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Methods of Land Use Regression (LUR) modeling and Ordinary Kriging (OK) interpolation have been
widely used to offset the shortcomings of PM2.5 data observed at sparse monitoring sites. However,
traditional point-based performance evaluation strategy for these methods remains stagnant, which could
cause unreasonable mapping results. To address this challenge, this study employs ‘information entropy’, an
area-based statistic, along with traditional point-based statistics (e.g. error rate, RMSE) to evaluate the
performance of LUR model and OK interpolation in mapping PM2.5 concentrations in Houston from a
multidimensional perspective. The point-based validation reveals significant differences between LUR and
OK at different test sites despite the similar end-result accuracy (e.g. error rate 6.13% vs. 7.01%). Meanwhile,
the area-based validation demonstrates that the PM2.5 concentrations simulated by the LUR model exhibits
more detailed variations than those interpolated by the OK method (i.e. information entropy, 7.79 vs. 3.63).
Results suggest that LUR modeling could better refine the spatial distribution scenario of PM2.5
concentrations compared to OK interpolation. The significance of this study primarily lies in promoting the
integration of point- and area-based statistics for model performance evaluation in air pollution mapping.

N
umerous studies have identified the negative impact of fine particulates (PM2.5) on respiratory health and
human mortality1,2. However, understanding and monitoring harmful particulates PM2.5 has encoun-
tered several challenges so far, among which the most serious one is the insufficient PM2.5 data due to the

expensive equipment and sparsely distributed field monitoring sites. This leads to difficulties in detecting the
spatial characteristics and spatial-temporal dynamics of PM2.5 pollution and designing effective control strategy.

Several methods have been developed over the last decade to strengthen PM2.5 field monitoring which is critical
in understanding global PM2.5 exposure. Efforts mainly include remote sensing image retrieval, air dispersion
modeling, spatial interpolation, and land use regression (LUR) modeling3. However, investigation must explore
advantages and shortcomings to determine the most effective approach for a specific situation.

While remote sensing techniques are able to retrieve particulate distribution over an image area-based on the
relationship between aerosol optical depth (AOD) and PM2.5 concentration, the effectiveness is reduced when
image acquisition phase-in fails. The limited spatial resolution (i.e. hundreds to thousands of meters) also makes it
difficult to derive detailed PM2.5 spatial distribution characteristics in urban environments4. Similarly, air dis-
persion models can be used to simulate the PM2.5 concentration at preset receptors (i.e. grid points in this study)
with various resolutions and coverage by using boundary layer turbulent diffusion theories and aerochemical
theories. However, it requires copious data (e.g. emission, meteorological and terrain data) for hypothesis of the
diffusion mode which makes it difficult to implement3,5–7.

Relatively, LUR modeling and Ordinary Kriging (OK) interpolation are two popular methods for mapping
PM2.5 concentration based on the sparsely distributed observation data in diverse applications8–11. LUR modeling
can produce PM2.5 concentration surfaces at fine resolutions by linking geographic elements with PM2.5 obser-
vation data using the least square method12. OK interpolation is suitable for PM2.5 concentration mapping based
on the observation data with normal distribution and is the preferred unbiased geo-statistical technique in air
pollution interpolation13. Unfortunately, implications of both LUR and OK methods are also limited by their
inherent defects14. Shortcomings in unclear driving factors, non-standard predictor variable selection and poor
time-space migration generally limit LUR model’s effectiveness9. OK interpolation usually fails to produce PM2.5
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surface in the regions with sparse or missing data and is prone to
over-amplify extreme variations due to its reliance on a single factor8.
Consequently, accurate performance evaluation of LUR modeling
and OK interpolation is particularly important for reliable air pol-
lution mapping.

While studies have attempted to promote this work through com-
paring the performance of LUR, Kriging and air dispersion modeling
in estimating PM10 concentration15, further improvements are still
needed. Because model performance in these comparative studies
was largely determined by similarities of causal mechanisms on air
pollution concentrations between locations of test sample sites and
training sample sites15–17. Model reliability is therefore dependent on
test sites selected that are subject to evaluation errors18.

Information entropy, an area-based statistic indicator that was
originally designed to describe the even spatial distribution of energy,
has been increasingly used to evaluate the richness of image informa-
tion. Since air quality concentration varies over space, information
entropy has the potential of reflecting this variation based on the
raster map of air quality concentrations19,20. Compared to traditional
point-based statistics, information entropy is an effective index that
can uniquely and objectively measure the information amount of a
map and evaluate the capacity of this map in disclosing variation
details of an element21,22.

