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Abstract: Computational traceback methodologies are important tools for investigations of
widespread foodborne disease outbreaks as they assist investigators to determine the causative
outbreak location and food item. In modeling the entire food supply chain from farm to fork, however,
these methodologies have paid little attention to consumer behavior and mobility, instead making the
simplifying assumption that consumers shop in the area adjacent to their home location. This paper
aims to fill this gap by introducing a gravity-based approach to model food-flows from supermarkets
to consumers and demonstrating how models of consumer shopping behavior can be used to
improve computational methodologies to infer the source of an outbreak of foodborne disease.
To demonstrate our approach, we develop and calibrate a gravity model of German retail shopping
behavior at the postal-code level. Modeling results show that on average about 70 percent of all
groceries are sourced from non-home zip codes. The value of considering shopping behavior in
computational approaches for inferring the source of an outbreak is illustrated through an application
example to identify a retail brand source of an outbreak. We demonstrate a significant increase
in the accuracy of a network-theoretic source estimator for the outbreak source when the gravity
model is included in the food supply network compared with the baseline case when contaminated
individuals are assumed to shop only in their home location. Our approach illustrates how gravity
models can enrich computational inference models for identifying the source (retail brand, food item,
location) of an outbreak of foodborne disease. More broadly, results show how gravity models can
contribute to computational approaches to model consumer shopping interactions relating to retail
food environments, nutrition, and public health.

Keywords: gravity model; food supply network; food retailing; network source identification;
epidemic; foodborne diseases

1. Introduction

Foodborne diseases have a considerable economic and public health impact. While developing
countries are most affected, foodborne diseases should be considered a global issue that concern all
countries [1]. In the United States alone, for example, it is estimated that every sixth person falls ill each
year with foodborne pathogens [2]. While most outbreaks occur locally and can be directly attributed
to a contamination source, there are a few widespread outbreaks that affect larger geographical
areas, making them particularly difficult to resolve. The Listeria monocytogenes outbreak Sigma 1
exemplifies this kind of widespread distribution. In this outbreak, a total of 37 illnesses were reported
across 12 different states in Germany. It took authorities six years to identify a meat producer as the
contamination source [3,4]. Such long investigation times are common and often do not guarantee
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success, which is reflected in the large proportion of unsolved cases [5,6]. Low detection rates can at
least partly be explained by the enormous complexity of food supply chains and the high proportion of
manual work involved in conventional investigation processes. However, emerging technologies and
more readily available supply chain data enable authorities to complement investigation processes
with computational models [7]. In the case of widespread outbreaks, these data-scientific approaches
promise particular utility in outbreak investigations, given the complex task of tracing through the
massive food supply network. Data-scientific approaches support the investigation process in multiple
parts: (i) detecting that an outbreak is occurring; (ii) identifying the location source of an outbreak at
an early stage of the supply chain like a farm or food processor; (iii) identifying the contaminated food
item that caused an outbreak; and (iv) investigating other questions relevant to investigators such as
identifying the retailer brand source of an outbreak [8].

One type of approach (ii) aims to find the location source of an outbreak in the supply
network given the underlying food distribution network and reported outbreak locations (Figure 1a).
Reported outbreak cases are connected to the food supply network by linking to the node representing
the point of sale the contaminated food product was purchased at, assuming that the purchase happens
in the district of residence of the infected person. Given the reported cases and the food network,
these models apply network-theoretic approaches to identify the likeliest source node that could have
caused the observed outbreak pattern by searching through combinations of paths the contamination
could have traveled through the supply network [8,9].

Int. J. Environ. Res. Public Health 2020, 17, x 2 of 20 

 

producer as the contamination source [3,4]. Such long investigation times are common and often do 

not guarantee success, which is reflected in the large proportion of unsolved cases [5,6]. Low 

detection rates can at least partly be explained by the enormous complexity of food supply chains 

and the high proportion of manual work involved in conventional investigation processes. However, 

emerging technologies and more readily available supply chain data enable authorities to 

complement investigation processes with computational models [7]. In the case of widespread 

outbreaks, these data-scientific approaches promise particular utility in outbreak investigations, 

given the complex task of tracing through the massive food supply network. Data-scientific 

approaches support the investigation process in multiple parts: (i) detecting that an outbreak is 

occurring; (ii) identifying the location source of an outbreak at an early stage of the supply chain like 

a farm or food processor; (iii) identifying the contaminated food item that caused an outbreak; and 

(iv) investigating other questions relevant to investigators such as identifying the retailer brand 

source of an outbreak [8]. 

One type of approach (ii) aims to find the location source of an outbreak in the supply network 

given the underlying food distribution network and reported outbreak locations (Figure 1a). 

Reported outbreak cases are connected to the food supply network by linking to the node 

representing the point of sale the contaminated food product was purchased at, assuming that the 

purchase happens in the district of residence of the infected person. Given the reported cases and the 

food network, these models apply network-theoretic approaches to identify the likeliest source node 

that could have caused the observed outbreak pattern by searching through combinations of paths 

the contamination could have traveled through the supply network [8,9]. 

  
(a) (b) 

Figure 1. (a) Location network-theoretic source estimator using the food-supply network and 

outbreak cases to predict the contamination source [8]. (b) Spatial distribution of sales of one product 

as input for the food item estimator [9]. 

Another type of approach seeks to determine the contaminated food item that caused an 

outbreak (iii) by relating reported outbreak locations with retail sales data from supermarkets [10–

12]. In principle, these models assume that outbreaks are caused by food items that are sold in the 

zones where infected people live. Hence, food items with a high relative share of sales in these areas 

compared to other areas are more likely to be the contaminated food item that caused the outbreak 

(Figure 1b). 

While both methodology types show promising results in identifying the contaminated food 

item and location, they do not appropriately consider the last link in the supply chain—the consumer. 

