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Neoantigen peptides arising from genetic alterations may serve as targets for personalized cancer vaccines and as positive
predictors of response to immune checkpoint therapy. Mutations in genes regulating RNA splicing are common in hematological
malignancies leading to dysregulated splicing and intron retention (IR). In this study, we investigated IR as a potential source of
tumor neoantigens in multiple myeloma (MM) patients and the relationship of IR-induced neoantigens (IR-neoAg) with clinical
outcomes. MM-specific IR events were identified in RNA-sequencing data from the Multiple Myeloma Research Foundation
CoMMpass study after removing IR events that also occurred in normal plasma cells. We quantified the IR-neoAg load by assessing
IR-induced novel peptides that were predicted to bind to major histocompatibility complex (MHC) molecules. We found that high
IR-neoAg load was associated with poor overall survival in both newly diagnosed and relapsed MM patients. Further analyses
revealed that poor outcome in MM patients with high IR-neoAg load was associated with high expression levels of T-cell co-
inhibitory molecules and elevated interferon signaling activity. We also found that MM cells exhibiting high IR levels had lower
MHC-II protein abundance and treatment of MM cells with a spliceosome inhibitor resulted in increased MHC-I protein abundance.
Our findings suggest that IR-neoAg may represent a novel biomarker of MM patient clinical outcome and further that targeting RNA
splicing may serve as a potential therapeutic strategy to prevent MM immune escape and promote response to checkpoint
blockade.
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INTRODUCTION
Multiple Myeloma (MM) is characterized by the clonal expansion
of malignant plasma cells in the bone marrow [1]. Recent
therapeutic advances have extended overall survival, but most
MM patients ultimately relapse [2]. Immune checkpoint blockade
(ICB) therapy has revolutionized the treatment of many solid
tumors by harnessing the immune system for effective anticancer
treatment [3]. In these diseases, clinical response to ICB therapy is
associated with the presence of tumor-specific antigenic peptides,
or neoantigens [4], a source of potential neoepitopes that can be
loaded onto major histocompatibility complex (MHC) class I
molecules to generate an antitumor immune response [5].
Cytotoxic T-cells recognize tumor neoantigens as foreign and kill
the presenting tumor cells, which initiates an antitumor immuno-
logical memory that hinders tumor recurrence. An important
source of cancer neoantigens is somatic DNA mutations in the
genome’s coding regions [6] and the mutation-derived neoanti-
gen load in several types of solid tumors corresponds with a better
prognosis [7–10]. However, MM has a relatively low mutation
frequency. In contrast to solid tumors, mutation-derived

neoantigen load in MM has been associated with unfavorable
outcome [11, 12].
Another potential source of tumor neoantigens is aberrant RNA

splicing [13–16]. Alternative splicing is a regulatory mechanism
that generates multiple mRNA transcripts from a single gene and
significantly expands proteome diversity [17]. Consequently,
disruption of splicing mechanisms has a large impact on the
transcriptome and is a significant driver of disease [18]. Intron
retention (IR) occurs when the spliceosome fails to remove specific
introns from pre-mRNA molecules, and they remain in the mature
polyadenylated mRNA. In normal cells, IR functions to further
reduce the levels of relatively low abundance transcripts that are
not needed in specific cell types, such as the expression of
developmentally regulated genes [19, 20]. This type of regulation
has been termed transcriptome-tuning and is brought about
through both nuclear RNA degradation and nonsense-mediated
mRNA decay [21].
IR occurs more frequently in nearly all cancer types compared

with normal control tissues, even in the absence of DNA
mutations in genes encoding proteins involved in splicing.
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Additionally, in cancer cells, transcripts with IR are present at
relatively high levels in cytoplasmic mRNA [22]. These tran-
scripts are translated and degraded by the nonsense-mediated
decay (NMD) pathway, a translation-coupled mechanism that
eliminates mRNAs containing premature translation-
termination codons [23]. Although most IR transcripts are
subject to NMD-induced degradation, this process does not
occur until after the pioneer round of translation, which can
result in the production of neopeptides that bind to MHC
molecules [24, 25]. Therefore, we hypothesized that IR-neoAgs
in MM might impact immune response.
Herein, we used RNA-seq data from the MM Research

