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Abstract: Salmonella enterica serovars are associated with numerous annual deaths worldwide and
are responsible for a large number of foodborne diseases. Within this frame of reference, knowledge
of antimicrobial susceptibility represents the fundamental approach of most Salmonella treatments.
Therefore, scientific publications of antimicrobial susceptibilities and resistance must be precise, with
interpretations adjusted to a particular standard. Hence, the three objectives in this study were: (i) to
describe the frequency of antimicrobial-resistant isolates of Non-Typhoidal Salmonella (NTS) isolated
from beef, pork, chicken meat, and other meat products; (ii) to describe the distribution of serovars
and their multi-resistance to antibiotics for clinical use (veterinary and human) between 1996 and
2019; and (iii) to propose additional considerations that could improve the use and usefulness of
the published results. Our results determined that the predominant isolates came from poultry.
Enteritidis and Typhimurium were the most reported serovars by MIC (with both having the highest
resistance to TET) while the lowest resistance was to CIP and CRO for Enteritidis and Typhimurium,
respectively. The multi-resistance pattern AMP AMC CEP GEN KAN STR TET was the most fre-
quently observed pattern by MIC in Montevideo and Seftenberg, while, for disc diffusion, the pattern
AMP STR TET was the most frequent in the Bredeney serotype. In conclusion, researchers should
carry out homogeneous sampling procedures, identify the types of the samples, use standard identi-
fication methods, and employ appropriate standards for antimicrobial susceptibility interpretation.
Additionally, there is also a need for all WHO members to comply with the WHA 73.5 resolution.
Our final recommendation is for all producers to reduce antibiotic prophylactic use.

Keywords: multidrug resistance; meat products; standard; non-typhoidal Salmonella

1. Introduction

According to the World Health Organization (WHO), foodborne diseases (FBD) are
diseases transmitted through contaminated food consumption. Foodborne illnesses include
those caused by a microbial pathogen, parasite, chemical contaminant, or biotoxin [1]. The
severity of these diseases varies from asymptomatic and mild to life-threatening, in which
case life-long treatments are required. In industrialized countries, it is estimated that more
than 10% of the population could suffer from a disease associated with contaminated
food consumption [2]. One of the agents triggering FBD is Salmonella spp., which causes
salmonellosis disease with a high morbidity and mortality rate in industrialized and
developing countries [3].

Salmonella spp., is a Gram-negative bacillus with peritrichously flagella [3]. More-
over, Salmonella is a chemoorganotrophic organism and a facultative anaerobe, capable of
using both fermentative and respiratory metabolic pathways. Salmonella spp. also lacks
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cytochrome oxidase, grows on citrate as its unique carbon source, produces sulphuric acid
and decarboxylates both lysine and ornithine.

Even though it grows slowly, under favourable conditions it can survive for weeks
and months in water and soils. Its optimal growth temperature is 37 ◦C, yet it can survive
between 7 and 48 ◦C. Nevertheless, growth in food preserved at temperatures between 2
and 4 ◦C has been described. Salmonella spp., is viable at a pH between 4.05 and 9.5, with
optimal growth at pH 6.5 and 7.5± 0.2 and a water activity (aw) of >0.93. These capabilities
cause contamination in food-production chains, since Salmonella spp. can survive for a
long period of time under food-stored conditions [4,5].

The Salmonella genus includes two species, S. bongori and S. enterica [2,3,6]. S. enterica,
includes six subspecies: I, enterica; II, salamae; IIIa, arizonae; IIIb, diarizonae; IV, houtenae; and
V, indica [2].

The subspecies II, IIIa, IIIb, IV and V, can be found in cold-blooded animals and the
environment [4] with 1051 serovars, most designated by their antigenic formula [7].

S. enterica (subspecies I) strains are most commonly isolated from warm-blooded
animals, including fowl and mammals, and it is the most diverse with 1586 serotypes
including typhoidal and non-typhoidal species [4]. The serovar names are associated with
either the disease they cause or the geographical location where they were isolated from [7],
and most of them are non-pathogenic in their reservoirs [6].

Another manner of classifying Salmonella spp. is based on the disease it causes.
Thus, it can be categorized into typhoidal and non-typhoidal varieties. The non-typhoidal
Salmonella (NTS) are responsible for gastroenteritis [8] in various hosts. Epidemiologically,
they vary in their ability to cause bacteremia and severe human diseases [9]. It has also
been estimated that within the overall burden of disease, infections caused by NTS are the
second leading cause of diarrheal diseases. Between 1990 and 2010, the burden calculated
respectively in disability-adjusted life years (DALYs) was 180–70 per 100,000 [10].

The incubation time after ingestion of non-typhoidal Salmonella contaminated food
is short (8–72 h). Clinical symptoms of non-typhoidal salmonellosis are associated with
acute enterocolitis with abdominal pain, bloody or non-bloody diarrhea [4], nausea, and
vomit. The infective dose in contaminated food or water is >104 CFU. However, lower
doses have been reported in high-fat foods such as meat and poultry. The disease is
self-limited (from 5 to 7 days) [4,11,12]. Therefore, the worldwide non-typhoidal disease
impact is high, and during the period from 1966 to 2007 there were 93.8 million cases, of
which 80.3 million were associated with the consumption of contaminated food, ultimately
resulting in 155,000 deaths annually [13].

Transmission of NTS to humans can occur zoonotically due to contact with feces
from carrier animals or by consumption of contaminated food [3,4,11,12]. In developing
countries, vegetable and water or human to human contact are the main routes of contam-
ination. Whereas, in industrialized countries the chief source of contamination involves
consumption of contaminated animal food, particularly fresh meat and eggs [4].

On the other hand, for humans, meat is a concentrated source of nutrients [13].
Therefore, new tendencies have led to the collective need for a constant supply of meat,
particularly of beef and pork meat. While beef is more expensive among protein products of
animal origin, in developing countries the price of pork meat is more accessible. In contrast,
in developed countries, meat is a highly consumed and valued food [14]. Additionally,
in the coming years, the world population could surpass 7.5 billion people, stimulating a
great meat and meat product demand [15].

The contamination of meat and meat products occurs at different stages in the meat
chain (processing, distribution, wholesale, manipulation, and preparation) [16]. Pathogen
dissemination occurs in the abattoir, either during the evisceration process or intestinal
content removal due to cross-contamination (equipment, utensils and personnel) [4,16–19].

Furthermore, the resistance of Salmonella spp. to one or various antimicrobial agents
has drastically increased [20–24] as a consequence of uncontrolled use in production sys-
tems (i.e., the prevention, control, and treatment of infectious diseases) [24,25]. Moreover,
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its prophylactic use as growth promoters in chicken and pigs [19,20,24,26,27] has generated
an even greater public health problem, resulting in therapeutic failures in disease treatment
for both humans and animals [20,24].