The assumption made by both model types that consumers only shop in their home district is 

oversimplifying. Multiple research studies have demonstrated that consumers travel between areas 

for their grocery shopping [13–15]. Moreover, estimating travel behavior is complex and may depend 

on a set of socio-economic factors like income, availability of cars, marital or gender diversity [16,17]. 

Hence, there is a need to gain a better understanding of consumer shopping behavior to explain the 

last mile flow of food products. It is expected that integrating the last mile flow from retailers to 

consumers into existing source detection models will improve accuracy [8,10,11]. 

One way to reproduce the last mile shopping behavior and tackle this gap is to apply trip 

distribution models. Such models use quantitative and/or qualitative factors to estimate shopping 

behavior [18]. Among them, gravity-based models belong to the most commonly used trip 

distribution models [19]. Gravity models estimate the flow of goods or persons between two zones 

Figure 1. (a) Location network-theoretic source estimator using the food-supply network and outbreak
cases to predict the contamination source [8]. (b) Spatial distribution of sales of one product as input
for the food item estimator [9].

Another type of approach seeks to determine the contaminated food item that caused an outbreak
(iii) by relating reported outbreak locations with retail sales data from supermarkets [10–12]. In principle,
these models assume that outbreaks are caused by food items that are sold in the zones where infected
people live. Hence, food items with a high relative share of sales in these areas compared to other
areas are more likely to be the contaminated food item that caused the outbreak (Figure 1b).

While both methodology types show promising results in identifying the contaminated food
item and location, they do not appropriately consider the last link in the supply chain—the consumer.
The assumption made by both model types that consumers only shop in their home district is
oversimplifying. Multiple research studies have demonstrated that consumers travel between areas
for their grocery shopping [13–15]. Moreover, estimating travel behavior is complex and may depend
on a set of socio-economic factors like income, availability of cars, marital or gender diversity [16,17].
Hence, there is a need to gain a better understanding of consumer shopping behavior to explain the last
mile flow of food products. It is expected that integrating the last mile flow from retailers to consumers
into existing source detection models will improve accuracy [8,10,11].

One way to reproduce the last mile shopping behavior and tackle this gap is to apply trip
distribution models. Such models use quantitative and/or qualitative factors to estimate shopping
behavior [18]. Among them, gravity-based models belong to the most commonly used trip distribution
models [19]. Gravity models estimate the flow of goods or persons between two zones based on two
factors: distance and attractiveness. When compared with ground-truth micro-data on individual
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shopping trips, it has been shown that gravity models yield particularly strong fits for grocery shopping
estimations [17].

In this paper, we introduce a gravity modeling approach to model food-flows from supermarkets
to consumers and demonstrate how these models of consumer shopping behavior can be used to
improve computational approaches to infer the location source of an outbreak of foodborne disease.
In the first part of this paper, we develop our approach to model the last mile flow of food products
from retailers to consumers, aiming to answer the following research question:

How can gravity models be used to simulate food flows from retailers to consumers?
We answer this question by demonstrating the generation of a calibrated gravity model for a

specific county in Germany, Esslingen, modeling the flow of food products on a postal zone level
(49 postal zones within the county). We generate a flow matrix with high resolution zoning data
that matches the short-distance activity grocery shopping. The gravity model is based on mobility
survey data provided by the Federal Ministry of Transport and Digital Infrastructure, supermarket
locations and revenues as well as consumption data from open source and commercial data sources.
We calibrate the model parameters with the Furness and Hyman algorithms to ensure a realistic
flow distribution [20,21]. We place particular focus and introduce methodological innovations in our
approach to estimate intra-zonal distances. The resulting model estimates monetary grocery flows
between postal zones and can be used as a proxy for the strength of consumer-retailer interactions
between zones.

In the second part of this paper, we investigate the value of gravity models in the context of
foodborne disease outbreak source investigation by clarifying:

How can the shopping behavior of consumers contribute to identifying the contamination source of a
foodborne disease outbreak?

For this purpose, we focus on a specific outbreak example where a single retail brand causes
an outbreak. We transform the monetary grocery flows obtained from the gravity model into flow
probabilities and construct a three-layered food network. The network represents flows from a brand
via a retailer zone to a consumer zone within the county Esslingen. We simulate outbreaks on this
network using a Monte Carlo model to contaminate consumer zones. We compare the results of a
Bayesian estimator for the retail brand source with gravity model flows of consumer behavior included,
to results of the estimator when the zone of living is assumed to be equal to the zone of food purchase.

Our results suggest that retail food shopping mobility is not limited to a consumer’s immediate
environment. The gravity models estimate that a major proportion of groceries are purchased from
non-home zip codes. In the context of foodborne diseases, this finding implies that co-locating the place
of living and purchase is an oversimplifying assumption. Enforcing this assumption in computational
traceback methodologies may lead to significant distortions in estimates of the outbreak source identity.
In an illustrative example we quantify the improvement in source estimator accuracy when this
simplifying assumption is corrected for by including gravity-simulated retailer-consumer flows and
demonstrate significantly better traceback results. Our results furthermore illustrate that certain source
inference problems are possible to investigate only when local flows are included, such as source
attribution within a small geographical area but at high spatial resolution. More generally, our results
underline the relevance of shopping behavior of consumers in traceback models and illustrate how
gravity models can be used to enrich food supply network models and inference approaches for
identifying the location source (investigation part (ii)), food item (investigation part (iii)), or retail
brand (investigation part (iv)) of an outbreak of foodborne disease.