Foundation (MMRF) CoMMpass study to identify IR events and
predict IR-neoAgs. We found cells in bone marrow aspirates
from MM patients exhibited high levels of IR events. However,
consistent with the findings that high mutation-neoantigen
load predicts unfavorable prognosis, high IR-neoAg load was
correlated with shorter overall survival (OS) in MM. To
investigate why high IR-neoAg load was not correlated with
better MM patient survival, we performed gene set enrichment
analysis on MM samples with high versus low IR-neoAg load.
This analysis revealed that high IR-neoAg load was positively
associated with the expression of T-cell inhibitory molecules,
such as those involved in interferon (IFN) and tumor necrosis
factor (TNF) alpha signaling activity. In addition, flow-cytometric
analyses of four MM cell lines showed an inverse correlation
between IR levels and MHC-II abundance, while treatment with
a splicing inhibitor increased MHC-I protein abundance,
especially in MM cells bearing high IR levels.

RESULTS
Genes involved in spliceosome activities are differentially
expressed between MM and normal plasma cells
To investigate whether the expression of genes involved in RNA
splicing was altered in MM compared to normal plasma cells, we
analyzed differentially expressed genes using RNA-seq data of
plasma cells from five newly diagnosed MM patients (NDMM) and
five healthy controls (GSE110486). These results showed that the
spliceosome pathway was among the top upregulated pathways
in MM (Fig. 1A), where 67 out of 126 genes in the spliceosome
pathway were upregulated significantly in MM samples. Gene set
enrichment analysis also demonstrated that the spliceosome
pathway was enriched in MM samples with a normalized
enrichment score of 1.46 (p value < 0.001, FDR= 0.016, Fig. 1B).
We also found that the 230 upregulated differentially expressed
genes identified in GSE110486 were also highly enriched in the
NDMM samples from the MMRF cohort, as compared to the
normal plasma cells (Fig. S1A). In addition, the expression levels of
11 out of 12 serine and arginine-rich splicing factor (SRSF) protein
genes, a conserved family of proteins involved in RNA splicing,
were upregulated in MM (Fig. S1B). Additional analysis of the
MMRF data suggested that the increased expression of each of
these 12 SRSF family genes was associated with decreased overall
survival time (Fig. 1C).

IR events are more common in MM compared to control
plasma cells
Accumulating studies provide strong evidence that IR is an
important source of tumor neoantigens [15]. We sought to
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Fig. 1 Intron-retention (IR) events in plasma cells from multiple myeloma (MM) patients are associated with altered RNA splicing.
A Spliceosome is among the top significant pathways involving upregulated genes in newly diagnosed MM compared with healthy controls
from GSE110486. B Gene enrichment plot for spliceosome pathway genes in MM samples compared with healthy controls from GSE110486.
NES, normalized enrichment score. C Serine and arginine-rich splicing factor (SRSF) gene expression was associated with shorter overall
survival time in MM; results were obtained from 767 newly diagnosed multiple myeloma (NDMM) patients in the MMRF cohort. D Comparison
of the number of IR events in primary MM samples from MMRF (n= 767) compared with normal plasma cell samples from GEO (n= 13). Violin
plots show the median and 25th and 75th percentiles (box) and the 95% confidence interval (whiskers). P value was determined using the
Mann-Whitney test.
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characterize IR in MM and its association with MM progression.
The number of IR events and their expression levels were assessed
for both the MM and control samples in GSE110486. We observed
an average of 5799 IR events in five MM samples and 4761 IR
events in healthy controls (Fig. S1C); however, due to the limited
sample size, this difference did not reach statistical significance.
Next, we compared the number of IR events in 767 NDMM
samples from the MMRF cohort with 13 control plasma cell
samples from bone marrow and tonsil of healthy subjects (five
from GSE110486 and eight from GSE114816). The NDMM samples
showed more IR events with an average of 5391 per sample
compared to 4065 IR events in the normal plasma cells. The result
of this comparison was statistically significant (Wilcoxon test,
p value= 0.001) (Fig. 1D).