In the European Union in 2016, resistance profiles were found in isolates for 20.4% (95,
434) of human salmonellosis. Sulfonamide/sulfamethoxazole, tetracycline, and ampicillin,
and others were among the antibiotics assayed [28]. Antimicrobial resistance in NTS makes
infection control and prevention more difficult. Since 1990, S. Typhimurium DT104 strain
has increased its global dissemination. According to the National Antimicrobial Resistance
Monitoring System (NARMS), in the United States of America, between 2005 and 2006,
4.1% of the isolates decreased their susceptibility to cephalosporins and 84% had resistance
phenotypes to multiple antibiotics [3].

There are several methods used to test antimicrobial susceptibility such as the dilution
method or minimal inhibitory concentration (MIC) and the Kirby–Bauer disc diffusion
method. A combination of the former two methods is referred to as the epsilometric method
(E-test) [29]. Additionally, other in vitro assays, such as agar dilution and both macro and
microdilutions, have been used. The MIC and disc diffusion methods have been approved
by the Clinical and Laboratory Standard Institute (CLSI) and the European Committee on
Antimicrobial Susceptibility Testing (EUCAST). The standard released by both entities are
frequently updated, hence the importance of following the latest editions [11].

Hence, the objectives of this work were: to describe the frequency of antimicrobial-
resistant isolates of Non-Typhoidal Salmonella (NTS) isolated from beef, pork, chicken meat,
and meat products; to describe the distribution of serovars and their multi-resistance to
antibiotics for clinical use (veterinary and human) between 1996 and 2019; and to propose
additional considerations that could improve the use and usefulness of published results.

2. Materials and Methods
2.1. Search Strategy

Web of Science (WoS), SCOPUS, Science Direct, and JSTOR were the websites used to
provide comprehensive citation data. The interaction of three groups allowed performing
search equations. The first equation included Salmonella/zoonotic salmonella/foodborne
pathogen/Nontyphoid Salmonella; the second equation involved antimicrobial resistance,
antibiotic resistance/multidrug resistance; and the third involved related meat products/
meat poultry/pork/beef by employing “AND” as the Boolean operator [30].

Regional documents were searched at Biblioteca Virtual de Salud (BVS) and PubMed.
In BVS and PubMed, DECS (Descriptors in Health Sciences) and MESH (Medical Subject
Headings) were utilized. The dependent terms used in the search were Salmonella food
poisoning/ “intoxicación alimentaria por Salmonella y Salmonella enterica”. The independent
variables associated with drug resistance were Microbial/”facorresistencia microbiana” and
Microbial sensitivity tests/”pruebas de sensibilidad microbiana” [30].

To search for subjects concerning meat or meat products the terms meat products/
“productos de carne” (in singular and plural), poultry products/“productos avícolas”, food
safety/“análisis de peligros y puntos críticos de control”, “inocuidad de los alimentos”, food
contamination/“contaminación de alimentos”, foodborne diseases/“enfermedades transmitidas
por los alimentos”, fast foods/“comidas rápidas” and raw foods/“alimentos crudos” were
employed [30].

2.2. Inclusion and Exclusion Criteria

Experimental studies performed between 1996 and 2019 were included, encompassing
the year when the international observation and monitoring of antimicrobial resistance
programs was initiated. English and Spanish were the selected languages, as illustrated by
the search equations [30].

In the selected articles, isolates must have been from meat or meat products collected
at retail or intended for the same purpose. The selected article should describe Salmonella
spp., isolates and the non-typhoidal serotypes identification [30].
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For the analysis, selected articles were classified according to the antimicrobial sus-
ceptibility detection method into the disc diffusion method and minimum inhibitory
concentration (MIC). After verifying breakpoints and references, articles with interpretive
criteria or isolate frequencies of resistance to antimicrobial agents were included [30].

Articles where title and abstract were not related to the topic of interest were excluded.
Correspondingly, food outbreak studies were also excluded since, for many of these studies,
it was difficult to identify source of contamination by Salmonella spp. Additionally, articles
involving isolates from biological collections were not included as there was no clarity
regarding sample type, years of preservation, or origin [30].

2.3. Extraction and Data Registry

Article assembled information included country, type of meat or meat product, the
method used (disc diffusion or MIC), breakpoints, the standard used or implemented
(national or international), and susceptibility test results [30].

Selected articles described the susceptibility to different families of antibiotics be-
longing to the following classes: penicillin, combination β-lactamase inhibitors, cephems,
monobactams, aminoglycosides, quinolones, fluoroquinolones, folate pathway inhibitors,
phenols, nitrofurans, and tetracyclines [30].

2.4. Data Analysis

Data analysis focused on three different aspects. First, in the descriptive phase, the
following items were considered: sample country of origin, animal species of the meat or
meat product, identified serotypes, antimicrobial susceptibility test used, and standard
employed. Second, articles were classified according to the method used (disc diffusion or
MIC) for each group [30].

Third, the percentage prevalence for each serotype was calculated as follows:

Calculated frequency % = Number of isolates reported/total number of isolates × 100.

The analysis was performed according to the antimicrobial susceptibility assessment
method described in each study and the serovar-ties were evaluated.

Some studies used the evaluation of antimicrobial susceptibility standard for isolates
of animal origin. Since 2013 the M31 version was modified into the VET01-S3 (2013).
Subsequently, from June 2018, the VET 01-04 (2018) was modified into the VET08. Therefore,
to maintain the article’s original information, the names of the standards were kept as
published [30].

3. Results
3.1. Number of Articles, Countries, and Standard

A total of 3802 articles were associated according to registered equations, of which
1141 were preselected (30%). Only 4% (48/1141) complied 100% with defined inclusion
and exclusion criteria (Figure 1 and Table 1). The distribution of selected articles by country
was as follows: China with seven studies (15%), followed by Egypt and Vietnam with six
articles each (13%), South Korea with four papers (8%), Brazil, Canada, Colombia, Spain,
United States of America, Iran, Malaysia, and Thailand with two articles each (4%) and,
last, Greece, Italy, Mexico, Portugal, Rumania, Senegal, Singapore, Turkey and Venezuela
with one article each (2%).

The CLSI standards were referenced in 45/48 (93.8%) articles. Thirty-seven (82.2%)
of them used the M100 standard, corresponding to the Performance Standard for Antimi-
crobial Susceptibility Testing. Seven (15.6%) used the M31 standard for disc diffusion and
dilution susceptibility Performance Standard for Antimicrobial Disc and Dilution Suscepti-
bility Tests for Bacteria Isolated from Animals, and one (2.2%) used both M100 and M31.
On the other hand, for the remaining 3/48 (6.3%) articles, interpretation criteria established
by NARMS and CIPARS monitoring programs were used, as well as the international
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organizations “Comité de l’antibiogramme de la société française de microbiologie” (CA-SFM),
and the European Committee on Antimicrobial Susceptibility Testing—EUCAST (Table 1).
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Table 1. Standards used to define the interpretation criteria for antimicrobial susceptibility tests in selected articles.