This study therefore employed area-based information entropy
along with traditional point-based statistics to evaluate the perform-
ance of LUR modeling and OK interpolation in mapping PM2.5

concentration in Houston from a multidimensional perspective. In
order to better understand the meaning of information entropy
values, an external profile analysis is also implemented.

As a large industrialized region in southeast Texas, the Houston
metropolitan area covers 10 counties and 26,060 km2 (Figure 1). In
this study the city serves as a representative urban environment with
documented high PM2.5 pollution rates. Prior works estimated a
mean annual particulate concentrations in Houston that range from

9.87 mg/m3 (minimum) to 14.24 mg/m3 (maximum) in the metropol-
itan area.

In the flat landscape, industrial and traffic emissions are the main
pollutant sources in the multi-county area of 6 million residents in
Houston metropolitan area according to U.S Environmental
Protection Agency (EPA)23. Therefore, factors that contribute to
Houston’s PM2.5 pollution could be land-use type, road traffic, popu-
lation distribution and geographic elements that represent location
and climatic characteristics.

As a result, data used for LUR modeling in this study include the
annual PM2.5 concentration at 17 monitoring sites (10 of them locate
in Harris County) from the U.S. EPA’s Air Quality System Technology
Transfer network24. These PM2.5 concentrations are nearly distributed
as normal fashion. Air quality monitoring on these sites complies with
EPA’s federal reference standard or federal equivalency standard, thus
providing valid data for taking official air pollution measurements and
quality assurance plans25. Land cover map with a spatial resolution of
30 m, road networks and demographic census data are respectively
from the U.S. National Land Cover Database26, the Environmental
Systems Research Institute (ESRI) nationwide street and geocoding
databases27, and the U.S. Census database28.

Results
PM2.5 concentration map. Figure 2 shows the spatial distribution of
annual PM2.5 concentrations in Houston metropolitan area produced
by methods of LUR model and OK interpolation. Significant diffe-
rences in PM2.5 concentrations can be observed across the covered
counties from Figure 2 and confirmed by Figure 3. For the LUR model
based map, high concentrations of simulated PM2.5 (.10 mg/m3) were
found in urban Harris County whereas the surrounding suburban
counties have lower concentrations (,10 mg/m3). In conjunction
with Figure 3, this presents an obviously gradient of PM2.5 concen-
tration in Houston from Harris to the surrounding areas. For the
OK interpolation result map, the interpolated PM2.5 concentrations

Figure 1 | A schematic map of study area created with the basic mapping function of ArcGIS (version 10.0): (a) monitoring sites distribution,
(b) distribution of major geographical elements across Houston metropolitan.
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reflected a clear zoning distribution with high levels of pollution
(.10 mg/m3) in central and east Harris county followed by northeast
and southwest Houston. Furthermore, comparison of Figure 2a/3a and
Figure 2b/3b obviously demonstrates that the LUR simulated PM2.5

concentrations showed a higher level of details and smoother variations
than OK interpolated results.

Performance comparison based on point-based statistics. The
performance of the LUR model and OK interpolation in PM2.5

concentration estimation is evaluated by using the point-based
statistics including absolute error, error rate, RMSE, and paired T-
test. These statistics are calculated by using the typical N-1 cross
validation strategy. Results listed in Table 1 show that the error
rates of both LUR simulated- and OK interpolated PM2.5 concen-

trations varied among monitoring sites. Whilst the absolute mini-
mum and maximum errors of LUR simulated PM2.5 concentrations
were 0.02 ug/m3 at site 9 and 2.04 mg/m3 at site 15/16 with an average
absolute error of 0.70 mg/m3, that of the OK interpolated PM2.5

concentrations were 0.01 mg/m3 at site 15 and 2.07 mg/m3 at site 13
with an average absolute error of 0.80 mg/m3. Moreover, LUR model
had an overall higher accuracy of simulated PM2.5 concentrations
compared to the OK interpolated ones although the paired T-test
confirmed insignificant difference in site-based error rates between
these two methods at P 5 0.65. The LUR simulated- and OK inter-
polated PM2.5 concentrations had respectively 5 and 7 sites with
absolute error .1.00 mg/m3. The maximum error rates of these
two methods were 15.95% and 20.34% with an average error rate
of 6.13% and 7.01%, respectively. In addition, the RMSE evaluation

Figure 2 | Spatial distribution map of PM2.5 concentration in Houston metropolitan area produced by LUR model (a) and OK interpolation (b) with
the spatial analysis and geostatistical function of ArcGIS (version 10.0).