The remainder of this paper is structured as follows: Section 2 introduces the gravity model
formulation, input data and the calibration procedure. In Section 3, we adopt the gravity model
results to enrich food networks and demonstrate how this can improve the ability of a source estimator
to identify a contaminated retail brand as outbreak source. The paper concludes with a summary,
limitations and an outlook in Section 4.
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2. Gravity Model

2.1. Method

Our objective is to develop a model of the last mile flow of groceries between retailers and
consumers that can be used to supplement traceback models of foodborne disease outbreaks. Multiple
gravity model forms exist for simulating flows between retailers and consumers, and the choice of
model depends on the purpose for its use, as well as the data available for model fitting. An important
factor in modeling choice is the level of aggregation. Shopping interactions between consumers and
retailers can be represented in a disaggregated model that estimates the behavior of individuals, or an
aggregated model if retail outlets within a zone are jointly evaluated. Among all spatial interaction
models in retailing, Huff’s gravity model is among the most widely used. In its initial form, the model
calculates patronage probabilities depending on store size and travel distance [22]. Further studies
have extended the model so that it can take multiple objective and subjective factors on consumer
and retailer side into account [23–26]. In aggregated models, individual store characteristics and
exact distances between consumer and supermarket are lost [27]. However, the aggregation per zone
reduces the complexity considerably as the set of destinations decreases and may even be beneficial if
the model still fulfils the anticipated purpose. Because the purpose of our gravity model is to link to
traceback models aggregated to a zonal level, we choose an inter-zonal gravity model form.

To build a gravity model where consumer–retailer interaction is estimated by revenue flows
between zones, we rely on Wilson’s [28] entropy maximizing gravity model. In this model, revenue flows
F between two given postal zones i and j are defined as:

Fi j = AiOiB jD je−βci j , (1)

where Oi denotes the total retailer revenue generated by a zone i and D j the consumption potential of a
zone j. Ai and B j are normalizing factors to ensure that the modeled revenue distribution matches the
given zonal revenue generated by retailers and zonal consumption by consumers. They are defined as:

Ai =
1∑

j B jD je−βci j
(2)

B j =
1∑

i AiOie−βci j
(3)

Furthermore, to ensure modeling consistency
∑

i Fi j = Oi and
∑

j Fi j = D j. The frictional impact
of distance is incorporated by an exponential deterrence function with deterrence factor β and distance
c between two zones i and j.

2.2. Model Inputs

This section describes the inputs necessary and procedure used to fit the gravity model. We apply
a refined methodology of an earlier food flow gravity model [29]. First, the level of aggregation and
corresponding geo-spatial units—so called traffic analysis zones (TAZ)—must be chosen as the origin
and destination. Corresponding distances between zones representing trip lengths are calculated.
The flow intensity between two zones is then estimated as a function of the revenue and consumption
potential, and the spatial distance separating these zones. We analyze mobility survey data to determine
the average shopping distance of consumers. Lastly, we calibrate the model and generate revenue flows
that match the observed mean shopping distance and the zonal revenue and consumption constraints.

2.2.1. Area of Analysis and Zone Delineation

While grocery shopping is considered a short-distance activity that takes place in the nearer
environment of the consumer’s place of living or working, traceback algorithms for foodborne disease
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are predominantly applied to widespread outbreaks over larger geographical areas. This poses a
challenge to the gravity model. On the one hand, it requires the gravity model to be based on a relatively
fine zoning system to account for short shopping distances. Otherwise, the zoning system will become
too coarse and a high share of trips will originate and end in the same zone [30]. We therefore choose
German postal zones as traffic analysis zones [31,32]. Postal zones are comparable to municipalities
that represent the highest resolution unit LAU2 (Local Administrative Unit) within the European
NUTS (Nomenclature des unités territoriales statistiques) zoning system.

On the other hand, the model needs to cover a larger geographical area to be useful for traceback
models of widespread disease outbreaks. Those properties lead to large-scale origin–destination (OD)
matrices that can be computationally difficult to calibrate. In our case, this becomes especially relevant
given the low level of entropy and the large amount of OD pairs where zero flows are expected [33].

We resolve this problem by generating multiple gravity models—one for each reported location
of illness. Each gravity model is centered around the consumer zone of illness and forms a buffer with
all zip codes that are potentially connected to this consumer zone (Figure 2). This methodology allows
us to preserve a high resolution of the zoning system while reducing the matrix size. Remote OD
pairs without interaction can be eliminated in this manner and do not need to be computed during
model calibration.

Int. J. Environ. Res. Public Health 2020, 17, x 5 of 20 

 

disease are predominantly applied to widespread outbreaks over larger geographical areas. This 

poses a challenge to the gravity model. On the one hand, it requires the gravity model to be based on 

a relatively fine zoning system to account for short shopping distances. Otherwise, the zoning system 

will become too coarse and a high share of trips will originate and end in the same zone [30]. We 

therefore choose German postal zones as traffic analysis zones [31,32]. Postal zones are comparable 

to municipalities that represent the highest resolution unit LAU2 (Local Administrative Unit) within 

the European NUTS (Nomenclature des unités territoriales statistiques) zoning system. 

On the other hand, the model needs to cover a larger geographical area to be useful for traceback 

models of widespread disease outbreaks. Those properties lead to large-scale origin–destination (OD) 

matrices that can be computationally difficult to calibrate. In our case, this becomes especially 

relevant given the low level of entropy and the large amount of OD pairs where zero flows are 

expected [33]. 

We resolve this problem by generating multiple gravity models—one for each reported location 

of illness. Each gravity model is centered around the consumer zone of illness and forms a buffer 

with all zip codes that are potentially connected to this consumer zone (Figure 2). This methodology 

allows us to preserve a high resolution of the zoning system while reducing the matrix size. Remote 

OD pairs without interaction can be eliminated in this manner and do not need to be computed 

during model calibration. 

 

Figure 2. (Left): Given consumer zones where outbreaks were reported. (Right): Buffered gravity 

models around outbreak zones. 

For the purpose of this paper, we model grocery flows in a gravity model for the county 

Esslingen in Southern Germany. This county consists of 49 postal zones that both generate and attract 

food flows, as explained later. 