Standards Used in the Articles Antimicrobial
Susceptibility Test

Ref.

CLSI,
M100-

S9
[33]

CLSI,
M100-
S11
[34]

CLSI,
M100-
S13
[35]

CLSI,
M100-
S15
[36]

CLSI,
M100-
S16
[37]

CLSI,
M100-
S17
[38]

CLSI,
M100-
S18
[39]

CLSI,
M100-
S19
[40]

CLSI,
M100-
S20
[41]

CLSI,
M100
S21
[42]

CLSI,
M100-
S22
[43]

CLSI,
M100-
S23
[44]

CLSI,
M100
-S24
[45]

CLSI,
M100-
S25
[46]

CLSI,
M100-
S28
[47]

CASFM
[48]

EUCAST
[49]

NARMS
[50]

NARMS (It
Was Not
Cited by
Authors);

CIPARS [51]

CLSI,
M31-

S1
[52]

CLSI,
M31-
A2
[53]

CLSI,
M31-
A3
[54]

MIC Disc
Diffusion

[55] X X
[56] X X
[57] X X
[58] X X X
[59] X X
[60] X X
[61] X X X
[62] X X X
[63] X X
[64] X X
[65] X X
[66] X X
[67] X X
[68] X X
[69] X X
[70] X X
[71] X X
[72] X X
[73] X X
[74] X X
[75] X X
[76] X X
[21] X X
[77] X X

[78] * X X X
[17] X X
[79] X X
[80] X X X
[18] X X
[81] X X
[82] X X X
[26] X X X
[83] X X
[84] X X
[85] X X
[86] X X
[87] X X
[19] X X
[88] X X X
[89] X X
[90] X X
[91] X X
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Table 1. Cont.

Standards Used in the Articles Antimicrobial
Susceptibility Test

Ref.

CLSI,
M100-

S9
[33]

CLSI,
M100-
S11
[34]

CLSI,
M100-
S13
[35]

CLSI,
M100-
S15
[36]

CLSI,
M100-
S16
[37]

CLSI,
M100-
S17
[38]

CLSI,
M100-
S18
[39]

CLSI,
M100-
S19
[40]

CLSI,
M100-
S20
[41]

CLSI,
M100
S21
[42]

CLSI,
M100-
S22
[43]

CLSI,
M100-
S23
[44]

CLSI,
M100
-S24
[45]

CLSI,
M100-
S25
[46]

CLSI,
M100-
S28
[47]

CASFM
[48]

EUCAST
[49]

NARMS
[50]

NARMS (It
Was Not
Cited by
Authors);

CIPARS [51]

CLSI,
M31-

S1
[52]

CLSI,
M31-
A2
[53]

CLSI,
M31-
A3
[54]

MIC Disc
Diffusion

[92] ** X X
[93] X X
[94] X X
[95] X X
[96] X X
[97] X X

* The authors referred to the standard “CLSI, M100-S2”, and analysis for the present study used the CLSI, M100-S23. ** Authors made reference to the CLSI standard, 2013. However, it was not included in their
references. Therefore, it was assumed the CLSI, M100-S23 standard was used. X means that standard or susceptibility test cited in the top of table was or were used in each study reference.
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3.2. Reported Salmonella Enterica Serotypes

Out of the 48 analyzed studies, 211 serotypes were reported, of which 16.6% (35/211)
were described five or more times (Figure 1), while the remaining 83.4% (176/211) were
only reported in one to three studies (Table S1).

3.3. Analysis of Antibiotic Concentration Used According to Each Method

In the selected articles, the most common methodology employed was disc diffusion
with 68.8% (33/48), followed by MIC 22.9% (11/48) and 8.3% (4/48), which used both
methodologies (Table 1). For articles that described using MIC, in 7/15 (46.6%) of them
antibiotic concentrations were not indicated [60,62,66,82,84,86,93]. Information regarding
the remaining seven articles is displayed in Table S2.

3.4. Breakpoints and Interpretative Criteria for Antimicrobial Susceptibility Testing

Articles using MIC according to CLSI guidelines analyzed the results based on the stan-
dard issued between 2001 and 2014. Studies that implemented disc diffusion interpreted
the results according to the standard published between 1999 and 2018 (Table 1).

3.5. Resistance to Salmonella Serotypes Assayed by the MIC Method

Six (54.5%) studies employing the MIC methodology presented results as a pattern of
resistance, gathered as the sequence of antibiotics to which the microorganism was resistant,
and five (45.5%) displayed the results as prevalence percentage for each antibiotic.

The number of articles that presented resistance as a percentage five, of which the work
by Clemente et al., (2013) based its analysis on EUCAST (2012) clinical and epidemiological
breakpoints. The highest resistance was for TET, SUL, AMP, and STR. Nhung et al., (2018)
used CLSI M100-S24 clinical breakpoints, and the highest resistance percentage was for
the Tetracyclines, Quinolones, Penicillins, and Folate pathway inhibitors. The resistance
results for the remaining three articles are displayed in Table 2. As observed in one of them,
prevalence differed from the one calculated by us (based on data) to the one published
by the authors [80]. Additionally, in AMP, AMC, CIP, NAL, SXT, and TET, the calculated
or reported prevalence was greater than 100 due to inconsistencies in some articles. The
number of resistant isolates was higher than the number of isolates obtained as described
by the authors.

In articles presenting resistance patterns, the number of total isolates was 113, classi-
fied in 18 serotypes, where Heidelberg was the predominant one. Likewise, sixty different
resistance patterns were described according to the antibiotics of interest in the present
work. The serotype displaying the highest number of resistances to antibiotics (10 resis-
tances) was Bredeney [60]. The classes to which it presented the highest resistance were
the aminoglycosides (GEN, TOB, AMK, KAN, STR) and cephems (CFZ, CEP, CTX, CRO,
FOX, CXM, CAZ) (Table 3 and Table S3).
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Table 2. Salmonella spp. antimicrobial agent frequency of resistance as determined by MIC.