Figure 3 | Statistic histograms of PM2.5 concentrations illustrated in spatial distribution map from LUR model (a) and OK interpolation (b).
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results of LUR simulated and OK interpolated PM2.5 concentrations
(i.e. 0.89 and 1.00, respectively) were also consistent with those based
on the absolute error and error rate.

Performance evaluation based on area-based information entropy.
Table 2 displays the values of information entropy and the related
statistics calculated from the spatial distribution maps simulated by
LUR model and interpolated by OK. The information entropy values
(i.e. LUR: 7.79 vs. OK: 3.63) in Table 2 indicate that LUR model
outperformed OK interpolation in illustrating detailed spatial varia-
tions of PM2.5 concentrations across the Houston metropolitan area.
The reliability of information entropy was echoed by the maximum,
minimum and average PM2.5 concentrations simultaneously shown in
Table 2. Specifically, the LUR model generated PM2.5 concentrations
(9.57–13.52 mg/m3) were closer to the actual ground observation values
(9.87–14.24 mg/m3) than did by OK interpolation (which ranges from
10.08–12.93 mg/m3). Additionally, profile analysis results in Figure 4
further confirmed above findings of information entropy evaluation.
It can be observed that, along all four directions, the PM2.5 concen-
trations interpolated by the OK method almost first demonstrated an
increasing trend and then gradually decreased, while those simulated
by LUR model at the same local sites were relatively lower and stable
at two ends but higher and fluctuated in the middle. This difference
suggests that the spatial distribution scenario of PM2.5 concen-
trations could be better refined by LUR modeling rather than by
OK interpolation.

Discussion
This study explored the differences in spatial distributions of PM2.5

concentrations between LUR model and OK interpolation by com-

prehensively using point-based statistics and area-based information
entropy for the first time. We found that, based on point-based
statistics, the two methods produce similar results. However, high-
lighted significant differences were observed between the two meth-
ods based on area level information entropy and confirmed the better
performance of LUR relative to OK. Our findings provide new
insights for future air pollution research.

The optimal adjusted LUR model in this study has a fitting R2 of
0.69, which is much higher than that of the OK method (R2 5 0.38) as
well as the results of previous studies (e.g. London, 0.45 to 0.6029; 0.56,
0.73 and 0.50, northern Europe30; Germany, 0.1731). This study applied
backward Multiple Linear Regression (MLR) method30,32,33 to achieve
the best LUR model fitting. Due to the limited number of PM2.5

monitoring sites in the Houston metropolitan area, this study utilized
empirical LUR variable values and sampling-site numbers to screen
individual modeling variables34–36 and the strategy widely used in
previous studies37,38. Variables of land use type and road traffic with
strong prediction capacity are screened first. Population distribution
and variables about distance to sea are then incorporated for model
adjustments. Because Houston’s PM2.5 pollution is primarily from
diesel emission, oil vehicles, road dust, barbeque, and wood burning23,
Harris County which is highly urbanized and industrialized experi-
ences relatively higher PM2.5 concentration, while surrounding areas
which are characterized by agricultural land use and fewer road net-
works have relatively lower PM2.5 concentrations. This is reflected by
the LUR model simulated result, which shows a decreasing trend from
Harris County to surrounding areas. It also confirms that the simu-
lation result of the LUR model is closer to the real PM2.5 spatial
distribution compared to that of the OK interpolation as shown by
the statistics in Table 1, while the PM2.5 annual concentration of OK

Table 1 | Point-based statistics of observed and simulated annual PM2.5 concentrations. Paired T test is designed to test the significance of
difference in error rates between LUR and OK in this table

Site ID Obser. (O) (mg/m3)

LUR OK

Simu. (S) (mg/m3) Error (E) (mg/m3) Error rate (E*) (%) Simu. (S) (mg/m3) Error (E) (mg/m3) Error rate (E*) (%)

