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Excessive immune activation and inflammatory mediators may play a critical role in the pathogenesis of chronic heart failure.
Methotrexate is a commonly used anti-inflammatory and immunosuppressive drug. In this study, we used a rat model of cardiac
myosin-induced experimental autoimmune myocarditis to investigate the effects of low-dose methotrexate (0.1 mg/kg/d for
30 d) on the plasma level of cytokines and cardiac remodeling and function. Our study showed that levels of tumor necrosis
factor-(TNF-)alpha and interleukin-6 (IL-6) are significantly increased in postmyocarditis rats, compared with the control rats.
Methotrexate treatment reduced the plasma levels of TNF-alpha and IL-6 and increased IL-10 level, compared to saline treatment.
In addition, postmyocarditis rats showed significant cardiac fibrosis characterized by increased myocardial collagen volume
fraction, perivascular collagen area, and the ratio of collagen type I to type III, compared with the control rats. However, MTX
treatment not only markedly attenuated cardiac fibrosis, diminished the left ventricular end-diastolic dimension, but also increased
the left ventricular ejection fraction and fractional shortening. Collectively, these results suggest that low-dose methotrexate has
ability to regulate inflammatory responses and improves cardiac function and hence contributes to prevent the development of
postmyocarditis dilated cardiomyopathy.

Copyright © 2009 Zhengang Zhang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Congestive heart failure (CHF) is the leading cause of car-
diovascular morbidity and mortality. While state-of-the-art
therapeutics, including β-blockers, angiotensin-converting
enzyme inhibitors, and angiotensin-receptor blockers, are
available to manage CHF, the prognosis for patients with this
condition remains poor [1]. Patients with acute myocarditis
generally experience full recovery following treatment for the
myocardial inflammation. However, some patients progress
to persistent myocardial inflammation and subsequently
develop dilated cardiomyopathy (DCM) along with CHF.

Increasing evidence suggests that immune activation and
inflammatory mediators may play a role in the development

and progression of CHF [2, 3]. For example, elevated plasma
concentrations of the proinflammatory cytokines tumor
necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-
6) have been frequently observed in patients with CHF
[4]. Plasma levels of these cytokines closely correlate with
the severity of CHF; they also provide valuable predictive
information regarding the patient’s prognosis and the rate
of new-onset heart failure [5]. Furthermore, elevated TNF-
alpha in mice, increased by cardiac restricted over-expression
or chronic infusion, facilitates the occurrence of typical
phenotypes of CHF [6, 7]. Several studies have shown that
patients with some diseases characterized by inflamma-
tory mediator activation (e.g., rheumatoid arthritis, septic
shock) are more prone to developing CHF [8]. It is well
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known that IL-10 is a potent anti-inflammatory cytokine.
Intraperitoneal administration of recombinant human IL-
10 into mice with experimental viral myocarditis appeared
to improve survival, attenuate myocardial inflammation
and decrease the myocardial mRNA expression of TNF-
alpha, IL-2, and inducible NO synthase [9]. In peripheral
blood mononuclear cells from CHF patients, IL-10 reduced
lipopolysaccharide-stimulated TNF-alpha production [10].
Moreover, previous study demonstrated level of IL-10 was
reduced in patients with CHF [11]. Therefore, it is likely that
restoring the balance between pro- and anti-inflammatory
cytokines would be a useful treatment of CHF, especially
for subjects with proven increased inflammatory activation.
Traditional cardiovascular drugs appear to have little effect
on the abnormally activated inflammatory mediator network
associated with CHF [12]. In contrast, several nonspe-
cific anti-inflammatory treatments and immune-modulating
therapeutics have demonstrated favorable effects against
CHF [2].

Left ventricular remodeling, as an independent deter-
minant of prognosis and an important therapeutic target
in heart failure, is clinically defined as changes in volume,
shape, and/or function of the chamber in response to various
chronic stresses such as ischemia, pressure/volume overload,
and inflammation. High-dose (20–250 mg/kg) methotrexate
(MTX) treatment has been indicated for the treatment of
neoplastic diseases, such as acute lymphoblastic leukemia
and solid cancers, due to its inhibitory effect on de novo
purine and pyrimidine synthesis through dihydrofolate
reductase. In contrast, low-dose MTX treatment has been
used as a novel immune modulation therapy [13]. Indeed,
MTX has been extensively applied to the management
of autoimmune and chronic inflammatory diseases, such
as rheumatoid arthritis. MTX is effective against these
conditions through its nonspecific modulation of inflam-
matory mediators [14]. In the present study, we used a rat
model of experimental autoimmune myocarditis (EAM) by
immunization with cardiac myosin to investigate the effects
of low-dose MTX on pro and anticytokine production as well
as ventricular remodeling and function.

