one-way ANOVA and Dunnett’s test (Graphpad software) against untreated control P> 0.05
(n = 3) versus 1.0% DMSO control (H) RD cells were subjected to infection with EV71 and
post-treated with CGP57380 (Mnk1 inhibitor) for 8h. CGP57380-treated cells were fixed and
the subcellular localisation of hnRNP A1 (red) was investigated by indirect immunofluores-
cence assay. Immunofluorescence detection of double-stranded RNA (dsRNA, green) with the
nuclei stained with DAPI (blue) was shown to indicate EV71 infection. The images were taken
at 100X magnification. Colocalisation quantification was based on the MOC using WCIF Ima-
geJ software and represented as percent colocalisation at the respective drug concentrations.
Error bars represent the standard deviation of duplicate data.
(PPTX)
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