2.2.2. Inter-Zonal Distance Estimation 

We calculate inter-zonal distances between centroids—a common point that bundles all people 

and activities of a zone. For the sake of simplification, this center is often assumed to be equal to the 

geographical center [34]. The aggregation of all activities and people to a single point can lead to 

inaccurate estimations of separation [35]. First, the geographical center might not represent the actual 

center of population or activity. And second, the aggregation per se leads to an error as all 

retailers/consumers in a zone are assumed to be located in the centroid [30]. The larger the zones are, 

the stronger the aggregation effect and the higher the potential estimation error. This error is limited 

Figure 2. (Left): Given consumer zones where outbreaks were reported. (Right): Buffered gravity
models around outbreak zones.

For the purpose of this paper, we model grocery flows in a gravity model for the county Esslingen
in Southern Germany. This county consists of 49 postal zones that both generate and attract food flows,
as explained later.

2.2.2. Inter-Zonal Distance Estimation

We calculate inter-zonal distances between centroids—a common point that bundles all people
and activities of a zone. For the sake of simplification, this center is often assumed to be equal to
the geographical center [34]. The aggregation of all activities and people to a single point can lead
to inaccurate estimations of separation [35]. First, the geographical center might not represent the
actual center of population or activity. And second, the aggregation per se leads to an error as all
retailers/consumers in a zone are assumed to be located in the centroid [30]. The larger the zones are,
the stronger the aggregation effect and the higher the potential estimation error. This error is limited
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by our zoning choice of the high-resolution postal zone level. Still, we expect a major proportion of all
flows to be bought and sold intra-zonally.

2.2.3. Intra-Zonal Distance Estimation

In practice, transportation modelers mainly focus on centroid-to-centroid flows and tend to
exclude intra-zonal trips [30,35]. However, this leads to a biased sample and impedes proper model
calibration [36,37]. In our case, this is especially true, since, despite the high resolution at the postal
zone level, many shopping trips are very short, and a large proportion of all shopping trips are expected
to be intra-zonal (i.e., a large share of groceries is expected to be sold to consumers inside the retailer
zone). Various intra-zonal distance estimations have been proposed in literature. The estimation can
be based on distance measures to adjacent zones [38,39]. In other modeling works, the intra-zonal
distance has been calculated as the mean distance between two randomly distributed points in a
circular area with radius r [40–42]:

dintra =
128
45π

r (4)

Since this formulation is a function only of the zone size and does not take store density or
distribution into consideration, it is expected to overestimate the true intra-zonal distance especially for
large and high-density zones. Therefore, we introduce a new estimation method for intra-zonal distances
that considers both the zone size and number of retailers in a zone. We adopt a nearest-neighbor
approach where retailers are assumed to be arranged in a lattice (Figure 3). This order maximizes
the distance between retailers and minimizes the mean average distance to the nearest-neighbor for
randomly distributed consumers [43].
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In this setting, the mean distance E[D] of a randomly distributed consumer to the nearest retailer
within a postal zone r of area Ar with nr retail stores depends on the entity density rate λr (stores per
square kilometer) and can be calculated as:

λr =
Ar

nr
(5)

E[D] =
2
3

√
1

2λ
≈ 0.427λ−0.5 (6)

2.2.4. Retailer Revenue Estimation

We define a zone’s potential to attract consumers Oi as the sum of all store revenues of all brands
located in this zone. Since individual store revenues are not available on a postal zone level, we
generate a food retailing network in order to simulate these revenues as follows. We incorporate
10 supermarkets and discounters, including the major players Edeka, REWE, Aldi and Lidl. Store
locations (degrees of latitude and longitude and addresses) are mainly sourced from a publicly available
point of interest (POI) platform Pocketnavigation. The modeled store revenue is calculated based on
the latest yearly revenue figures from Lebensmittel Zeitung (LZ) [44]. To calculate the revenue of an
individual store, the yearly revenue of a brand reported by LZ is divided by the total number of stores
found in the POI dataset. The chosen approach implies that all stores of a certain retailer generate equal
revenues and ignores potential differences in size and/or purchasing power of customers. Edeka and
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Rewe stores were modeled in more detail in terms of store size with commercial retailer data, as these
two full-range retailers are predominantly operated by independent traders and vary considerably in
revenue and size [45,46].

2.2.5. Consumption Potential Estimation

The consumption potential of a zone is expected to be proportional to its population size, i.e.,

D j =
pop j∑
j pop j

REV, (7)

where Dj denotes the grocery consumption in a postal zone j with population pop j and REV represents
the total revenue of all food retailers over all postal zones. This consumption estimation assumes that
the mean food consumption is equal across different zones.

2.2.6. Observed Trip Data

We analyze mobility data from the Federal Ministry of Transport and Digital Infrastructure to find
the mean shopping distance of consumers between their home and supermarkets for the calibration
process. The most recent mobility survey, Mobilität in Deutschland 2017, encompasses about 316,000
individuals from 156,000 households across Germany. Their mobility patterns are gathered into
almost 1 million trips [47]. For the purpose of our analysis, only trips between consumers’ homes and
supermarkets were extracted. After data processing 78,754 shopping trips yield a mean distance of
x = 4.65 km (Figure 4). We use this mean distance to find the deterrence factor β (Equation (1)) as
described in the following section.
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Figure 4. Trip length distribution of shopping trips in Germany.

2.3. Model Calibration

Gravity models need to be calibrated to ensure that the model successfully reproduces observed
or estimated properties. In a doubly constrained gravity model, the production (

∑
i Fi j = Oi) and

attraction constraints (
∑

j Fi j = D j) ensure that the modeled sum of flows within a row or column
of the OD-matrix matches the given production and attraction constraint of each zone Oi and D j.
To reach a flow distribution that satisfies these constraints, the balancing factors Ai for each row and
Bj for each column need to be calculated (Equations (2) and (3)). An additional parameter β for the
frictional impact of distance needs to be adjusted. An appropriate beta value is calibrated to ensure
that the modeled average flow distance is equal to the target average flow distance (Equation (1)).
Consequently, in a matrix with n zones a total of 2n + 1 parameters are required to calibrate a doubly
constrained gravity model [30].