1 10.18 11.71 1.52 14.97 9.93 0.25 2.46
2 9.87 9.57 0.30 3.04 11.10 1.22 12.41
3 11.44 11.30 0.14 1.23 10.35 1.09 9.52
4 10.58 11.58 1.00 9.47 10.98 0.40 3.74
5 12.44 11.12 1.32 10.60 12.59 0.15 1.19
6 10.36 9.76 0.61 5.85 11.11 0.74 7.17
7 10.41 10.96 0.55 5.27 11.57 1.16 11.17
8 12.70 11.98 0.72 5.66 12.19 0.51 4.03
9 11.11 11.13 0.02 0.22 11.54 0.43 3.86
10 13.67 13.42 0.25 1.86 12.64 1.03 7.56
11 14.24 14.00 0.24 1.68 12.23 2.02 14.15
12 13.04 12.68 0.37 2.81 12.26 0.78 6.01
13 10.16 11.12 0.95 9.38 12.23 2.07 20.34
14 11.85 11.74 0.11 0.92 11.22 0.62 5.24
15 12.78 10.74 2.04 15.95 12.77 0.01 0.11
16 12.42 12.00 0.41 3.34 12.43 0.01 0.12
17 10.88 9.57 1.31 12.05 11.98 1.09 10.04
Average 11.66 11.43 0.70 6.13 11.71 0.80 7.01
RMSE 0.89 1.00
P value of paired T test* 0.65

Table 2 | Area-based statistics of the spatial distribution maps of PM2.5 concentration

Max value (mg/m3) Min value (mg/m3) Ave. value (mg/m3) Information Entropy

OK interpolated 12.93 10.08 11.21 3.63
LUR model Simulated 13.52 9.57 9.86 7.79
Observed 14.24 9.87 11.65 -
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interpolation was zonally distributed in Houston. And, high concen-
tration areas include the central eastern region of Harris County and
the northeast and southwest regions of Houston.

The point-based statistics validation demonstrated no significant
differences between the results from LUR model and OK interpola-
tion. However, the LUR model achieved slightly better simulation
accuracy than the OK interpolation (e.g. RMSE: 0.89 vs. 1.00). Given
the fact that the quality of OK interpolation is dependent on the
distribution of monitoring sites, the validation precision of OK inter-
polated PM2.5 concentrations at different monitoring sites would
certainly vary, with poorest results being at the boundary area due
to the insufficient observation data. Inversely, considering more fac-
tors such as land use, traffic, population, we believe LUR model is
more reliable than OK interpolation, especially for the area without
abundant observed PM2.5 concentrations but sufficient relevant aux-
iliary factors. Additionally, the point-based statistics validation pro-
cess of LUR model and OK interpolation in this study is based on the
typical N-1 cross validation strategy and should be the ‘best’ one we
can use with discrete monitoring sites.

Furthermore, area-based information entropy evaluation revealed
significantly different results between the LUR model and OK inter-
polation. The annual PM2.5 concentrations simulated by the LUR
model have more spatial variations (greater information entropy
values) than the OK interpolation. This is because LUR model inte-
grates additional influencing factors that are closely related with the

emission and diffusion of PM2.5, such as land use, road traffic, and
climatic indicators. These factors strengthened the ability of LUR
model in revealing the concentration variations through distinguish-
ing the surrounding geographic differences of divergent positions,
especially for areas with limited monitoring sites. These two advan-
tages increased the information richness of the LUR simulated map
and reflected the real-world scenario of PM2.5 concentration. These
factors re-confirmed the superiority of information entropy in evalu-
ating an air quality map’s capacity in disclosing variations, which
could not be achieved by previous air quality mapping studies based
on traditional point-based statistics7,18,39. According to the urban
development pattern (e.g. Harris County is with high volume of
traffic and is also the industrial and economic center) and PM2.5

sources in Houston, we believe the evaluation result based on LUR
model is more reliable than OK interpolation.

Like previously reported studies with data from few monitoring
sites (i.e. minimum site number is 13)40,41, while satisfactory results
have been achieved with the data collected from 17 monitoring sites
in this study, issues on monitoring sites and the predictor selection
still need to be addressed in the future. PM2.5 concentration estima-
tion with higher accuracy could be achieved with more monitoring
sites. Moreover, while this study established a significant LUR model
at an acceptable accuracy level using MLR without overestimates, the
model’s performance definitely could be further enhanced by invol-
ving more predictors under sufficient monitoring sites that are
evenly distributed in space.

In summary, findings in this study imply that although the point-
based statistics evaluation could accurately reflect a model’s perform-
ance in mapping air pollution concentration, its evaluation result is
often limited by test site locations and their spatial distribution. In
regions with densely centralized test sites and training sites, point-
based statistics evaluation methods may overestimate the model
accuracy (i.e. better or worse accuracy), and vice versa. Therefore,
except for point-based statistics evaluation, the area-based informa-
tion entropy evaluation proposed in this study is important and
necessary for more comprehensive and accurate assessment of the
air pollution concentration maps. In other words, the information
entropy evaluation clearly confirms that LUR model is more accurate
in representing the spatial distribution of annual PM2.5 concentra-
tions of Houston metropolitan area than the OK interpolation in this
study. Additionally, this study implies that the utilization of informa-
tion entropy is a new measure to effectively evaluate the performance
of other exposure models such as dispersion modeling, LUR model-
ing, and remote sensing based models, for which the spatial resolu-
tion is better than OK interpolation. And this could greatly enhance
the reliability of findings for future environmental health studies.