Antibiotic Agent Prevalence Analysis

Serovar (References)

Typhimurium *
[64,66,80]

Enteritidis *
[66,80]

Agona
[80]

Heidelberg
[66]

Indiana
[80]

Infantis
[66]

Kentucky
[64]

Mbandaka
[64]

Thompson
[80]

AMP

N◦ isolates 148 268 46 16 114 19 24 3 55
N◦ resistant isolates 97 185 22 16 105 6 5 1 66

Reported frequency (%) 47.8 100 92.1 31.6 ND ND 76.7
Calculated frequency (%) 65.5 69.0 47.8 100 92.1 31.6 20.8 33.3 120

AMC

N◦ isolates 148 268 46 16 114 19 24 3 55
N◦ resistant isolates 58 111 16 ND 91 ND 5 1 56

Reported frequency (%) 34.8 0 79.8 ND ND ND 65.1
Calculated frequency (%) 39.2 41.4 34.8 0 79.8 20.8 33.3 101.8

CRO

N◦ isolates 148 268 46 16 114 19 24 3 55
N◦ resistant isolates 12 45 6 12 73 0 ND ND 29

Reported frequency (%) 15.4 75 64 ND ND ND 34.5
Calculated frequency (%) 8.1 16.8 13.0 75 64 52.7

FOX

N◦ isolates 148 268 46 16 114 19 24 3 55
N◦ resistant isolates 22 71 8 4 42 0 5 1 28

Reported frequency (%) 17.4 25 37 ND ND 33 32.6
Calculated frequency (%) 14.9 26.5 17.4 25 37.0 20.8 33.0 50.9

GEN

N◦ isolates 148 268 46 16 114 19 24 3 55
N◦ resistant isolates 40 81 6 0 93 5 ND ND 44

Reported frequency (%) 13.0 0 81.6 26.3 ND ND 51.2
Calculated frequency (%) 27.0 30.2 13.0 0 81.6 26.3 80.0

STR

N◦ isolates 148 268 46 16 114 19 24 3 55
N◦ resistant isolates 78 155 14 16 83 18 12 1 18

Reported frequency (%) 30.4 100 73.5 94.7 ND 33 20.9
Calculated frequency (%) 52.7 57.8 30.4 100 72.8 94.7 50.0 33 32.7

CIP

N◦ isolates 148 268 46 16 114 19 24 3 55
N◦ resistant isolates 22 32 10 0 93 0 ND ND 8

Reported frequency (%) 21.7 0 81.6 ND 0 ND 9.3
Calculated frequency (%) 14.9 11.9 21.7 0 81.6 14.5

NAL

N◦ isolates 148 268 46 16 114 19 24 3 55
N◦ resistant isolates 81 275 23 2 106 3 ND ND 39

Reported frequency (%) 50.0 12.5 93 15.8 ND ND 45.4
Calculated frequency (%) 54.7 102.6 50.0 12.5 93.0 15.8 70.9

SXT

N◦ isolates 148 268 46 16 114 19 24 3 55
N◦ resistant isolates 70 123 23 0 105 2 ND ND 60

Reported frequency (%) 50.0 0 92.9 10.5 0 ND 69.8
Calculated frequency (%) 47.3 45.9 50.0 0 92.1 10.5 109.1

TET

N◦ isolates 148 268 46 16 114 19 24 3 55
N◦ resistant isolates 123 191 30 0 104 0 15 0 70

Reported frequency (%) 65.2 0 91.2 ND ND ND 81.4
Calculated frequency (%) 83.1 71.3 65.2 0 91.2 62.5 127.3

No. isolates, number of isolates; No. resistant, number of resistant isolates; F. Reported (%), frequency reported; F. Calculated (%), frequency calculated. The box highlighted in yellow are the calculated values
that exceeded 100%, while the boxes highlighted in gray indicate the values that could not be calculated. * For Enteritidis and Typhimurium serovars, frequency was calculated based on the sum of reported
isolates in the articles.
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Table 3. Patterns of multidrug resistant Salmonella spp. as determined by MIC.

Ref. Pattern Serovar/
(Total Serovar)

Total Isolates with
the Pattern

% Isolates with the
Pattern

[67] AMP SXTTET
Rissen (1) 1 100

Worthington (1) 1 100

[91] AMC CEP GEN KAN STR
Ouakam (1) 1 100

Tennessee (7) 2 29

[60] AMP AMC CEP FOX
Agona (3) 3 100

Heidelberg (13) 2 15
Litchfield (2) 2 100

[91] AMP AMC CEP GEN KAN STR
Anatum (1) 1 100

Tennessee (7) 4 57

[91] AMP AMC CEP GEN KAN STR NAL TET
Enteritidis (3) 1 33
Saintpaul (3) 1 33

[91] AMP AMC CEP GEN KAN STR TET

Montevideo (1) 1 100
Anatum_var-15+ (1) 1 100

Saintpaul (3) 2 67
Seftenberg (4) 2 50

[67] AMP AMC CRO FOX

Heidelberg (13) 11 85
I:ROUGH-O:r:1,2 (1) 1 100

Infantis (4) 1 25
Kentucky (2) 2 100

[21] AMP AMC CTX CRO FOX CPD ATM GEN
KAN STR CIP NAL SXT CHL TET

Typhimurium (4) 1 25
Enteritidis (3) 1 33

[91] AMP AMC GEN KAN STR
Seftenberg (4) 1 25
Tennessee (7) 1 14

[60,91] AMP CEP GEN
Enteritidis (3) 1 33
Seftenberg (4) 1 25

[21] AMP KAN NAL SXT CHL TET
Typhimurium (4) 2 50
Typhimurium (4) 1 25

[86] GEN TOB AMK CIP SXT
Enteritidis ND 0
Kentucky ND 0

[84] STR CIP NAL SUL TET Infantis (4) 3 75

3.6. Salmonella Serotype Resistance Assayed by the Disc Diffusion Method

Resistance and multi-resistance analysis were reported on 31/33 (93.9%) of the studies.
For 2/33 (6.1%), isolate, pattern or resistance percentage, and isolate origin were not
related [63,68]. On the other hand, of the 31 articles analyzed, 6 (19.4%) presented the
results as resistance percentage, 19 (61.3%) as the pattern of resistance, and 6 (19.4%) as the
pattern and resistance percentage.

The articles that presented resistance results as the percentage of prevalence were
12/31 (39%), of which Valdezate et al. (2007) showed resistance percentage to the Enteritidis
and Typhimurium; serotypes, describing the highest resistance to spectinomycin with 99%
(95/96) and 87% (46/53), respectively, followed by NAL 40.6% (39/96) for Enteritidis and
TET with 71.7% (38/53) for Typhimurium. The remaining 11 studies are displayed Table 4
and Table S4, where resistance percentage calculated for reported serotypes in more than
one study appear (the ones with only one serotype are in Table S5). It is noteworthy that in
various studies [17,83,92], some of the reported prevalences differ from those calculated by
us. Additionally, the serotype most frequently found was Typhimurium (8/11 (72.7%)),
and the most frequent resistance for this serotype was tetracycline.