We use a combined calibration method after Furness [21] and Hyman [20] to find adequate model
parameters. The former method applies an iterative algorithm to resolve the interdependent balancing
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factors Ai and Bj, while the latter method helps finding a deterrence factor that matches the modeled
flow distance with the target flow distance.

2.4. Gravity Model Results

The gravity model was implemented in KNIME (Konstanz Information Miner), an open-source
analytics platform, and was fully calibrated until all constraints were met [48]. In this section, we
present the modeling results both on an average level and by means of a flow example. Furthermore,
the implications of the results for traceback models are discussed.

2.4.1. Food Flow Distribution

The modeled food flow distribution provides an estimate to answer to the following questions:

(i) How many postal zones are supplied by a retailer zone?
(ii) What proportion of goods are expected to be sold intra-zonally to consumers?

For the interpretation of the flow distribution we assume the retailer perspective (grocery outflow
of a zone). Given the matrix with flows Fi j where retail revenue flows from a retailer zone i to a
consumer zone j = {1, 2, . . . , 49}, the proportion of a zone’s revenue supply p(Fi j) can be calculated by:

p(Fi j) =
Fi j∑
j Fi j
∈ [0, 1] (8)

Thereby, absolute flows are transformed into probabilistic flows. We are interested in the number
of consumer zones that are connected to a retailer zone. To only consider meaningful trade flows, we
define a retailer zone and consumer zone as “connected” whenever flows are greater than a defined
percentage threshold. We set three thresholds at 0, 5, and 10 percent, where the 0 percent threshold
means that all trade flows are considered. Based on the 5 and 10 percent thresholds, results for this
model show that on average retailer zones supply to 2 to 5 consumer zones (Table 1).

Table 1. Gravity model estimations for Esslingen.

Parameter
Flow Threshold

>0% >5% >10%

Number of supplied consumer zones 49 5.3 2.6

Proportion of intra-zonal flows 28.5%

From a practical standpoint, it is not only important which postal zones to look at, but also how
likely a zone is to be visited by consumers. If Equation (8) is calculated for ij = ii, the proportion of
intra-zonal consumption p(Fii) (i.e., share of groceries that are sold to consumers inside in the retailer
zone) is obtained. For the chosen county, Esslingen, 28.5% on average of the generated revenue is
expected to remain inside the retailer postal zone. In other words, the major part of the sold food items
is expected to be sold to consumers originating from other postal zones. The mean flow statistics for
the county Esslingen are summarized in Table 1.

We illustrate further properties of the gravity model with the zip code zone Wendlingen, a zip code
located inside the county Esslingen (Figure 5). In this particular retailer zone groceries are primarily
distributed to four consumer zones (>5%). The major part of the groceries remains in the home zone
(23.1%). In addition, there are relatively strong connections to two consumer zones in the north and
one in the south.
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2.4.2. Revenue Estimation of Food Retailers in Affected Regions

Besides the flow distribution between postal zones, the gravity model yields another dimension of
information. Even though the food flows are estimated on an aggregate level, i.e., the flows represent
revenues from all retail brands, we can decompose these flows by brand, since we have input data on
brand market shares (see Section 2.2.4). Considering the food example displayed in Figure 5, we can
identify stores from six retail brands using this input data (Figure 6).
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Figure 6. Decomposed food outflows from Figure 5 for retailer zone Wendlingen.

The decomposition of a zone’s total revenue into revenues per brand is value adding. If a brand
has no market share in the retailer zones that supply a contaminated consumer zones, it is unlikely to be
the point of sales of a contaminated food product. In contrast, retail brands that are strongly connected
to contaminated consumer zones deserve special attention from investigators. The decomposition of
a zone’s revenue reveals the localized distribution of stores from a brand and creates a retail-brand
specific pattern that can be compared to the spatial distribution of reported outbreak cases. In Section 3,
we investigate whether knowledge about the spatial distribution of retail stores can prove to be helpful
in outbreak cases.
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2.4.3. Implication of Gravity Model Results

From mobility surveys, we found that in Germany the average distance between a consumer’s
place of residence and the visited supermarket was 4.65 km (see Section 2.2.6). Our results estimate
that on average less than a third of all groceries are sold intra-zonally for the county Esslingen.
This implies that consumers buy about 70 percent of all groceries externally, i.e., in postal zones
that are different from their home postal zone. This example illustrates how the assumption that
consumers buy their groceries only in their home zip code is oversimplified and may present a source
of distortion for traceback models of foodborne diseases, especially if high-resolution zoning systems
like postal zone grids are used. Our findings are relevant for both (ii) location source and (iii) food
item traceback methods. The gravity-simulated results enrich existing food supply networks with
additional flow information on the last link between retailer and consumer and thereby contribute
to a better understanding of the entire food supply chain from farm to fork. This modeled solution
is a beneficial complement to survey-based approaches to identify the shopping location, e.g., those
proposed by [11], since interview data is time-consuming to obtain, suffers from recall bias or might
not be available at all [49,50].

3. Application: Retailer Brand Identification

In this section, we illustrate how the fitted gravity model can be used to improve the ability to
identify the source of a foodborne disease outbreak, using a Bayesian estimator for source inference [8].
A specific example is provided in the context of identifying the retailer brand that caused an outbreak
of foodborne disease. Identifying the retailer brand source of an outbreak is an investigation scenario
that occurs when a contaminated batch of food items is primarily distributed across supermarkets of
one retail brand. This scenario occurs frequently due to the fact that 40 percent of food retail sales are
generated with private labels that are proprietary to specific brands [51].

Since outbreak data is difficult to obtain—especially on a disaggregate postal zone
level—we simulate an outbreak on a food supply network with gravity-based shopping flows.
Given the simulated reported illnesses at consumer zones, we develop an inference approach to predict
the true brand as the source of the outbreak, adapting the network-theoretic source estimator in [8].
We introduce a retail brand to consumption food supply network model and demonstrate how gravity
models can enrich this network model to improve the inference results.