2. Materials and Methods

2.1. Reagents. Porcine cardiac myosin and Freund’s complete
adjuvant were purchased from Sigma (St Louis, MO). MTX
(injectable) was obtained from Hualian Pharmaceutical
Technology (Shanghai, China). Polyclonal antibodies against
collagen I and III and SABC (rabbit IgG)-POD kit were
from Wuhanboster Biological Technology (Wuhan, China).
Masson’s trichrome stain kit was from Fuzhou Dongqi
Biological Technology (Fuzhou, China). The ELISA kits used
to measure TNF-alpha, IL-6 and IL-10 were from R & D
Systems China Co. Ltd (Shanghai, China).

2.2. Experimental Autoimmune Myocarditis (EAM) Model.
Thirty male, seven-week-old, specific-pathogen-free Lewis
rats, weighing 150–200 g, were purchased from the Beijing
Vital River Laboratory Animal Technology. A classical model

of EAM was induced in 20 of the rats by immunization
with porcine cardiac myosin, as previously described with
minor modifications [15]. Briefly, porcine cardiac myosin
was dissolved in 0.2 M phosphate-buffered saline (PBS) at
a concentration of 10 mg/mL and then emulsified with an
equal volume of Freund’s complete adjuvant supplemented
with Mycobacterium tuberculosis H37Ra at a concentration of
10 mg/mL. To induce EAM, Lewis rats were subcutaneously
injected twice (once on day 0 and once at day 7) in each
rear foot pad with 0.1 mL of the emulsified solution. The
remaining ten rats were injected with an equal volume of
saline in the same manner (control group). All experimental
and control animals received humane care and were main-
tained in the institute’s animal facilities under a controlled
temperature (22–26◦C) and humidity (50%–60%) and given
free access to water and standard rat chow. All experimental
procedures and protocols were approved by the Special
Committee on Animal Welfare of Yangzhou University. The
guidelines set by this committee conform to the Guide for
the Care and Use of Laboratory Animals published by the US
National Institutes of Health (NIH Publication Number 85-
23, revised 1996).

2.3. Treatment Protocol. Thirty days after immunization with
cardiac myosin, the rats (EAM30 group, n = 20) were
randomly assigned to receive an intraperitoneal injection
of either saline (EAM60 group, n = 10) or 0.1 mg/kg
MTX (EAM-MTX group, n = 10), each day for 30 days.
Additionally, the control group was injected with saline (n =
10) daily for 30 days. The intraperitoneal LD50 of MTX for
rats is 6–25 mg/kg [16]. In the present study, we defined
the low-dose MTX protocol as daily injections of 0.1 mg/kg,
based upon data from a preliminary study.

2.4. Echocardiographic Studies. Echocardiographic studies
were performed on days 30 and 60 after immunization
with cardiac myosin. Rats were weighed and anesthetized
by intraperitoneal injection with a mixture of ketamine
(25 mg/kg) and diazepam (5 mg/kg). The left ventricular
remodeling and function were assessed by transthoracic
echocardiography using an 8–11 MHz phased-array trans-
ducer (SONOS 7500, Philips Medical Systems). A 2D
targeted M-mode echocardiogram was obtained at the level
of the chordae tendineae. The following parameters were
measured from M- and B-mode tracing: left ventricular end-
diastolic dimension (LVEDD, mm), left ventricle end-systolic
dimension (LVESD, mm), interventricular septum thickness
(IVST, mm), left ventricle posterior wall thickness (LVPWT,
mm), left ventricle ejection fraction (LVEF, %), stroke
volume (SV, μL), and fractional shortening (FS, %). All
parameters were measured using the leading-edge method
of the American Society of Echocardiography from three
consecutive cardiac cycles, and the average was used for data
analysis. Measurements were performed blindly by two inde-
pendent investigators. Relative wall thickness (RWT) and left
ventricular mass index (LVMI, mg/g) were calculated accord-
ing to following formula [17]: RWT = LVEDD/(IVST +
LVPWT), LVM = 0.8[1.04(LVEDD + IVSTd + LVPWTd)3 −
LVEDD3] + 0.6, LVMI = LVM/body weight.
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2.5. ELISA Detection of Plasma Cytokine Levels. Under anes-
thesia with a mixture of ketamine and diazepam, blood was
drawn from unilatelal eyeball excision on day 30 and from
the cardiac ventricular on day 60. All samples were imme-
diately transferred into prechilled tubes containing 75 μL of
10% EDTA-Na2. Blood samples were instantly centrifuged at
1000× g for 20 minutes at 4◦C. Plasma was stored at −70◦C
for later analysis. Concentrations of TNF-alpha, IL-6, and IL-
10 were measured in plasma, using commercially available
ELISA kits according to the manufacturer’s instructions.
Each sample was assayed in duplicate and the mean value was
calculated. The intraassay coefficients of variance were 3.1%,
7.4%, and 3.4%, respectively. The interassay coefficients of
variance were 9.7%, 8.4%, and 8.7%, respectively.