Multi-resistance pattern analysis allowed the identification of 692 isolates, of which
444 presented different patterns (Table S6). The remaining 248 isolates were grouped in
27 different patterns (Table 5). The profile AMP SXT STR TET was the most prevalent
resistance pattern in these isolates. Additionally, Enteritidis and Typhimurium serotypes
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displayed a resistance pattern with the greatest number of antibiotic classes: penicillins
(AMP), β- lactamase inhibitors (AMC), cephems (CTX CRO FOX CPD), monobactams
(ATM), aminoglycosides (GEN KAN STR), fluoroquinolones (CIP), quinolones (NAL),
folate pathway inhibitors (SXT), phenolic compounds (CHL), and nitrofurans (TET).

Table 4. Frequency of Salmonella isolates resistant to antimicrobials as determined by disc diffusion.

Serovar Number of
Isolates

Calculated Frequency of Resistant Serovar (%)
Ref.

AMP GEN AMK KAN STR CIP OFX NAL SXT TMP SUL CHL TET

Agona
71 22.5 28.2 28.2 23.9 39.4 [79]
1 100 100 100 100 [87]
56 16.1 1.8 16.1 1.8 91.1 19.6 17.9 41.1 89.3 48.2 [92]

Anatum
5 100 20.0 20.0 60.0 40.0 40.0 60.0 [17]
7 100 57.1 85.7 57.1 100 [87]
3 33.3 33.3 66.7 66.7 100 [97]

Corvallis
1 100 [56]
46 17.4 17.4 17.4 87.0 43.5 17.4 73.9 52.2 80.4 [92]
3 100 100 [97]

Derby

11 9.1 45.5 18.2 81.8 18.2 100 [59]
1 100 100 [83]
1 100 100 100 [87]
75 56.0 36.0 1.3 36.0 33.3 42.7 40.0 42.7 92.0 44.0 81.3 [92]
79 41.8 24.1 2.5 25.3 45.6 25.3 40.5 43.0 35.4 77.2 [97]

Enteritidis

6 33.3 33.3 66.7 33.3 16.7 66.7 [56]
6 16.7 66.7 [61]
27 55.6 44.4 33.3 59.3 92.6 3.7 7.4 44.4 [69]
30 86.7 26.7 46.7 86.7 73.3 73.3 80.0 [17]
25 8.0 44.0 56.0 88.0 52.0 68.0 48.0 [81]
7 100 14.3 14.3 14.3 71.4 14.3 100 28.6 14.3 28.6 [97]

Hadar

6 16.7 100 50.0 50.0 50.0 100 [56]
8 25.0 37.5 87.5 62.5 12.5 87.5 [61]
31 25.8 3.2 22.6 22.6 9.7 74.2 [79]
6 16.7 66.7 50.0 100 83.3 66.7 16.7 100 [81]

Indiana
28 71.4 46.4 14.3 39.3 39.3 57.1 57.1 78.6 85.7 [79]
5 100 20.0 100 [87]
4 100 50.0 75.0 100 50.0 100 100 75.0 100 100 [97]

Kentucky
27 44.4 18.5 3.7 11.1 33.3 29.6 25.9 22.2 [56]
2 100 100 100 [87]
38 21.1 7.9 2.6 13.2 28.9 65.8 28.9 68.4 92.1 78.9 86.8 [92]

London
57 61.4 57.9 68.4 15.8 1.8 70.2 77.2 42.1 86.0 [92]
20 50.0 25.0 5.0 45.0 50.0 35.0 50.0 [97]

Mbandaka
3 33.3 100 [56]
34 2.9 2.9 73.5 2.9 61.8 2.9 5.9 100 97.1 [92]

Muenster
12 50.0 33.3 75.0 75.0 75.0 33.3 [56]
10 90.0 20.0 20.0 70.0 40.0 60.0 60.0 [17]

Panama
12 83.3 8.3 75.0 50.0 33.3 83.3 75.0 75.0 [59]
8 100 12.5 100 100 100 [87]

Rissen
6 100 33.3 50.0 33.3 100 [87]
81 77.8 2.5 19.8 1.2 8.6 7.4 77.8 77.8 8.6 95.1 [92]
18 55.6 5.6 5.6 22.2 5.6 5.6 77.8 5.6 77.8 [97]

Schwarzengrund 2 100 100 100 100 100 [56]
7 100 100 14.3 100 14.3 [87]

Stanley 6 83.3 50.0 83.3 [87]
3 33.3 33.3 33.3 33.3 [97]

Thompson
83 2.4 54.2 96.4 77.1 81.9 [61]
54 13.0 31.5 59.3 96.3 72.2 75.9 3.7 90.7 [81]
3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 [97]

Typhimurium

8 62.5 12.5 12.5 50.0 12.5 37.5 37.5 87.5 [59]
3 33.3 66.7 66.7 100 [61]
3 100 [69]
40 100 27.5 45.0 95.0 67.5 82.5 92.5 [17]
14 14.3 35.7 57.1 85.7 64.3 78.6 85.7 [81]
5 40.0 100 80.0 40.0 80.0 100 60.0 100 [83]
84 83.3 15.5 1.2 59.5 13.1 29.8 29.8 27.4 89.3 40.5 82.1 [92]
22 72.7 9.1 4.5 36.4 36.4 4.5 81.8 50.0 50.0 63.6 [97]
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Table 5. Patterns of multidrug resistant Salmonella serovar as determined by disc diffusion.

Ref. Pattern Serovar/
(Total Serovar)

Total Isolates with
the Pattern

% of Isolates with
the Pattern

[71]
AMC CEP NAL

Typhimurium (34) 1 3
[69] Montevideo (3) 1 33

[70]
AMP CEP NAL TET

Hadar (1) 1 100
[56] Tshiongwe (1) 1 100

[70]
AMP GEN KAN STR CIP SXT TET

Enteritidis (25) 2 8
[21] Infantis (4) 1 25

[74]
AMP GEN NAL SXT TET

Anatum (20) 1 5
[70] Typhimurium (34) 1 3

[74]

AMP GEN STR SXT CHL TET

Derby (70) 1 1
[85] London (3) 1 33
[72] Panama (9) 1 11
[89] Typhimurium (34) 1 3

[74]
AMP KAN STR NAL SXT CHL TET

Meleagridis (9) 1 11
[21] Typhimurium (34) 1 3

[56]
AMP NAL CHL

Kentucky (7) 2 29
[87] Schwarzengrund (7) 6 86

[87]
AMP NAL CHL TET

Albany (5) 1 20
Anatum (20) 1 5

[18] Derby (70) 1 1

[76]

AMP NAL SXT

Enteritidis (25) 1 4

[18]
Kentucky (7) 4 57
Muenster (6) 6 100
Virchow (2) 2 100

[87]
AMP NAL SXT CHL

Schwarzengrund (7) 1 14

[74]
Anatum (20) 1 5
Infantis (4) 1 25

[74]

AMP NAL SXT CHL TET

Derby (70) 1 1
Infantis (4) 1 25

[87]

Albany (5) 4 80
Anatum (20) 2 10
Panama (9) 1 11
Rissen (4) 1 17

[95]
Brancaster (3) 1 33

Stanley (8) 1 13

[87]
AMP NAL SXT TET

Agona (3) 1 33
Anatum (20) 1 5

[74] Derby (70) 1 1
[70] Typhimurium (34) 1 3

[74]

AMP NAL TET

Derby (70) 4 6

[87]
Rissen (4) 1 17

S.4.5.12:I: −(2) 2 100
Stanley (8) 3 38

[81]
Enteritidis (25) 1 4

Typhimurium (34) 2 6
[58] Anatum ND ND
[70] Typhimurium (34) 2 6

[72]
AMP STR NAL SXT TET

Anatum (20) 1 5
Derby (70) 2 3

[85] Derby (70) 2 3
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Table 5. Cont.