Methods
The methodology of this study is composed of three parts: LUR modeling, OK
interpolation, and performance comparison between LUR and OK (Figure 5).

LUR modeling. LUR modeling links the air pollution concentration at a monitoring
site with other geographic characteristics of that monitoring site. The modeling is
composed of variable extraction and screening, regression model building, and model
validation. The variable extraction and screening include selecting geographic
elements and extracting characteristic variables of geographic elements.

Considering experiences from previous LUR studies10,11,30,32,33,42–44 and PM2.5 pol-
lution sources in Houston, this study utilizes annual PM2.5 concentrations as the
outcome variable and develops predictors of various geographic elements including
land use type (X1), road length (X2), distance to road (X26), population density (X31),
house density (X32), and distance to sea (X41). Among them, the ‘‘measured values’’ of
predictors with spatial scaling effect are extracted at 100 m, 300 m, 500 m, 800 m,
1000 m, 1500 m, 2000 m, 2500 m, 3000 m, 3500 m, 4000 m, 4500 m and 5000 m
buffering radius due to the unclear ‘spatial scale dependency’33,42,45. Land use types are
reclassified as forest (X11), open space (X12), medium-density urban (X13), high-
density urban (X14) and barren land (X15) with the 11 initial land use types provided
by United States Geological Survey. Road traffic data in this study includes highway
(X21) major road (X22) local road (X23) minor road (X24) and other road (X25). The
entire process is implemented with ArcGIS 10.0.

Figure 4 | Variations of PM2.5 concentrations produced by LUR model
and OK interpolation at four direction profiles in Houston metropolitan
area: east-west a (01), south-north b (02), southeast-northwest c (03) and
southwest-northeast d (04).

www.nature.com/scientificreports
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To screen out effective predictors appropriate for LUR modeling in Houston,
Pearson coefficient values between all predictors and annual PM2.5 concentration are
calculated with SPSS 19.0. For predictors with spatial scaling effect, the optimal spatial
scale of each predictor is defined as the one with calculated maximum Pearson
coefficient in a scale range of 100 m to 5000 m. Consequently, the final predictors
screened out for LUR modeling in this study are area fraction of land use type
including X11-5000, X12-100, X13-100, X14-800, X15-3000; road traffic including X22-
100 m, X23-300 m, X24-3000 m, X25-1500 m and X26; and others including X31-
3000 m, X32-1000 m, X41.

A predictor-based regression model is established by using a multiple linear
regression (MLR) equation (i.e. Equation 1) in this study. The equation is shown as

Y~a0za1X1za2X2za3X3z::::::zanXnzu ð1Þ

where Y is the annual PM2.5 concentration, Xdenotes independent predictors, a0 is a
constant, a1 to an are the regression coefficients for each predictor X, respectively, and
u is the random error. An equation group is composed of n groups of observed values
Yi, X1i, X2, X3i, …, i 5 1,2,3..., n.

Area fraction of land use type and road traffic are the two major influencing factors
of annual PM2.5 concentration in the Houston area. Thus, this study starts with
backward MLR by using the respective type of predictors under an optimal spatial
scale as inputs to establish the preliminary optimal models (i.e. model with highest
fitting R2) with SPSS 19.0. Thereafter, another round of backward MLRs is conducted
for these preliminary optimal models by adding predictors such as population den-
sity, house density and distance to sea. As a result, the finalized LUR model is built as
YConc 5 X13-100 1 X31-3000 1 8.357 with significant coefficients at p , 0.05. The
adjusted R2 of this finalized model is 0.69 with VIF values less than 10 to ensure non-
multicollinearity.

Using the finalized LUR model, a continuous surface of annual PM2.5 concentra-
tions at the resolution of 3 km 3 3 km (Figure 2) within the study area is generated
with ArcGIS 10.0 taking into account the point-based high computational cost and
spatial similarity of predictors within certain spatial scales (i.e. buffering area size).
Specifically, grid points with the 3 km interval across the entire study area are pre-set
firstly; then the ‘measured values’ of predictors in the finalized LUR model at these
pre-set points are extracted and used to calculate the annual PM2.5 concentrations at
each pre-set point; these high density estimated PM2.5 concentrations are used to
produce the distribution map of annual PM2.5 concentrations in the end.