2.6. Histopathologic Assessment. On day 60, all rats were
bled from cardiac ventricle and then sacrificed under anes-
thesia. Hearts were removed, rinsed in ice-cold PBS, and
transected at the base of the papillary muscles. Transverse
sections were fixed with 10% (v/v) phosphate buffered
formalin for 12 hours and then embedded in paraffin.
Paraffin-embedded tissues were cut into 2 μm thick sections.
Sections were stained with hematoxylin-eosin (HE) and
Masson’s trichrome, according to conventional histological
examination techniques. Randomly selected fields (12 per
section at a 200 × magnification) were digitized and subject
to color threshold analysis. In this analysis, green tissue
represents fibrosis while red tissue represents myocardium.
Collagen volume fraction (CVF) and perivascular collagen
area (PVCA) were measured, based on the green (positive)
stained area, which scattered between the surviving myocytes
and around the blood vessels, respectively.

Several consecutive sections were used for immuno-
histochemical staining. Briefly, deparaffinized and hydrated
sections were quenched with 3% hydrogen peroxide, digested
with compound digestive juice followed by blocking with
5% bovine serum albumin. Tissues were then incubated
with the primary antibody, rabbit antirat collagen types I
or type III diluted at 1/150, overnight at 4◦C. The SABC
kit was used for the subsequent steps according to the
manufacturer’s instructions. Chromogenic development was
accomplished using diaminobenzidine-hydrogen peroxide.
Slides were then slightly counterstained with hematoxylin
and dehydrated, and coverslips were applied. Areas of
collagen I and III staining were determined using electronic
imaging of the positively stained area, at a 200× magnifica-
tion. The results are expressed as an area ratio of collagen I
to collagen III. The positively stained border zone of vessels
was excluded from all calculations. All measurements were
quantified by using NIH Image, version 1.30 for Windows.

2.7. Statistical Analysis. Data were expressed as mean ± SD.
SPSS 12.0 was used for statistical analysis of the data. All
data were subjected to one-way ANOVA or t-tests. Statistical
significance was inferred at P < .05 or P < .01.

3. Results
3.1. General Characteristics and Mortality. All rats in the
EAM30 group had developed foot ulcers and ankle arthro-

cele; which were sustained until the end of the study. Prior
to being assigned to MTX or saline treatment, the rats
which had induced EAM exhibited similar heart rate, blood
pressure, and body weight (data not shown). The body
weight gain in the control group was higher than in the
EAM30 group (368.5±20.5 g versus 307.2±15.8 g). However,
the mean body weight of the EAM60 group rats was
significantly higher than that of the control group (422.5 ±
17.7 g versus 383.3 ± 18.9 g). Compared with the EAM-60
group, there was a significant decrease of weight gain in
the EAM-MTX group (365.7± 12.7 g versus 422.5± 17.7 g).
Also, the foot ulcers and ankle arthrocele were markedly
attenuated in the EAM-MTX group. While this study was not
designed to statistically evaluate differences between groups
in rat survival, it should be noted that no differences in
mortality were observed between treatments.

3.2. Plasma Cytokine Levels. To determine if MTX treatment
alters plasma levels of TNF-alpha, IL-6, and IL-10, plasma
was isolated and then analyzed by ELISA. As shown in
Figure 1, the EAM30 group showed significantly elevated
plasma levels of TNF-alpha (14.7-fold) and IL-6 (7.1-fold),
compared with the control group (Figures 1(a) and 1(b)).
However, no significant difference in plasma IL-10 levels
was observed between the two groups (Figure 1(c)). On day
60, the plasma levels of both TNF-alpha and IL-6 were
significantly decreased in the EAM60 group, whereas IL-
10 was not changed compared with the EAM30 group.
Compared with the EAM60 group, there were significant
decreases of the levels of TNF-alpha (−54.8%) and IL-6
(−48.0%) and an increase of IL-10 (68.3%) in the EAM-
MTX group. All cytokine levels in the EAM-MTX group were
still higher than those in the control group.