3.1. Retail Brand Source Identification Model

3.1.1. Network Model

We define the food supply network as a weighted, directed graph G = {V, E}. There are two types
of nodes V = {VQ, VR} that represent supply chain actors. The set VQ denotes transient nodes, where
food is produced, distributed, and sold. VR denotes the set of absorbing (consumption) nodes where
food leaves the network and is consumed. The set of edges is of the form (i, j) ∈ VQ ×VQ ∪ VQ ×VR

and indicate food flow interactions between nodes. Each edge (i, j) is weighted by the time-average
volume of food traded, wi j.

3.1.2. Transmission Model

We assume that a retail brand, bi ∈ Ω, sells a batch of contaminated food items and is the single
source bi* of an outbreak. This source node sends out contaminated food items that get distributed
throughout the food network via retailer zones and eventually cause illnesses in consumers, resulting in
a set of L infected individuals. We label the node linked to observation l by ol, resulting in the multiset
θ = {o1, . . . , oL}, which may contain repeated elements. The observation locations in this multiset will
be linked to the network at the unique set of consumption nodes o ∈ O ⊆ VR, such that |O| ≤ L.
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To derive an estimator for the source of an outbreak of foodborne disease, transmitted by
contaminated food shipped through a logistics network, the following three assumptions are
adopted [8]:

• The contaminated quantity is fixed and is composed of individual contaminated units that neither
spread nor recover from contamination as they travel through the supply network.

• Each unit travels independently through the supply network.
• Each transition of a unit from one node to the next entails an independent transmission direction.

Based on these assumptions, the movement of a contaminated food item can be thought of as
a ball falling through a plinko board where the taken path of a ball depends on the transmission
probabilities of the edges connecting the nodes [8].

The transition probabilities pi j between two states i and j are defined for the whole network by the
Markov matrix P, written in canonical form as:

P =

[
PQ PR

0 IR

]
(9)

where PQ is the sub-matrix concerning transitions between transient nodes, PR is the sub-matrix
concerning transitions from transient into consumption nodes, 0 is a matrix of zeroes and IR is the
identity matrix representing absorption at consumption nodes.

The final step in developing the transmission model involves connecting the probabilities pi j with
the physical quantities defined in the network model. The volumes shipped from i to j can be seen as a
proxy for the conditional probability that a contaminated item is sent along that direction. We can
therefore define the transition probabilities pi j to be the proportion of volume sent from i to j,

pi j =
wi j∑
j wi j

∈ [0, 1] (10)

3.1.3. Traceback Algorithm: Bayesian Inference

We aim to find the true source bi* among the brands bi given the list of illnesses at consumer zones
θ and the food supply network G. This can be formulated as a Bayesian inference problem, where
we first introduce a Bayesian formulation for the probability that a feasible source brand bi is the true
source bi*, given the observations θ and the prior distribution over bi*:

P
(
bi = b∗i

∣∣∣θ) = P
(
θ
∣∣∣bi = b∗i

)
P
(
bi = b∗i

)
P(θ)

(11)

where P
(
bi = b∗i

∣∣∣θ) is a probability distribution across all retail brands bi ∈ Ω.
Then, to identify the source bi*, we adopt a maximum probability of detection approach and design

an estimator b̂i that selects the feasible source node bi that maximizes the probability P
(
bi = b∗i

∣∣∣θ), i.e.,

b̂i = argmax
bi∈Ω

P
(
θ
∣∣∣bi = b∗i

)
P
(
bi = b∗i

)
(12)

We note that the denominator P(θ) is a constant, equal for all bi, and so can be neglected in
the maximization problem. The probability P

(
bi = b∗i

)
is the prior probability distribution, defined

from external information. Therefore the crux of solving Equation (12) is determining the likelihood
P
(
θ
∣∣∣bi = b∗i

)
, which represents the probability of observing the illnesses observations θ given the

outbreak originated from brand bi.
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To solve Equation (12) to estimate the suspected source, we first decompose the likelihood
P(θ

∣∣∣bi = b∗i ) . for the whole list of reported illnesses. Given the assumption that units travel
independently through the supply network, this probability factors as:

P (θ|bi = b∗i ) =
∏
ol∈θ

P (ol |bi = b∗i ) (13)

We can now concentrate on solving for the probability of a single consumer zone o getting
contaminated given that bi is the source. To find this probability exactly, we must find the probability
of starting from bi and reaching o across all possible paths of travel through the network. The approach
taken by [8] is to formulate this multiple path probability P

(
o
∣∣∣bi = b∗i

)
as the absorbing probability in a

Markov chain,
P(ol

∣∣∣bi = b∗i ) = [A]i, o (14)

where A is a matrix of dimensions
∣∣∣VQ

∣∣∣ × |VR| representing the probability of being absorbed at a
contaminated node in VR when beginning from a transient node in VQ. It is shown in [8] that the
matrix A can be found as:

A =
(
I − PQ

)−1
PR (15)

We now have all the information we need to solve the maximum probability of detection problem
in Equation (12) and estimating the source as the node b̂i = b∗i that maximizes the posterior probability

P
(
θ
∣∣∣bi = b∗i

)
P
(
bi = b∗i

)
over all possible source brands bi ∈ Ω,

b̂i = argmax
bi∈Ω

P
(
bi = b∗i

) ∏
ol∈θ

[(
I − PQ

)−1
PR

]
i,ol

(16)

We can also fill in Equation (11) to form a distribution over all brands bi:

P
(
bi = b∗i

∣∣∣θ) = 1
c

P
(
bi = b∗i

) ∏
ol∈θ

[(
I − PQ

)−1
PR

]
i,ol

(17)

where c is a normalizing constant that recovers the denominator in (11) to ensure this is a proper
probability distribution that sums to 1. We note that since not all brands bi are necessarily connected to
a contaminated consumer zone, P

(
bi = b∗i

∣∣∣θ) can be zero for certain brands.