IR-neoAgs are abundant in multiple myeloma
Emerging evidence suggested that IR events in the cancer
genome can be a source for immunogenic peptides [24].
Therefore, we investigated the potential for IR events to produce
neoantigens in MM. To begin to address this question, we filtered
the IR events that also occurred in normal plasma cells from the
events identified in MMRF RNA-seq data. IR events occurring in
normal plasma cells were removed because they were not
expected to produce immunogenic peptides due to host immune
tolerance. To identify the IR events in the healthy plasma cells, we
analyzed RNA-seq data from the 13 plasma cell samples in
GSE110486 and GSE114816. We detected a total of 9715 IR events
that appeared in at least one healthy control sample; these IR
events were eliminated from the list of events identified in the MM

samples (Table S1). After filtering the normal IR events, the
average number of MM-specific IR events per sample was 1009
and ranged from 21 to 4138 (Table S1). Interestingly, gene
ontology analysis of 450 genes harboring MM-specific IR events
that occurred in more than half of the NDMM samples showed
that these genes were enriched in pathways involving RNA
processing and RNA transport (Fig. 2A).
To computationally predict IR-neoAgs, we first determined the

HLA-I genotype of each MMRF patient using the RNA-seq data. A
total of 178 unique HLA-A/B/C alleles were identified from 767
individual patients of the MMRF cohort (HLA alleles and their
frequencies are listed in Supplementary Table S2). Next, the
retained intron sequences were translated into protein sequences,
which were then segmented into 8–11 amino acid peptides,
where at least one amino acid was translated from the intronic
region. Any peptide that could also be generated from normal
proteins was further removed. The remaining IR-derived neopep-
tides were then evaluated for their predicted binding affinity with
the set of patient-specific HLA alleles using NetMHCpan (v4.1).
Peptides with a NetMHCpan predicted rank score less than two
(the default cutoff from NetMHCpan) were selected as IR-neoAgs.
IR-neoAgs were called for 893 RNA-seq samples from the MMRF
cohort (including both newly diagnosed and relapsed samples).
Not surprisingly, the number of IR events and the IR-neoAg load
were highly correlated (Spearman correlation rho = 0.97, p value
< 0.0001, Fig. 2B). We further evaluated whether any HLA allele
presented more IR-neoAgs than other alleles at the population
level (Fig. 2C). Our results revealed that HLA-B07:02 presented the
highest number of neoantigen peptides (N= 59 588); this allele
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was detected in 10.8% of samples. The most common allele, HLA-
A02:01 which was detected in 19.4% of the samples, presenting
31,161 IR-derived peptides.
Notably, 24,680 out of 479,685 of the IR-neoAgs were shared

across more than 5% of the multiple MM samples. This
observation would suggest that there might be potential for
developing cancer vaccines in the future based on IR-neoAgs. We
also found that 20 neoantigens occurring in more than 80% of
NDMM samples were preferentially presented by HLA-C alleles
(Fig. 2D), suggesting neoantigens presented by HLA-C alleles
could be prioritized for cancer vaccine development.

IR-neoAg load correlates with unfavorable clinical outcome
We next asked whether IR-neoAg load was associated with overall
survival (OS) in the MMRF cohort. Kaplan-Meier survival analysis
revealed that NDMM patients with higher than the median IR-
neoAg load had significantly shorter OS (log-rank test, P= 0.027,
Fig. 3A). When considering the expression levels of IR-neoAgs, we
observed an even more substantial prognostic effect, with a
p value reaching 0.006 (Fig. 3B). Similarly, higher than the median
IR-neoAg load predicted shorter OS for MM patients at the time of
first relapse (log-rank test, P= 0.002, Fig. 3C, n= 60). Notably,
relapsed MM samples with lower IR-neoAg load had a higher
2-year OS rate compared to patients with higher IR-neoAg load
(OS 0.85 vs. 0.57).
To determine whether IR-neoAg load was associated with

clinical features of MM, we asked whether IR-neoAg load
correlated with the International Staging System (ISS) [26], which
is a reproducible predictor of MM outcome. We did not find that
IR-neoAg load was associated with the ISS disease stage in NDMM
from the MMRF cohort (one-way ANOVA P= 0.724, Fig. S2A). To
determine whether the addition of IR-neoAg load to the ISS stage
improved the prediction of OS, we performed survival analysis on
patients stratified by disease stage and IR-neoAg load. This
analysis showed that stage II MM patients with higher than the