OK interpolation. OK interpolation refers to the linear unbiased optimal estimation
of unknown points according to the structural features of known sample points46.
When the regional variable Z(x) is a constant (m) with unknown mathematical
expectations, the OK method can be used for spatial interpolation. The interpolation
formula is stated as

Z�(x0)~
Xn

i~1

viZ(xi) ð2Þ

where Z(x0) is the value of an unknown sample point, Z(xi) is the value of a known
sample point surrounding the unknown sample point, and Z*(xi) is the unbiased
estimation of Z(xi) (i.e. E[Z*(x0) 2 Z(x0)] 5 0). vi is the weight of the ith known

sample point to the unknown sample point and
Xn

i~1

vi~1 where n is the amount of

known sample points.

For the process of OK interpolation, an exploratory data analysis is firstly con-
ducted on the training sample data of 17 monitoring sites within the Houston met-
ropolitan area and external 4 expanding sites outside Houston metropolitan area to
determine whether the data follow a normal distribution or are spatially correlated or
not. Then, a continuous prediction map of annual PM2.5 concentration is produced
using the ‘Spatial Interpolation’ wizard of ArcGIS10.0. We did not use trend removal
because of the relatively smooth variation of PM2.5 concentration across these
monitoring sites (i.e. 17 1 4). Considering the sparse distribution of monitoring sites
in the study area, the searching number of neighborhood points is set as 4.

Point-based statistics calculation. Point-based statistics including absolute error,
relative error and root-mean-square error (RMSE) are employed to validate methods
of LUR model and OK interpolation in this study by using the commonly N-1 cross
validation strategy, which is suitable for limited data samples12,15. Following this, this
study divides the 17 monitoring sites across the study area into 16 training sites and 1
validation site. The absolute error represents the deviation direction and size of the
simulated/estimated concentration from the observed concentration. Relative error
and RMSE represent the deviation degree of the simulated/estimated concentration
from the observed concentration, which reflect the reliability of the estimation result
of the model. The three error indices are calculated according to equations (3)–(5)
with larger values indicating lower model accuracy.

E~jO{Sj ð3Þ

E�~E=|100% ð4Þ

RMSE~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f½(O1{S1 )̂ 2z(O2{S2 )̂ 2z � � �z(On{Sn )̂ 2�=ng

p
ð5Þ

where E, E*, and RMSE respectively represent the absolute difference, relative error
(i.e. error rate) and the root-mean-square error between observed concentration and
estimated concentration. O is observed concentration, S is simulated/estimated
concentration and n is sample size.

Area-based information entropy. ‘‘Entropy’’ is an indicator that was originally
designed to describe the even spatial distribution of energy19. It has been expanded to
indicate the richness of information in information theories. Given v 5 {X1, X2,..., Xn},
suppose the probability of Xi[n is ri 5 P(Xi), the information entropy of v can
be defined as:

E(n)~{
Xn

1
P(Xi)log2(P(Xi)) ð6Þ

where Xi represents the pixel of an image and P(Xi) is the probability of occurrence of
Xi. The more heterogeneous Xi is, the larger the information entropy of the image will
be, indicating more details of the spatial pattern.

In this study, information entropy is developed to depict the ability of LUR model
and OK interpolation methods in mapping the variation of the annual PM2.5 con-
centrations over the entire study area. Specifically, the distribution maps of annual
PM2.5 concentration are firstly produced and reclassified with natural break points.
Then, the number of raster grids at each class are summed and divided by the total
grid number of the raster map to calculate the probabilities P(Xi). These probabilities
are finally used to compute the value of information entropy according to equation
(6). The calculations of information entropy for raster maps from LUR model and OK

Figure 5 | Framework of study procedure including LUR modeling (a), OK interpolation (b), and performance comparison between LUR and OK (c).
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interpolation are similar and both are implemented with the modules of spatial
interpolation and algebraic computation in ArcGIS 10.0.

Additionally, a four-direction criterion (Figure 1), namely, east-west (01), south-
north (02), southeast-northwest (03) and southwest-northeast (04) are employed to
further confirm the necessity of area-based information evaluation considering fac-
tors that possibly caused the heterogeneity of PM2.5 concentrations. In each direction,
PM2.5 concentrations at 50 randomly distributed sites are separately simulated and
interpolated by LUR and OK methods.
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