3.3. Changes in Echocardiographic Parameters. Echocardio-
graphic studies were performed to determine if MTX treat-
ment facilitates the improvement of cardiac structure and
function in postmyocarditis rats. Prior to MTX treatment,
the parameters of left ventricular remodeling including
LVEDD, LVESD, and LVMI in the EAM30 group were
higher than the control group (5.43 ± 0.21 mm versus
5.26 ± 0.25 mm, 2.38 ± 0.39 mm versus 2.07 ± 0.32 mm,
1.64 ± 0.14 mg/g versus 1.24 ± 0.12 mg/g, resp.). The
cardiac function in the EAM30 group was significantly
decreased characterized by reduced FS (46.36% ± 5.69%
versus 60.77% ± 5.64%) and LVEF values (68.46% ± 8.13%
versus 86.62% ± 5.40%), compared with the control group.
There was no statistical difference when comparing any other
parameters between the two groups (Table 1). These results
suggest that there were significant left ventricular dilation as
well as reduced cardiac contractility in postmyocarditis rats.

As shown in Table 2, the EAM60 group has higher
LVEDD, LVESD, and RWT and lower LVPWT and IVST than
the control group. Moreover, the LVEF, FS, and SV were also
all significantly decreased in the EAM60 group compared
with the control group, indicating a progressive development
of left ventricular remodeling and cardiac dysfunction. In
contrast, these were significant decreases of the LVEDD and
LVESD and increases of FS, LVEF, and SV in the EAM-
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Figure 1: Changes of plasma cytokines levels. The levels of TNF-
alpha, IL-6, and IL-10 were determined by ELISA. All results are
expressed as mean ± SD (n = 10). ∗P < .01 versus control group;
#P < .01 versus EAM60 group;

�

P < .01 versus EAM30 group.

MTX group compared to the EAM60 group. The LVMI
remained similar among all three groups. These results
suggested that MTX treatment was beneficial to reverse the
left ventricular dilation and increase cardiac systolic function
in postmyocarditis rats.

3.4. Histological Study. Hearts from the EAM60 group
showed macroscopic changes, included severe and diffuse
discoloration of the surface tissue. However, the size of
the discolored area was significantly reduced in the EAM-
MTX group. Additionally, the EAM60 group rats exhibited
an enlarged ventricular chamber and thinned wall, as seen
in patients with DCM. In contrast, the enlargement of

Table 1: Echocardiographic baseline data of control and EAM rats
on day 30.

Group Control (n = 10) EAM30 (n = 20)

LVEDD (mm) 5.26± 0.25 5.43± 0.21∗

LVESD (mm) 2.07± 0.32 2.38± 0.39∗

LVPWT (mm) 1.62± 0.12 1.55± 0.21

IVST (mm) 1.70± 0.22 1.58± 0.20

LVMI (mg/g) 1.24± 0.12 1.64± 0.14∗

RWT 1.77± 0.22 1.80± 0.29

FS (%) 60.77± 5.64 46.36± 5.69∗

LVEF (%) 86.62± 5.40 68.48± 8.13∗

SV (μL) 125.64± 10.24 132.68± 10.69
∗P < .05 versus control group.

the ventricular chamber was significantly attenuated in the
EAM-MTX group (Figure 2(a)). Microscopically, myocar-
dial degeneration, necrotic and alignment disorder of the
myocardial fibers, observed in the EAM60 group rats.
Interestingly, the extent and area of lesions were dramatically
alleviated in the EAM-MTX group (Figures 2(b), 2(c), and
2(d)).

3.5. Myocardial Fibrosis. Masson’s trichrome staining
allowed the visualization of any myocardial interstitial
fibrosis. As shown in Figure 3(a), only few green staining
collagen fibroses were scattered between the red staining
myocytes and surrounding the blood vessels in the control
group. In contrast, the EAM60 group rats exhibited
more extensive and significant green staining of collagen
fibers (Figure 3(b)). To quantitatively compare the extent
of cardiac fibrosis, CVF and PVCA, were respectively,
calculated in this study. The results showed that the EAM60
group rat had higher CVF and PVCA value than the control
group (Figures 3(d) and 3(e)), suggesting the occurrence
of significant cardiac fibrosis in postmyocarditis. However,
in the EAM-MTX group, the green staining of the collagen
fibers was markedly reduced, compared with that in the
EAM60 group (Figures 3(b) and 3(c)). Quantitative analysis
showed that the CVF and PVCA in the EAM-MTX group
were significantly lower than those in the EAM60 group
(Figures 3(d) and 3(e)).