median IR-neoAg load had significantly shorter OS than stage II
patients with low IR-neoAg load (log-rank test, P= 0.002, Fig. 3D).
A similar trend was observed with stage I patients, although the
association did not reach statistical significance (P= 0.14). IR-
neoAg load had no apparent prognostic value for OS in stage III
MM patients (P= 0.486). In addition to ISS stages, chromosomal
hyperdiploidy (HRD) is widely used in defining genetic subtypes of
MM patients, and HRD-myeloma is associated with better survival
compared to nonhyperdiploid (nHRD) MM [27]. Although we
observed that higher than the median IR-neoAg load was
apparently associated with shorter OS in both HRD and nHRD
MM patients, these associations did not reach statistical signifi-
cance (Fig. S2B).
We further examined whether the prognostic performance of

IR-neoAg load was independent of other clinical factors. We used
multivariate Cox analysis to test the performance of IR-neoAg load
after adjusting for other clinical factors, including age, sex,
P53 status, ISS stage, as well as the revised ISS stage after
adjusting for lactate dehydrogenase (LDH) level, chromosomal
aberrations, and other factors. In the multivariate analysis, the
hazard ratio of high versus low IR-neoAg load for OS in NDMM was
1.491 (p value = 0.027; 95% CI 1.056 to 2.492) (Table 1), indicating
that the IR-neoAg load offers prognostic power that is indepen-
dent of other clinical factors.

Higher T cell inhibitory signals associate with IR-neoAg and
poor prognosis in MM
Our observation that higher IR-neoAg load was associated with
shorter OS is consistent with previous reports of mutation-derived
neoantigen load in MM [11, 12]. However, this finding is the
reverse of previously reported observations that high mutation-
derived and IR-neoAg loads are associated with longer OS in
patients with solid tumors, including melanoma [7], lung cancer
[8], breast cancer [10], and pancreatic cancer [6]. In addition, there
is increasing evidence that T cells present in the MM
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microenvironment show an exhausted and suppressed phenotype
[28]. This would suggest that additional changes in MM plasma
cells may affect the anti-MM immune response.
To test this hypothesis, we conducted differential expression

and gene set enrichment analysis on RNA-seq data from the
MMRF cohort, comparing samples from NDMM patients with
either higher or lower than the median IR-neoAg load. Notably, we
observed a significant enrichment of the pathways related to
T-cell suppression. We found that IFN gamma signaling and TNFα
signaling via NF-κB pathways were upregulated in patients with
high IR-neoAg load (Fig. 4A). These pathways are involved in the
recruitment of T-regulatory (Treg) cells that control cytotoxic T-cell
killing. In addition, the B-cell receptor (BCR) signaling pathway was
significantly enriched in patients with high IR-neoAg loads.
Previous studies demonstrated that sustained activation of BCR
signaling plays critical roles in B-cell malignancies [29]. This result
suggests that molecular features in cells with higher IR-neoAg load
might contribute to T-cell and B-cell dysfunction in MM.
Based on this finding, we postulated that increased expression

of T-cell co-inhibitory molecules in MM cells exhibiting high IR-
neoAg load might be a partial explanation for the reduced
antitumor immunity and thereby facilitate cancer immune evasion

[30]. These co-inhibitory molecules function as brakes to inhibit
T-cell activation. Higher expression levels of co-inhibitory ligands
on the cancer cell surface can negatively impact T-cell function. To
begin to address this question, we first analyzed the expression
levels of 20 co-inhibitory genes identified by Dufva and colleagues
[31], which include genes for eight B7 ligands, six enzymes
impacting T-cell activity, and six other genes from the butyr-
ophilins and CD226 family (Table S3). We found that these co-
inhibitory genes tend to have higher expression levels in NDMM
samples with higher IR-neoAg load (Fig. 4B). We found that CD274
(PD-L1) expression was 1.3-fold higher in patients with high IR-
neoAg load (adjusted p value < 0.0001), suggesting there could be
a stronger immune suppression in patients with higher IR-neoAg
load. Next, we analyzed co-inhibitory gene expression from 29 MM
cell lines compared to other cancer cell lines in the Cancer Cell
Line Encyclopedia (CCLE). Surprisingly, we found that the average
expression level of PD-L1 in the MM cell lines was lower than most
other types of cancer cell lines (Fig. S3), which might partially
explain why anti-PD1 therapy has had a limited response rate in
MM. Other B7 co-inhibitory ligands, such as CD86, CD80, and
HHLA2, showed high expression levels in myeloma cell lines
relative to the other cancer cell lines, implying that these B7