3.2. Model Evaluation

We aim to investigate the value of gravity models for investigation purposes and quantify their
potential to improve the ability of the network-theoretic source estimator introduced above to identify
a retail brand. We demonstrate this by evaluating the performance of the source estimator on two
food supply networks: (A) a network model where food retailers are connected to consumers with a
gravity model; and (B) a network model where consumers are assumed to shop only in their home zip
code. Since real outbreak data for foodborne diseases is not available on a zip code level, we generate
artificial outbreaks on food network A, assuming this more fine-grained food flow model represents
the ground truth of food flows and transmission probabilities. The source estimator performance is
evaluated based on the accuracy and rank of source detection results.

3.2.1. Food Network Models

We demonstrate the properties of our model for the county Esslingen—the same geographical
scope used to generate the gravity model. Esslingen consists of 49 postal zones that represent both
retailer and consumer zones. Our model considers 10 different retail brands i = {1,2, . . . ,10}, bi ∈ Ω.
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Food Network A (with Gravity Model)

We apply the network-theoretic source estimator [8] to a food network consisting of three
stages where food flows from a retail brand source node (which can be interpreted as a retail brand
headquarters) via retailer store zones to consumer zones (Figure 7). As outlined in the previous
section, the transition probabilities pi j (Equation (10)) are given by the Markov transition matrix
(Equation (9)), which represent the relative volume traded by each node wi j defined in the theoretical
network model in Section 3.1.1. To connect these probabilities with the network model A, we observe
that the probabilities pi j between retailer zones and consumer zones can be seen as the relative revenue
flows p

(
Fi j

)
found by the gravity model (Equation (8)). Similarly, the pi j between retail brand node

bi ∈ B and retailer zone r j ∈ R are found as the relative market share of a retail brand sold in each zone,

p(Fi j) =
Fi j∑
j Fi j

; (i, j) ∈ B×R (18)

A contaminated food item sold by a brand bi can be distributed via different retailer zones before
it is sold, consumed, and leads to illnesses at consumer zones ol . This means that bi and ol may
be connected across multiple paths. This absorbing probability P

(
ol
∣∣∣bi = b∗i

)
can be derived from

Equation (13) for all ol ∈ θ.
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Without any further external information about the prior probability term of the Bayesian
formulation P

(
bi = b∗i

)
, we assume this prior distribution depends on the relative market share of a

brand bi with revenue revi calculated as:

P
(
bi = b∗i

)
=

revi∑
i revi

(19)

Food Network B (without Gravity Model)

In the absence of gravity-modeled flows, a simplifying approach is to spatially co-locate retailer
and consumer, i.e., to assume that consumers exclusively shop in their zone of residence [8,10].
We adopt this assumption to create a baseline network model (Figure 8). Network model B is equal to
network model A except for the connections between retailer zone and consumer zone. In the absence
of gravity-simulated flows, retailer-consumer flows change, such that Fi j = Fii and p(Fii) = 1.
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3.2.2. Outbreak Simulation

We simulate artificial outbreaks with a Monte Carlo simulation. We assume that the true
transmission probabilities are known and given by the modeled food supply network A with gravity
model flows as described in Section 3.2.1.

For a more robust evaluation, we simulate different outbreak conditions. We choose ten different
outbreak scenarios with varying spreading patterns, i.e., different numbers of unique contaminated
consumer nodes |θ| = {5, 10, 15, 20, 25, 30, 35, 40, 45, 49}. For each scenario, we simulate 1000 outbreaks.
For each outbreak, the Monte Carlo model first selects a brand bi as the contamination source bi* in
proportion to the prior probabilities P

(
bi = b∗i

)
(Equation (19)). From this source node, a total of 500

illnesses are generated. Each simulated illness departs bi* and travels probabilistically through the
food supply network leading to illnesses at a predefined number |θ| of unique consumer zones.

3.2.3. Modeling Results

The results part is split into two sections: First, we assess how enriched food networks with gravity
model flows improve the ability of a source estimator to identify a retail brand as the contamination
source of an outbreak. For this purpose, we examine how the performance of the source estimator
improves if gravity model information on shopping behavior is available. Second, we take a closer
look at this enriched network model and investigate results for different scenarios. We evaluate the
predictions based on two performance measures. Accuracy calculates the ratio of true predictions,
i.e., b̂i = b∗i to all predictions [52]. In addition, we assess the results based on the rank, i.e., the position
of the true contamination source b∗i in the ordered, estimated probability distribution over all brands bi.
We include this additional performance measure because it is relevant from a practical standpoint.
Even if the predicted retail brand is not the true contamination source but constantly among the top
ranks, this helps practitioners to narrow down the search and prioritize investigations.