The myocardial collagen matrix, consisting mainly of
collagen type I and III, is considered to be an important
determinant of myocardial structural integrity and cardiac
function. Excessive collagen deposition is essential to the
development of cardiac fibrosis. To further identify which
kind of collagen deposition mainly occurred postmyocarditis
and the role of MTX treatment on them, the collagen
type I and III were respectively stained. As a result, the
EAM60 group rats showed significantly increased expression
of collagen type I and III, mainly type I, in myocardial
interstitium, compared with the control group. In the EAM-
MTX group, MTX treatment dramatically attenuated the
deposition of both collagen types I and III (Figure 4(a)).
Quantitative analysis also clearly demonstrated an markedly
increase in the size of the area staining for collagen, especially
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Figure 2: Macroscopic and microscopic assessment of the hearts. (a) Representative gross appearance of the heart from each group of
rats. (b) Representative photomicrographs of the ventricular sections (HE staining; ×200). In hearts from the control group, myocytes is
well organized. In EAM60 group, the cardiac myocytes exhibited extensive necrosis, degeneration, and disorder. MTX treatment led to a
significant decrease in the size of these lesions.

Table 2: Comparison of echocardiograph parameters of all three groups rats on day 60 (n = 10).

Groups Control EAM60 EAM-MTX

LVEDD (mm) 5.69 ± 0.29 6.46± 0.28∗ 6.06± 0.37
�

LVESD (mm) 2.24 ± 0.30 4.20± 0.67# 2.74 ± 0.41∗,�

LVPWT (mm) 1.74 ± 0.17 1.54± 0.20∗ 1.65 ± 0.21

IVST (mm) 1.76 ± 0.17 1.56± 0.19∗ 1.68 ± 0.20

LVMI (mg/g) 1.52 ± 0.04 1.62 ± 0.17 1.60 ± 0.14

RWT 1.73 ± 0.24 2.12± 0.32∗ 1.86 ± 0.35

FS (%) 62.31 ± 6.86 35.27± 8.02# 55.02 ± 4.16∗,�

LVEF (%) 89.87 ± 4.40 62.73± 10.11# 84.77 ± 3.60�

SV (μL) 162.38 ± 25.39 132.36± 11.30∗ 156.02 ± 15.29
�

∗P < .05, #P < .01 versus control group;
�

P < .05, �P < .01 versus EAM60 group.

for type I, as well as an increased collagen type I/III ratio in
the EAM60 group compared to the control group. Notably,
both the staining areas of collagen I/III and collagen type I/III
ratio were significantly decreased in the EAM-MTX group
compared to the EAM60 group, but still greater than those
of the control group (Figures 4(b) and 4(c)).

4. Discussion

In the present study, we observed that the proinflammatory
cytokines, including TNF-alpha and IL-6, were significantly

increased in postmyocarditis rats. However, we demon-
strated, for the first time, that MTX administration not only
enables to reduce the level of proinflammatory cytokine
and increase the level of anti-inflammatory cytokine but
also simultaneously attenuates the ventricular dilation and
myocardial fibrosis as well as enhances cardiac function.

The EAM model has been extensively characterized in
rats and is initiated by immunization with cardiac myosin
which, among other effects, provokes a strong inflamma-
tory response. In the recovery phase of the inflammation,
immunized animals will progress to DCM [18]. Several
studies have demonstrated that early administration of
anti-inflammatory therapies can effectively attenuate the
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Figure 3: Masson’s trichrome staining. Representative photomicrographs of the ventricular sections from the three groups of rats are shown
(×200). Green staining represents the collagen fibers (a)–(c). Myocardial collagen volume fraction (CVF; (d)) and perivascular collagen area
(PVCA; (e)) were calculated in the control, EAM60 and EAM-MTX groups, respectively. All results are represented as mean ± SD (n = 10).
∗P < .05, #P < .01 versus control group; �P < .01 versus EAM60 group.

induction of EAM [19, 20]. However, it remains unclear
whether later anti-inflammatory treatment could further
prevent the progression of cardiac remodeling in the stage of
postmyocarditis. Therefore, in this study, we used the cardiac
myosin-induced rat EAM model to explore the effect of MTX
on the development of DCM in postmyocarditis rats.