Table 1. Univariate and multivariate Cox regression analysis of OS in newly diagnosed MM.

Univariate analysis Multivariate analysis

HR 95% CI of HR P value HR 95% CI of HR P value

Variable

IR-neoantigen (high/low) 1.431 1.041–1.968 0.027 1.622 1.056–2.492 0.027

Age (years) 1.038 1.021–1.055 <0.001 1.046 1.023–1.069 <0.001

Sex (male/female) 1.536 1.089–2.165 0.014 1.537 0.954–2.476 0.077

Stage

ISS Stage (I/II/III) 2.038 1.640–2.532 <0.001 1.442 0.963–2.159 0.076

Revised ISS Stage 2.398 1.760–3.266 <0.001 1.496 0.865–2.588 0.15

TP53 status

TP53_Loss 1.088 0.823–1.438 0.555 1.343 0.806–2.238 0.257

BI_TP53 0.622 0.450–0.859 0.004 0.652 0.206–2.062 0.467

NS_TP53 2.755 1.603– 4.732 <0.001 1.153 0.145–9.146 0.893

IR-neoantigen, Intron retention-derived neoantigen, ISS stage Myeloma International Staging System, HR Hazard ratio, CI confidence interval, Revised Stage (R-
ISS) was calculated as defined by the International Myeloma Working Group, by considering LDH, β2-microglobulin, albumin, deletion of chromosome 17p,
and translocations; TP53_Loss: TP53 copy number variation; BI_TP53: bi-allelic p53 status; NS_TP53: presence of nonsynonymous mutation on TP53.
Bold values indicate p values < 0.05. Multivariate analysis p-value for age is 0.00006.
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ligands might serve as potential targets for immune checkpoint
therapy. Kaplan–Meier survival analysis revealed that the patients
with higher HHLA2 and IR-neoAg load had the worst outcome
(Fig. 4C), which provides further support that HHLA2 may be a
druggable target for treating MM in the future [32].

RNA splicing inhibition impacts MHC-I protein expression in
MM cells
MHC molecules encoded by the HLA-I and HLA-II genes are
essential components in IR-neoAg presentation on the cell surface.
Therefore, we investigated the relationship between IR events (IR
levels) and MHC protein abundance in four MM cell lines, namely
JJN3, U266, KMS11, and AMO1 cells. These cell lines were selected
because KMS11 and U266 had the highest levels of IR, while JJN3
and AMO1 had the lowest levels of IR based on RNA-seq data from
the CCLE consortium (Fig. 5A). We measured MHC-I and MHC-II
cell surface abundance in these MM cells by flow cytometry before
and after treatment with the splicing inhibitor pladienolide-B for
96 h.
As demonstrated in Fig. 5B, the basal cell surface level of MHC-II

was lower in the KMS11 and U266 cell lines bearing higher IR
levels, compared to the JJN3 and AMO1 cell lines bearing lower IR
levels. Low MHC-II abundance in MM cells with high IR levels is
consistent with our observation in MM patients where higher IR
levels and low HLA-II gene mRNA expression was associated with
worse clinical outcomes (data not shown).
Next, we investigated whether splicing activities, as measured

by the mRNA expression levels of genes encoding key splicing
factors and regulators, correlated with the mRNA expression levels
of the HLA genes encoding MHC-I and MHC-II complexes in the
MMRF RNA-seq data. We observed a negative correlation between