Ref. Pattern Serovar/
(Total Serovar)

Total Isolates with
the Pattern

% of Isolates with
the Pattern

[85]

AMP STR SXT CHL TET

Meleagridis (9) 2 22

[74]
Typhimurium (34) 1 3

Derby (70) 1 1

[89]
Rissen (4) 1 17
Give (1) 1 100

Typhimurium (34) 1 3

[72]
AMP STR SXT TET

Agona (3) 1 33
Brandenburg (1) 1 100

Saintpaul (2) 1 50
[74] Derby (70) 1 1

[72]

AMP STR TET

Derby (70) 7 10
Typhimurium (34) 4 12

[85]
Derby (70) 7 10

Typhimurium (34) 4 12

[74]
Derby (70) 7 10

Meleagridis (9) 1 11
Newport (5) 1 20

[89]
Derby (70) 7 10

Typhimurium (34) 4 12
[70] Bredeney (3) 1 33

[74]

AMP SXT CHL TET

Typhimurium (34) 3 9

[87]
Anatum (20) 1 5
Panama (9) 7 78

[81] Bovismorbificans (1) 1 100

[95]
Brancaster (3) 1 33

Stanley (8) 4 50
Typhimurium (34) 3 9

[77]

AMP SXT TET

Agona (3) 1 33
Anatum (20) 5 25
Bredeney (3) 2 67

Coeln (1) 1 100
Derby (70) 8 11
London (3) 1 33

Senftenberg (1) 1 100
Typhimurium (34) 1 3

[85] Derby (70) 8 11
[74] Derby (70) 8 11

[87]
Anatum (20) 5 25

Rissen (4) 1 17

[71]
CEP STR NAL

Enteritidis (25) 4 16
Newport (5) 1 20

[69]
Enteritidis (25) 4 16
Montevideo (3) 2 67

[70]
KAN STR NAL TET

Blockey (4) 4 100

[81]
Enteritidis (25) 3 12

Newport (5) 2 40

[85]
NAL CHL TET

Derby (70) 1 1
Typhimurium (34) 4 12

[87] Indiana (1) 1 100

[74]
NAL SXT TET

Infantis (4) 1 25
Meleagridis (9) 5 56

[81] Thompson (1) 1 100
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Table 5. Cont.

Ref. Pattern Serovar/
(Total Serovar)

Total Isolates with
the Pattern

% of Isolates with
the Pattern

[71]

STR NAL TET

Enteritidis (25) 5 20

[72]
Anatum (20) 1 5
Derby (70) 1 1
Reading (1) 1 100

[81]
Enteritidis (25) 5 20

Newport (5) 1 20
[58] Hadar ND ND

[56]
STR SUL TET

Brancaster (3) 1 33

[58]
Anatum ND ND
London ND ND

[72]
STR SXT CHL TET

Anatum (20) 1 5
Derby (70) 1 1

Saintpaul (2) 1 50
[74] London (3) 1 33

[75]
STR SXT SUL TET

Derby (70) 1 1
[56] Kentucky (7) 1 14

3.7. Serotype Resistance Determined by MIC and Disc Diffusion Methods

The total number of articles using two methods for antimicrobial susceptibility eval-
uation was 4/48 (8.3%), of which three presented results as resistance pattern and one
presented the results as a percentage of prevalence.

For one article [78], the highest resistance (94%) was observed for the Heidelberg
serotype to TET. Additionally, when comparing the reported percentage in the article and
the calculations according to the data published by the authors, an inconsistency was
observed for AMC, for the serotypes Enteritidis (Reported: 37.31 and Calculated: 7.5), and
for Typhimurium (Reported: 2.50 and Calculated: 5).

Observed multi-resistance patterns are displayed in Table 6. The serotype with the
highest resistance was Heidelberg, which was resistant to six classes of antibiotics and nine
antibiotics (AMP AMC CFZ CTX CRO FOX CIP NAL TET), where TET was the antibiotic
presenting resistance more frequently in isolates.

Table 6. Salmonella serovar patterns of multidrug resistance as determined by disc diffusion and MIC.

Reference Multiresistance Patterns Serovar
(Total Isolates)

Total Isolateswith the
Multiresistance Pattern

% Frequency of
Multiresistance Pattern

[62] AMP CTX SXT Enteritidis (3) 1 33.3

[26]
CIP NAL TET Heidelberg (11) 2 25.0
STR SXT TET Typhimurium (1) 1 100

STR CIP NAL TET Heidelberg (11) 1 9.1

[82] AMP AMC CFZ CEP CTX TET Bareilly (1) 1 100

[62]
AMP CFZ CTX ATM CIP SXT Heidelberg (11) 2 18.2
AMP TZP CFZ CTX ATM SXT Heidelberg (11) 1 9.1

[82] AMP CFZ CEP CTX STR NAL TET
Infantis (8) 8 100

Virchow (16) 8 50

[82] AMP CFZ CEP CTX GEN STR NAL TET
Enteritidis (3) 1 33.3
Richmond (3) 3 100

[26] AMP AMC CFZ CTX CRO FOX NAL TET Heidelberg (11) 3 27.3

[82] AMP AMC CFZ CEP CTX STR NAL TET Virchow (16) 7 43.8

[82] AMP AMC CFZ CEP CTX GEN STR NAL TET
Enteritidis (3) 1 33.3
Virchow (16) 1 6.3

[26] AMP AMC CFZ CTX CRO FOX CIP NAL TET Heidelberg (11) 2 18.2
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4. Discussion
4.1. Number of Articles, Countries, and Standard

A total of 48 articles were included in this study after eliminating those based on ex-
clusion criteria (Figure 1), where the most representative countries were China, Egypt, and
Vietnam. On the other hand, the most implemented standard was the CLSI M100 (Table 1).
However, the Clemente et al., (2013) study used ECOFFs clinical and epidemiological
cut-off points for bacterial resistance analysis.

4.2. Salmonella Enterica Reported Serotypes

Among the 48 studies selected, 211 serotypes were identified. This diversity was
due to regional differences, environmental factors, origin, and food production practices.
These factors favour the specific serovars found by influencing survival or transmission
routes [98].

