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The genetic identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is based on
viral RNA extraction prior to RT-qPCR assay. However, recent studies have supported the elimination of
the extraction step. This study was performed to assess the necessity for the RNA extraction, by
comparing the efficacy of RT-qPCR in several direct approaches versus the gold standard RNA extraction,

in the detection of SARS-CoV-2 in laboratory samples, as well as in clinical oro-nasopharyngeal SARS-
CoV-2 swabs. The findings showed an advantage for the extraction procedure; however a direct no-buffer
approach might be an alternative, since it identified more than 60% of positive clinical specimens.

© 2020 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0)).

Introduction

The coronavirus disease 2019 (COVID-19) pandemic caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
resulted in significant morbidity and mortality worldwide. At the
time of writing, more than six million cases and over 370 000 deaths
had been reported (Anon, 2020). The pandemic has created an acute
need for rapid, cost-effective, and reliable diagnostic screening. The
COVID-19 genetic diagnostics process includes RNA extraction from
oro-nasopharyngeal swabs, followed by reverse transcriptase
quantitative PCR (RT-qPCR) targeting viral genes (Corman et al.,
2020).However, the global demand for reagents has placed extensive
strain on supply chains for RT-qPCR kits, and to an even greater
extent, on RNA isolation reagents. Potentially, eliminating RNA
extractionwould greatly simplify the diagnostic procedure, reducing
both costs and the time to answer, while allowing testing to continue
inthe case of reagent shortages. Previous studies have demonstrated
that several lysis buffers might allow the elimination of RNA
extraction (Ladha et al., 2020; Pearson et al., 2020; Merindol et al.,
2020). Very recently, two studies (Fomsgaard and Rosenstierne,
2020; Bruce et al., 2020) used a direct no-buffer RT-qPCR approach,
which identified <90% of the tested clinical samples.

This study was performed to test the diagnostic efficiency
following thermal inactivation (65°C for 30 min and 95 °C for
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10 min) without the addition of lysis buffer (‘no buffer’) or
following lysis using one of three buffers (Virotype, QuickExtract,
and 2% Triton-X-100), and to make a comparison to diagnosis after
standard RNA extraction. Samples included buffers spiked with
SARS-CoV-2 at concentrations of 0.1-100 000 plaque-forming
units (PFU)/mL and 30 clinical samples, previously diagnosed as
positive (n=20) and negative (n=10).

Methods
RNA standards and clinical samples

Viral RNA standards were viable SARS-CoV-2 (GISAID
accession number EPI_ISL_406862), cultured in Vero E6 cells
and diluted in viral transport medium (Biological Industries).
Virus concentrations were recorded in PFU/mL; 1 PFU was
determined as 1000 virions by digital PCR (data not shown).
Oro-nasopharyngeal swab samples for the study were selected
after approval by conventional RT-qPCR. Positive and negative
samples were randomly selected for this study and kept at 4°C
until use.

RNA extraction
RNA was extracted from a 200-p.l sample using an RNAdvance

Viral Kit and the Biomek i7 Automated Workstation (Beckman
Coulter) and eluted with 50 pL H,O.
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Fig. 1. RT-qPCR results for the SARS-CoV-2 samples at different concentrations.
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All of the samples were analyzed in duplicate. The average Ct values are shown. The different buffers and conditions are explained in the key at the bottom of the figure. Ct 45 =

undetected; 65 =65 °C, 95=95°C.

Direct detection

Samples were analyzed directly or mixed 1:1 with one of the
following buffers: QuickExtract DNA Extraction Solution (Lucigen),
Virotype Tissue Lysis Reagent (Indical Bioscience GmbH), and 2%
Triton-X-100 (Sigma) after inactivation at 95 °C for 10 min or 65 °C
for 30 min.

RT-qPCR

The RT-qPCR assays were performed using the SensiFAST Probe
Lo-ROX One-Step Kit (Bioline). Primers and probe for the SARS-
CoV-2 E gene were taken from the Berlin protocol (Corman et al.,
2020).