the expression levels of MHC-I genes and spliceosome pathway
activities, as measured by ssGSEA enrichment scores (Fig. 5C,
Spearman correlation rho=−0.245, p < 0.001). No correlation was
observed between the expression of genes encoding MHC-II
molecules and spliceosome pathway activities (Fig. S4A).
To investigate whether low MHC-I expression might be a result

of increased splicing activity, we treated MM cell lines with the
splicing inhibitor pladienolide-B, which targets SF3B1, a gene
encoding subunit 1 of the splicing factor 3b protein complex, and
measured MHC-I cell surface expression by flow cytometry. We
found that MHC-I expression levels were significantly increased in
three of the 4 MM cell lines, including both cell lines with higher IR
levels (Fig. 5D). As shown in Fig. 5E, MHC-I cell surface abundance
in KMS11 MM cells exhibiting high IR increased following
pladienolide-B treatment. This finding strongly suggests that
modulation of splicing activity may regulate the abundance of
MHC-I class proteins along with the antigen presentation potential
in MM cells. Consistent with the lack of correlation between HLA-II
gene expression and spliceosome pathway activity (Fig. S4A), no
significant changes in MHC-II protein abundance were observed in
the MM cell lines after splicing inhibition (Fig. S4B).

DISCUSSION
In this study, we demonstrate that intron retention is an important
source of neoantigens in multiple myeloma, which impacts
patient clinical outcome. We showed that newly diagnosed MM
samples exhibited more intron retention events than normal
plasma cells and that higher IR-neoAg load was significantly
associated with unfavorable survival in both newly diagnosed and
relapsed MM. Our findings indicate that bioinformatic predictions
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of immune recognition of neoantigens arising from genomic or
transcriptomic alterations in MM might not be useful in selecting
patients for immune checkpoint therapy. Further, our analyses
revealed that poor outcome in MM patients with high IR-neoAg
load is associated with higher expression levels of checkpoint
genes and elevated IFN signaling activity, which implies strong
T-cell suppression. Therefore, our results suggest a potential
mechanism for MM cell immune evasion despite having an
increased neoantigen load compared to normal plasma cells.
Whereas high neoantigen load generally predicts favorable

survival and higher likelihood of response to checkpoint blockade
in many solid tumors such as breast cancer [10], lung cancer [8],
glioblastomas [9] and melanoma [7], we found that a high
neoantigen load in MM patients was associated with poor
prognosis [11]. In addition, the immune context of the bone
marrow microenvironment is more complex compared with solid
tumors, where cytokines and immune cell components in the
bone marrow provide a unique seedbed for myeloma cell growth
[33]. Therefore, the underlying mechanisms that allow for MM cell
immune escape are apparently different from other tumors.
In addition to somatic DNA mutations, RNA alternative splicing,

including intron retention, has been reported to be a novel source
of neoantigens [24]. Numerous studies have reported that the
splicing machinery is dysregulated in multiple cancer types,
including bladder cancer [34], breast cancer [35], melanoma [36],
prostate cancer [37] and hematological cancers [38, 39]. In
addition, intron retention events have been observed frequently
in prostate cancer [40] and pancreatic cancer [41]. Yang et al.
reported that blood cells have a high level of splicing diversity
compared to other tissues, next to testis, brain, and muscle-
skeletal tissue, in the GTEx transcriptional data [42]. IR events
represent a large proportion of alternative splicing events in blood
tissue. These findings prompted us to investigate whether IR-
neoAg could contribute to immune responses in MM, in particular
to antigen presentation and T-cell mediate responses. We found
that higher IR-neoAg load was significantly associated with shorter
survival time, both in newly diagnosed and relapsed MM. This
finding was further strengthened when the expression levels of IR-
neoAg were considered (p-value reached 0.006).
Over the past decade, immune checkpoint blockade (ICB)