The most frequently recognized serovars were four (Figure 2). Between 2004 and 2016,
Typhimurium caused many of the clinical infections worldwide [98]. It is also one of the
most common causative agents for invasive salmonellosis by non-typhoid serotypes [99].
This serotype also affects livestock production systems and has been isolated in poultry,
pigs, and cattle, this latter being the principal carrier [100].

Foods 2021, 10, x FOR PEER REVIEW 18 of 30 
 

 

AMP CFZ CEP CTX GEN STR NAL 
TET 

Richmond (3) 3 100 

[26] AMP AMC CFZ CTX CRO FOX NAL 
TET 

Heidelberg (11) 3 27.3 

[82] 
AMP AMC CFZ CEP CTX STR NAL 

TET Virchow (16) 7 43.8 

[82] 
AMP AMC CFZ CEP CTX GEN STR 

NAL TET 
Enteritidis (3) 1 33.3 
Virchow (16) 1 6.3 

[26] AMP AMC CFZ CTX CRO FOX CIP 
NAL TET 

Heidelberg (11) 2 18.2 

4. Discussion 
4.1. Number of Articles, Countries, and Standard 

A total of 48 articles were included in this study after eliminating those based on 
exclusion criteria (Figure 1), where the most representative countries were China, Egypt, 
and Vietnam. On the other hand, the most implemented standard was the CLSI M100 
(Table 1). However, the Clemente et al., (2013) study used ECOFFs clinical and epidemi-
ological cut-off points for bacterial resistance analysis. 

4.2. Salmonella Enterica Reported Serotypes 
Among the 48 studies selected, 211 serotypes were identified. This diversity was due 

to regional differences, environmental factors, origin, and food production practices. 
These factors favour the specific serovars found by influencing survival or transmission 
routes [98]. 

The most frequently recognized serovars were four (Figure 2). Between 2004 and 
2016, Typhimurium caused many of the clinical infections worldwide [98]. It is also one 
of the most common causative agents for invasive salmonellosis by non-typhoid serotypes 
[99]. This serotype also affects livestock production systems and has been isolated in poul-
try, pigs, and cattle, this latter being the principal carrier [100]. 

 
Figure 2. Frequency of serovars described in more than five studies. Abbreviations: Bovismor, Bo-
vismorbificans; Bra, Braenderup; Ind, Indiana; Pan, Panama; Mba, Mbandaka; Mon, Montevideo; 
Thom, Thompson; Vir, Virchow; Wel, Weltevreden. 

The second most frequent serotype was Enteritidis (Figure 2), the principal agent 
causing clinical salmonellosis reported between 2004 and 2016 in Brazil, Canada, Europe, 

Figure 2. Frequency of serovars described in more than five studies. Abbreviations: Bovismor,
Bovismorbificans; Bra, Braenderup; Ind, Indiana; Pan, Panama; Mba, Mbandaka; Mon, Montevideo;
Thom, Thompson; Vir, Virchow; Wel, Weltevreden.

The second most frequent serotype was Enteritidis (Figure 2), the principal agent
causing clinical salmonellosis reported between 2004 and 2016 in Brazil, Canada, Europe,
China, the United States of America, Tunisia, and Thailand [98]. S. enteritidis transmission
to humans occurs through poorly cooked chicken, contaminated raw eggs, or products
prepared with contaminated eggs. In poultry, this serovar can remain in the reproduc-
tive system tissue. Hence, it the necessary to control this microorganism during poultry
production [101,102].

S. Anatum was the third serotype reported (Figure 2). This serotype was described
first in 2005 as the ninth serotype resulting in human illnesses on the European Food Safety
Authority report of tendencies and zoonosis, zoonotic agents, and outbreaks associated
with food. S. Anatum is one of the serotypes responsible between 2015 and 2017 for
an increase in human infections in Taiwan. Many of its isolates are multiresistant and
prevalent in animal species destined for human consumption [103].

The fourth serotype reported and the most frequently found in selected articles was S.
Derby (Figure 2). This serotype has been described in pork production, where pork meat
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is the route of transmission in some human outbreaks [104]. It has also been frequently
reported in pig slaughter, surviving in first minute during the scalding process [105].

The remaining 64 serotypes appear in Figure 2, Table S1; 16/64 (25%) were found
in at least ten or more selected articles. These 16 serotypes had been previously no-
tified by NARMS (1997–2015) [106–125], EFSA (2004–2015) [106–125] and EFSA (2004–
2015) [126–134] reports as serotypes of importance in human salmonellosis (Agona, Ken-
tucky, Newport, Hadar, Stanley, Heidelberg, and Saint Paul). Therefore, in order to monitor
these serotypes, surveillance of meat and meat products (source of propagation) is required.

4.3. Antibiotic Concentration Analysis According to Each Method Used

The disc diffusion method used in 68.8% of the evaluated studies represents a standard
test in various diagnostic laboratories. It is easy to set up, and has a low cost [135,136].
However, to determine MIC in resistance monitoring programs, quantitative tests are
preferred due to their accuracy [135,136]. Nonetheless, in the selected reports, MIC analysis
was described only for 22.9% of them.

4.4. Salmonella Serotype Resistance Evaluated Using MIC

Among the most used analysis strategies described in the WHO’s “Integrated surveil-
lance of antimicrobial resistance in foodborne bacteria” [137] guide is the percentage
calculation of resistant, intermediate, and susceptible isolates. These, in turn, can be
stratified as a function of isolation date, geographical location, origin or the frequency of
isolations in population studies, allowing for the detection of pathogen’s behaviour in
different environments.

In this work, when comparing the MIC methodology, 45.5% of the studies (5/11)
reported results as a percentage of prevalence. Of these, in the Clemente et al., (2013)
study, 76/127 (59.8%) of the isolates presented serotype I4 [5],12:i:-, which were resistant
to AMP STR SUL TET in compliance with the ASSuT phenotype. Within this serotype,
21.3% presented co-resistance to other antibiotics, such as GEN and CHL, demonstrating
the presence of multiresistant isolates. Furthermore, three isolates obtained from pork meat
products had the blaCTX-M gene, indicating that β-lactamase spread through the food
production chain.

In the study by Nhung et al., (2018) isolates from chicken and beef meat were identified;
11 out of 12 isolates with the Kentucky ST 198 serotype were multiresistant. They found
resistance to diverse classes of antibiotics such as Cephems, Monobactams, Penicillins,
Quinolones, Tetracyclines, and Phenolic compounds. S. Kentucky ST 198 is resistant
to cephalosporins, carbapenems, and heavy metals mediated by plasmids. In contrast,
resistance to quinolones is due to mutations in topoisomerase encoding genes (gyrA, gyrB,
parC, parE). For both cases, resistance resulted from indiscriminate antibiotic prophylactic
use in chickens, generating selective pressure [138].