We recently demonstrated that MTX has significant anti-
inflammatory effects for patients with CHF resulting from
various causes. Following MTX treatment, these patients
showed an improvement in their clinical status [21]. How-
ever, MTX treatment failed to improve LVEF and reduce
LVEDD in patients with CHF. CHF subjects display a large
heterogeneity in the degree of immune and inflammatory
activation [2]. Given this, we hypothesized that MTX treat-
ment would be suitable for the treatment of CHF patients,
especially for these due to the inflammatory cardiomyopathy.
In this study, we showed that MTX treatment not only
resulted in significantly decreased plasma levels of TNF-
alpha and IL-6 in postmyocarditis rats but more importantly
increased the expression of IL-10. Since IL-10, as a potent
anti-inflammatory cytokine, is a strong deactivator of mono-
cyte and suppressor of various proinflammatory mediators
[9, 10], these results suggest that MTX treatment can obtain
a favorable anti-inflammatory net effect. However, it is

important to note that we previously failed to observe these
effects of MTX in healthy rats (unpublished data). It has
been shown that the excessive activation of proinflammatory
cytokines TNF-alpha can mimic a number of aspects of
the CHF phenotype, including left ventricle remodeling. It
is reasonable to propose, then, that the anti-inflammatory
effects of MTX may result in improved cardiac remodeling
and function in postmyocarditis rats.

Types I and III collagens are major structural proteins
forming the myocardial collagen matrix. Excessive collagen
deposition in myocardium will lead to cardiac fibrosis. Since
Type I collagen determines the stiffness of the myocardium,
while type III collagen contributes to its elasticity, the altered
collagen I/III ratio has critical impact on the diastolic and
systolic function of the heart [22]. In this study, we observed
that MTX treatment not only significantly reduced the
deposition of collagens but also decreased the collagen type
I/III ratio, suggesting a beneficial role of antifibrosis and
cardiac function. Meanwhile, we have clearly demonstrated
that MTX treatment also markedly relieved ventricular
dilation and enhanced cardiac systolic function. Collectively,
the above results suggested that low-dose MTX treatment
enables to elicit beneficial effects in cardiac remodeling and
function in postmyocarditis, maybe through restoring the
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Figure 4: Collagen types I and III staining. Representative photomicrographs of ventricular sections from the three groups of rats are shown
((a); ×200). The areas of collagen types I and III were, measured (b) and the ratios of collagen type I/III were calculated (c). All results are
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balance between proinflammatory and anti-inflammatory
cytokines. Therefore, in certain extent, it will facilitate to
prevent the development of postmyocarditis DCM. Consis-
tent with this study, atorvastatin, an HMG-CoA reductase
inhibitor, has recently been shown to regulate the Th1/Th2
cytokine imbalance and to attenuate the histopathological
severity of myocarditis [23]. Moreover, in acute myocardial
infarction rats, persistent myocardial inflammatory response
has adverse effects on LV function and remodeling. However,
administration of recombinant IL-10 recently has been
shown to significantly suppress infiltration of inflammatory
cells and expression of proinflammatory cytokines in the
myocardium as well as improve LV function and remodeling
by inhibiting cardiac fibrosis [24].

However, the anti-inflammatory mechanism of MTX in
EAM rats remains elusive. Previous studies showed that
MTX exerts its anti-inflammatory effect by inducing T
cell apoptosis, inhibiting neutrophil and mononuclear cells
infiltration [17, 25]. However, an in vitro study demon-
strated that the anti-inflammatory effect of low-dose MTX
is, at least partly, due to regulation of T cell activation and
adhesion molecule expression [26]. In addition, in patients
with rheumatoid arthritis, MTX treatment has been shown
to reduce inflammatory cell numbers as well as levels of
monokines and adhesion molecules in the synovial tissue
[13].

There are some limitations in this study. Circulating
immune cells are the main source of plasma cytokines.
To date, the primary source of activated inflammatory
mediators involved in CHF remains elusive. Previous studies
indicated that autoreactive CD4+ T cells and mononuclear
cells have a role in the myocardial inflammatory infiltration
and the production of cytokines in EAM rats; however,
the role of MTX on the function of circulating T cells
and mononuclear cells still requires further investigation.
Additionally, the regulatory role of MTX on the local,
myocardial expression of inflammatory mediators is unclear.

In summary, low-dose MTX treatment facilitates to
attenuate the inflammatory response and improve cardiac
remodeling and function in postmyocarditis rats.
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