therapy has revolutionized cancer therapy in several tumor types
[43]. However, response to the immune checkpoint inhibitor
pembrolizumab (anti-PD1) has been limited in MM [44]. Clinical
response to ICB has been closely linked with the abundance of
tumor-specific neoantigens, the presence of cytotoxic T-cell
infiltration, and distinct tumor microenvironment profiles. Pre-
vious reports have demonstrated an increase in the mutation-
derived neoantigen load in MM and have also confirmed a
neoantigen T-cell response in relapsed patients with MM [12].
These results implied that a T-cell mediated immune response
might be suppressed or impaired in MM. Zelle-Rieser et al.
reported that CD8+ T-cells expressed several molecules asso-
ciated with T-cell exhaustion (PD-1, CTLA-4, CD160) as well as the
T-cell senescence marker CD57 at the MM tumor site [28, 45]. Our
results showed that higher IR-neoAg load was positively correlated
with higher expression levels of T-cell inhibitory molecules and
genes belonging to the Tregs activating pathway. Dufva et al.
reported that decreased HLA-II gene expression might be a
potential immune evasion mechanism in hematological cancers
[31]. We also found that gene expression levels of HLA-II genes
were significantly lower in newly diagnosed MM compared with
healthy control cells.
Despite these RNA-seq-based observations, direct evidence of

IR-neoAg presentation on MM cells using immune-peptidomics
technology could strengthen our conclusion. We hypothesize that
standard MM treatment options do not generate an effective
immune response that leverages the neoantigen immunother-
apeutic potential. Indeed, we observed lower levels of MHC-II

activity in MM cell lines with higher intron retention. In addition,
we observed that MHC-I activity appeared to be inhibited in cells
with elevated expression levels of splicing factors, a hallmark of
MM, and that inhibition of spliceosome activity resulted in
increased MHC-I activity. Collectively, these two mechanisms
may partially explain why higher IR-induced neoantigen load in
MM samples was not associated with better prognostic outcome.
This result also suggests that splicing inhibitors could possibly
boost the efficacy of immune checkpoint blockade therapy in MM
by activating MHC-I presentation [46, 47]. Further analysis with
integrated multi-omics data from different aspects of the immune
landscape is needed to further understand the potential
determinants of responsiveness to cancer immunotherapies
in MM.
In conclusion, while neoantigen load has been associated with

favorable survival in many solid cancers, our study strongly
suggests that IR-neoAg load may serve as a clinically relevant
risk factor that negatively impacts myeloma patient survival. Our
analysis provides evidence that MM cells bearing high levels of
IR-neoAgs also present T-cell inhibitory gene signatures, which
may offset the neoantigen load in eliciting a cytotoxic T cell
response. Moreover, we found that aberrant RNA splicing may
also regulate MHC abundance and thus, contribute to MM
immune escape. Our findings highlight the need to integrate
multi-omics data to uncover the immune context and under-
stand the factors that determine responsiveness of MM to
immunotherapies. Also, this works suggests that targeting
splicing may represent an additional therapeutic strategy to
promote anti-MM immune response.

MATERIALS AND METHODS
RNA-seq data sets
The raw data from the MMRF study was obtained through an authorized
data access request for dbGaP study accession: phs000748.v7. p4. RNA-seq
data from 893 samples, including both newly diagnosed and relapsed
subjects, were downloaded and converted to fastq format using SRA-tools
(v2.10.0). Curated survival and clinical data were downloaded from the
UCSC Xena cancer browser (http://xena.ucsc.edu) [48]. The revised
International Staging System (R-ISS) was calculated as defined by the
International Myeloma Working Group [49], by considering the presence of
del(17p), t(4;14), and t(14;16) and information on serum β2-microglobulin,
albumin, and lactate dehydrogenase levels. B2M mutations and the status
of TP53 in baseline samples were obtained from Dr. Brian Walker, as
described previously [50].
Two other RNA-seq studies with normal plasma cells were retrieved from

the Gene Expression Omnibus (GEO). Data of bone marrow-derived plasma
cells from five healthy individuals and five newly diagnosed MM patients
were obtained from GSE110486 [51]. Data of plasma cells from bone
marrow or tonsil of another eight normal subjects were acquired from
GSE114816 [52].
For all RNA-seq data, an initial sequence-level quality assessment was

performed using FastQC (v0.11.5). The alignment-free quantification tool
Salmon (v1.2.1) [53] was used to quantify the expression of gene
transcripts from RNA-seq data using the reference transcriptome built
from Gencode (GRCh38, v32) gtf annotation as the index. The gene-level
transcript abundance was calculated using the tximport package in R.
The normalized gene expression data of 887 cancer cell lines (dated

2018.09.29) and their annotations (dated 2018.12.26) were downloaded
from the Cancer Cell Line Encyclopedia (CCLE) [54] data portal (https://
portals.broadinstitute.org/ccle/data).