Figure 9 depicts the model accuracy depending on the reported number of illnesses. The diagram
shows that in the absence of consumer shopping information the source estimator is barely capable of
identifying the contaminated retail brand. If consumers are assumed to shop only in their home zone
as in the baseline model B, the source estimator at maximum identifies the contamination source in
20 percent of the cases. Predictions do not improve for an increasing number of reported illnesses.
Due to the 1-1 connection between retailer zone and consumer zone, observations are often “wrongly
attached” to the network which results in erroneous source predictions. If the food network is enriched
with gravity-simulated retailer-consumer flows, we can considerably improve the prediction ability of
the network-theoretic source estimator. In this case, the model reaches an accuracy of about 60 percent
for 30 reported illnesses for |θ| = 20. Similarly, we obtain considerably better ranking results if gravity
model results are available for the source estimator (Figure 10). This indicates that the gravity-based
link between retailer and consumer plays an important role for identifying the contaminated retailer
brand and that this connection is required for accurate traceback predictions. We conclude that the
gravity model flows are important for the functioning of the source estimator and conduct further
analyses on this enriched network.
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Figure 11 shows the accuracy of the source estimator on the enriched food network A where
gravity-simulated flows are available. Each graph represents a different outbreak scenario with
spreading pattern ranging from 5 to 49 unique contaminated consumer nodes |θ|. A comparison
between the scenarios shows that the model performs particularly well on outbreaks with large
dispersion. If |θ| is not restricted the model correctly identifies the causative brand in more than 75
percent for 20 reported illnesses. In contrast, if illnesses are more locally concentrated, this limits the
information available to the traceback model and impedes the performance as in the case for |θ| = 5
where the accuracy does not exceed 27 percent.
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Independent from the spread, we observe an improving model performance for an increasing
number of illnesses. A major goal in practice is to quickly and reliably detect the outbreak source.
Accurate predictions even for little number of reported illnesses are therefore desirable. We note
that for all |θ| the graphs show that the model performance improves rapidly with the first reported
illnesses. Generally, the accuracy improves in an exponential form for the first reported illnesses and
converges relatively quickly after 20 to 30 reported illnesses depending on the spread.

In terms of rank (Figure 12), we observe a similar pattern. Since accuracy and rank are related,
results also improve for larger |θ| and with an increasing number of reported illnesses. In scenarios
with |θ| > 20 and more than 20 reported illnesses, the model on average ranks the true brand on rank 2
or better. Again, if outbreaks are limited to only 5 unique consumer zones, |θ| = 5, the model ranks the
true retail brand only slightly better than rank 4 even for large number of reported illnesses.
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3.2.4. Interpretation of Results

The results of the analysis show that the network-theoretic source estimator demonstrates
promising results in other application settings of foodborne diseases. In a controlled environment with
simulated outbreaks, and food supply network flows modeled on real retail trade and spatial data on
one German county, the source inference method proves to be useful for identifying a retail brand
as the contamination source of an outbreak. Given the large proportion of shopping trips to postal
zones outside the home zone, the gravity model flows are an important enrichment for food supply
networks and required for identifying a contaminated retail brand. Even though our food network is
relatively simple, the traceback algorithm yields good traceback results, i.e., in many cases is capable
of predicting the true contamination source. The source estimator improves with a larger number
of unique contamination nodes and requires about between 10 and 30 reported illnesses to stabilize.
In a simulated setting, we show that there is a certain heterogeneity in the distribution of retail stores
between retail brands that lead to a meaningful pattern. By applying the source estimator, we are able
to retrieve this spatial pattern that characterizes a retail brand and match it to the spatial occurrence
of illnesses.

4. Conclusions

In this paper, we show that consumers do not limit their shopping activities to their immediate
environment. Mobility data shows that on average consumers in Germany visit supermarkets 4.65 km
away from their place of residence. The simulated food flows by the gravity model indicate that
only about a third of all sold groceries remain in the same postal zone. We therefore conclude that
the shopping mobility of consumers plays an important role for traceback models—especially if they
operate on a fine-grained zoning system. Our work provides a modeled approach to estimating
shopping mobility that can be used by traceback models for foodborne diseases. Given the place
of residence, infected individuals can be connected to food retailers with a probabilistic measure.
We expect our modeled solution to be a useful complement to the survey-based approach suggested
by [11] since information about individual shopping patterns might be not available, incomplete or
suffer from recall bias [49].

In the second part of the paper, we demonstrate the utility of gravity models in an application
to identify the retail brand contamination source. We simulate artificial outbreaks on a three-layered
food supply network with flows from retail brands via retailer zones to consumer zones. We adopt a
Bayesian source estimator to predict the contaminated retail brand and obtain better traceback results if
consumer mobility information estimated by the gravity model is available. Furthermore, we find that
the model performance depends on the number of reported illnesses and spread. First, this implies that
relatively simple food networks are suitable for location source algorithms to identify a contaminated
retail brand. Second, it underlines the importance to consider the consumer mobility in order to obtain
satisfying traceback results.

Our findings underlie certain restrictions. In the absence of real-world outbreak data, we simulate
different outbreak scenarios on a food supply network. We thereby assume that the contamination
was probabilistically transmitted on this network. Therefore, the model should be tested for other
geographical areas and tested on real outbreak data. We emphasize the need for authorities to provide
richer data that (i) has a higher resolution to allow for spatially disaggregate models like the gravity
model and (ii) includes socio-economic information that can be used for more specialized, realistic
shopping mobility models. Our work focuses on conventional shopping trips where consumers travel
to supermarkets to shop for their groceries. Although the online purchase of food still plays a minor
role, it may be worthwhile incorporating this emerging trend into future models, since food sold
through this sales channel will have different distribution patterns. Apart from this, more realistic food
flows can be modeled if food type-specific and/or temporal sales data are considered.

In our application, we assume a retail brand to be the single contamination source of an outbreak.
While this holds true for certain outbreaks, there are other cases where contaminated products get
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distributed by multiple retail brands. Even though this reduces the utility of the model, it can still help
to narrow down the search by investigators.

As outlined above, we encourage further research concerning the integration of the gravity model
into existing traceback models. Both of the source identification approaches reviewed in Section 1, the
network-theoretic and food item estimators, are suitable to integrate shopping mobility and potentially
improve the performance.

More generally, the approach developed here for modeling consumer food shopping behavior can
be extended to other applications in the areas of nutrition and public health, including estimating an
individual’s access to the retail food environment. The findings of this study—that the majority of
food flows are sourced outside an individual’s home neighborhood—have important implications
for research on retail food environment and accessibility, a body of work that also often assumes that
individuals’ food environments are defined by their home address. This extends to the concept of the
“food desert”, which is defined for an individual living in a neighborhood in which there is no walkable
access to a retail outlet [53]. The gravity model results shown here suggest that defining an individual’s
food environment as their neighborhood only is an oversimplifying and often inaccurate assumption.
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