Results and discussion
SARS-CoV-2 samples in different concentrations

Standard samples were analyzed in duplicate. The results are
shown in Fig. 1, as averages. The samples were analyzed following
two inactivation temperatures: 95°C for 10 min or 65°C for
30 min. The maximum standard deviation was <2 Ct, with an
average standard deviation of 0.4 across all samples. The limit of
detection was 1 PFU/mL. At this concentration, samples in the no-
buffer mode and Virotype at 95 °C were not detected, while the
RNA extraction mode averaged the lowest critical threshold
(Ct=29.8), followed by QuickExtract and Triton. At 10 PFU/mL,
only the no-buffer mode at 95°C failed to detect. The RNA

Table 1
RT-qPCR results of SARS-CoV-2 clinical samples using different treatments; the Ct values are shown.

Patient number RNA extraction Triton-X-100, 2% QuickExtract Virotype No buffer

65°C A 95°C A 65°C A 95°C A 65°C A 95°C A 65°C A 95°C A
1 17.0 31.9 15 313 14 18.6 1.5 204 34 237 6.6 24.2 71 18.3 12 219 4.8
2 19.5 U - U - 244 49 254 5.9 279 84 249 55 254 59 227 3.2
3 21.7 U - U - 314 9.8 30.9 9.3 33.8 12 30.5 89 285 6.8 279 6.3
4 28.8 u - U - 33.7 49 35.6 6.9 35.3 6.5 331 43 31.8 3 31.7 3
5 29.0 U - U - 33.7 4.7 354 64 387 98 35 6 32 31 325 3.6
6 29.6 U - 0] - 34 44 U - 35.6 6 U - 314 1.8 29.7 0.1
7 30.3 u - U - U - U - U - u - 39.1 88 35 4.7
8 30.3 U - U - U - U - U - U - U - 38.8 8.6
9 31.2 U - u - 36.2 5 U - U - §) - 35.2 35.3 41
10 314 u - u - u - 424 1 U - 384 7 0] - 36.1 4.8
11 31.6 U - U - U - U - U - u - u - 35.8 4.2
12 32.0 U - U - U - U - U - §) - §) - 37.6 5.6
13 324 u - u - u - 375 5.1 35.7 33 38.6 6.2 35.6 3.2 36.9 4.5
14 329 U - U - U - U - U - u - 38.3 54 U
15 334 U - u - U - U - U - 383 49 §) - 34.9 15
16 33.7 U - U - U - U - U - §) - §) - §) -
17 33.8 U - U - U - U - U - §) - u - u -
18 35.7 U - U - U - 39.7 U - u - u - u -
19 35.7 U - u - U - ) - U - U - U - U -
20 35.9 u - U - U - U - U - §) - u - U -
Detection level (%)? 5 5 35 40 35 40 50 70

Ct, = cycle threshold; U =undetermined (Ct=45); A = the difference in Ct between RNA extraction and the different treatments.

@ Detection level = the percentage of positive samples (Ct <45).
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extraction mode maintained the lowest Ct values across all of the
concentrations analyzed. The minimum ACt average to the RNA
extraction mode was obtained using QuickExtract, followed by
Triton, Virotype, and the no-buffer mode.

SARS-CoV-2 clinical samples

Next we tested the feasibility of direct SARS-CoV-2 detection
in clinical samples. Twenty positive and 10 negative samples were
analyzed following thermal inactivation. All previously defined
negative samples remained negative across the different buffers
and test conditions. Positive samples exhibited major differences
in detection capability (Table 1). The alternative buffers exhibited
much lower detection levels: Triton (both inactivation protocols)
detected a single positive sample (5% detection). QuickExtract
and Virotype had 35-40% detection rates (both inactivation
protocols). Surprisingly, the direct no-buffer approach was
superior, with 50% detection for the 65 °C inactivation protocol
and 70% for the 95°C inactivation protocol. Detection was
reversely correlated to the sample Ct value, with efficiency
dropping from 100% for Ct <32 to 25% for samples with higher Ct.
The 95 °C no-buffer approach was further evaluated in a larger set
of known positive samples, producing similar results (total n =43,
63% detection).

Conclusions

The results of this study demonstrate that RNA extraction
significantly improves comprehensive and sensitive clinical
diagnosis of SARS-CoV-2. We suggest that clinical samples, which
include a multitude of nucleic acids and proteins, might
significantly hamper detection. Although previously reported to
facilitate viral detection (Ladha et al., 2020; Pearson et al., 2020;
Merindol et al., 2020), the buffers tested here severely compro-
mised the limit of detection (to a maximum of 40%). This is
surprising, considering that direct analysis without adding buffers
achieved a 63% detection level. This no-buffer direct approach
could potentially be used with some success in times of need to
achieve screening for high-titer samples.
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