Identification of intron retention events
To quantify the IR events for MM samples, RNA-seq reads were aligned to
the GRCh38 reference genome using STAR (v2.7.2) [55]. Uniquely mapped
RNA-seq reads were used to quantify the expression levels of retained
introns using HTseq [56] package. Additional criteria were applied to filter
the identified IR events: (1) read counts for both the intron region and its
flanking exon regions were > 10; (2) read coverage of the intron was
comparable to its flanking exons, such that the transcripts per million
(TPM) ratio of introns to flanking exons was > 0.05 and < 0.5. MM-specific
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IR events were further selected by removing the events that were observed
in normal plasma cells using the same filtering criteria.

IR-neoAg prediction
We used arcasHLA (v1.1) to infer HLA class-I genotypes from the RNA-seq
data [57]. Sequences from the retained introns were translated into
peptides by extending the open reading frame of the upstream exon using
the standard codon table. The translated peptides were segmented into 8
to 11 amino acid lengths that contained at least one intron-encoded
amino acid. For each patient, NetMHCpan4.1 was used to estimate the
binding affinity of the IR-derived neopeptides with the patient’s HLA alleles
[58]. A binding affinity rank score less than 2 (default parameter of
NetMHCpan4.1) was regarded as a neoantigen candidate. Expression levels
for each neoantigen were determined by the abundance of IR events that
generated the specific neoantigen.

Differential expression and pathway enrichment analysis
Differentially expressed genes in plasma cells between MM and healthy
bone marrow samples were identified using the limma [59] package in R. A
total of 1790 gene sets from MsigDB version 7.2, including KEGG,
REACTOME, and HALLMARK gene sets, were used for enrichment analysis.
Fisher’s exact test was used to test for pathway enrichment significance,
and the p-value was adjusted for multiple hypothesis correction using the
Bonferroni method [60]. ClusterProfiler was used to visualize the pathway
enrichment results [61]. Single-sample gene set enrichment analysis
(ssGSEA) was used to assess the pathway activity in each individual using
GSVA [62] package in R, using default parameters.

Cell culture of MM cells and spliceosome inhibition
KMS11, U266, JJN3, AMO1 MM cell lines were kindly provided by Dr. David
Roodman and cultured at 37 °C in a humidified atmosphere containing 5%
CO2 and maintained in RPMI media supplemented with 10% fetal bovine
serum (FBS). Cells were tested for mycoplasma infection monthly as a
regular lab routine. Pladienolide-B (Cayman Chemical Company, Ann
Arbor, MI; cat# 16538) was dissolved in dimethyl sulfoxide and used at the
following concentrations: 0, 0.1, 1, 5, 10, and 100 nM. Flow-cytometric
analyses were performed at 96 h post-treatment, two independent
biological replicates were analyzed for each treatment.

Antibodies and flow cytometry analysis
The following flow-cytometry antibodies were used: HLA-DR, DQ, DP-APC
(Biolegend, San Diego, CA cat# 361714), Isotype control-APC (Biolegend
cat# 400222), MHC class I-PE (LSBio, Seattle, WA cat# LS-C751033-0.1).
Isotype control-PE (Abcam, Waltham, MA cat# ab91357). Flow cytometric
data were acquired using the LSR II flow cytometer (BD Biosciences, San
Jose, CA) and analyzed with FlowJo software.

Statistical considerations
Survival analysis and Cox-proportional hazard comparison were performed
using the R package Survival with log-rank test and hazard ratio statistical
tests [63]. Significant differences in the value of the two given groups were
assessed using the Mann-Whitney-Wilcoxon test [64]. Statistical analyses
were performed in R (v4.0.2).

CODE AVAILABILITY
The computational algorithm and source code allowing for reproduction of the
intron retention-induced neoantigen quantification in this manuscript are available at
https://github.com/cpdong/IntronNeoantigen.
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