The other three studies are shown in Table S1, where the serotypes Agona, Heidel-
berg, Indiana, Infantis, Kentucky, Mbandaka, and Thompson were described only once.
Serotypes Enteritidis and Typhimurium were reported in two and three studies, respec-
tively. Isolates belonging to S. Enteritidis showed the most resistance to NAL, followed
by TET, AMP, and STR. In S. Typhimurium isolates, the most resistant profile was for TET,
followed by AMP, NAL, and STR. Salmonella serotypes resistant to Tetracycline have been
frequently described in the scientific literature due to the prophylactic use in livestock pro-
duction, where the most common genes identified are tetA and tetB [139–141]. Nonetheless,
in certain countries, Tetracycline use in livestock production is prohibited.

On the other hand, for the 54.5% (6/11) of the studies using MIC (Table 3 and Table S3),
the serotype with the highest number of resistance (six classes and ten antibiotics) was
the Bredeney serotype reported by Cook et al., (2009). The same study described that
this serotype, as previously reported by CIPARS 2003, is frequently observed in clinical
isolates from turkey meat. Moreover, the variety of resistances detected by Cook et al. it is
noteworthy (2009).
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It is also necessary to point out, in the studies performed by Cook et al., (2009)
and Gad et al., (2018), a multi-resistance profile was observed which was similar to the
Enteritidis, Anatum_var-15+, Montevideo, Saintpaul, and Seftenberg serotypes for the
Penicillins, β-lactams, Cephems and Aminoglycosides antibiotics classes (Table 3 and
Table S3), where resistance to β-lactams and Aminoglycosides were similar to the ones
reported in cattle by Gad et al., (2018), suggesting that containment measures did not work.

S. Typhimurium and Enteritidis isolates described in the study by Ahmed et al., (2014)
demonstrated a more complex resistance pattern (Table 3 and Table S3), with resistance to
15 antibiotics from 10 different classes in chicken and beef products.

The study also identified antimicrobial resistance molecular mechanisms, among
which the integron Class 1 genes (aadA2 and blaPSE-1 genes), genes coding for β-lactamases
(blaTEM-1, blaCMY-2, blaCTX-M-3), genes with resistance to Quinolones (qnrB, aac(6′)-Ib-cr), and
a gene with resistance to Florfenicol (floR) were observed. These findings demonstrate how
challenging a treatment would be for a patient infected with such an isolate.

4.5. Salmonella Serotype Resistance Evaluated Using Disc Diffusion

Table 4 and Table S4 shows that resistance to AMP and CHL was present in all studies,
possibly due to the frequent antibiotic use as a prophylactic. These are low-cost, accessible
and commonly used antibiotics in some countries for human and poultry production
without “medical prescriptions”. Additionally, in the poultry industry, these medications
are used as growth promoters and for therapeutic purposes, which trigger antimicrobial
resistance in enteric bacterial microbiota. Subsequently, it can be transferred (horizontally
and or vertically) to Salmonella spp. isolates, allowing multiresistant strains to survive and
spread out and ultimately resulting in a public health problem [56,83].

Resistance to Quinolones (NAL) occurred in 10/11 studies (90.9%) in the Typhimurium
(6 articles), Enteritidis (5), Kentucky (3), Panama (2), Hadar (2), Anatum (2), Thompson
(2), Derby (2), Rissen (2), Muenster (1), Agona (1), Albany (1), Indiana (1), Stanley (1),
Schwarzengrund (1), London (1), Mbandaka (1), Corvallis (1) serotypes. Resistance to NAL
in Enteritidis and Typhimurium serotypes is considered a public health problem due to
human antibiotic use [59]. Furthermore, the use of NAL in human enteric infections has
been reconsidered in countries such as Iran [61].

Some countries such as South Korea and Iran use Cephems, Quinolones, and Aminogly-
cosides (growth promoters or treating bacterial infections) in the poultry industry [69,81,142].
Moreover, the perception regarding Quinolones resistance has changed. For example,
in the study by Bada-Alambedji et al., (2006), Quinolones resistance was considered an
alarm signal and the last therapeutic resource against Salmonella multiresistant isolates. In
contrast, in the study by Yang et al., (2019) it was described as one of the most frequently
observed antimicrobial resistances.

Resistance to TET was observed in 10/11 studies (90.9%). This antibiotic has been
frequently used as a prophylactic growth promoter and food supplement in poultry produc-
tions in Iran and porcine productions in Brazil [59,61,92,97]. For humans, the Tetracycline
antibiotic class represent a frequent selection in the clinic, hence the importance of surveil-
lance of resistant isolates in livestock production and finished product [143].

Furthermore, as illustrated in Table 5, 248 isolates that were multi-resistant were
grouped in 27 different patterns. Noteworthy were AMP and TET, which were present in
most patterns. In contrast, NAL, STR, and SXT were uncommon.

NAL resistance is associated with poultry production, due to Quinolone use as a prophy-
lactic [70]. Nevertheless, NAL has also been observed in beef and pork meat [58,72,74,87,95].
STR is not a therapeutic agent against Salmonella infections. However, resistance to this
antibiotic is an epidemiological marker of the ACSSuT pattern, associated with S. enterica
serovar Typhimurium phage type DT104 [144].

The AMP SXT TET pattern suggests that these isolates have three different resistance
mechanisms (inhibition of cell wall synthesis, inhibition of metabolic factors, and inhibition
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of protein synthesis, respectively). Therefore, treatment could be unsuccessful resulting in
a public health problem, especially when the isolates come from food products [77].

In addition, the emergent CHL resistance in Brazil [59] and Europe (Council Regula-
tion (EEC) No. 2377/90, Annex IV) [145] resulted in its ban from use in livestock. Hence,
the council established zero tolerance to CHL and nitrofurans in food from animal origin,
because residues are toxic (causing carcinogenicity and mutagenicity). It has also been
reported that antibiotic use alters the resistome of exposed microbial communities and that
this effect can persist for decades even after use has ceased [71].

Herein, AMP CHL SXT TET was one of the most common antibiotic patterns and
was part of other more complex patterns present in more than one study. Penicillin,
sulphonamides, and tetracyclines are the first antimicrobial choice against bacterial infec-
tion in poultry diseases. However, their use as a prophylactic can pressure the persistence
of resistant phenotypes [95]. Nevertheless, in various studies [74,85,87,89], isolates were
also obtained from pork and beef meat.

Finally, in the studies conducted by Gharieb et al. (2015) and Sodagari et al. (2015),
the resistance pattern to antibiotics could be different if the authors employed the standard
described for the optimal period for CRO, CTX, IMI, and CIP antibiotics.

4.6. Salmonella Serotype Resistance Determined by MIC and Disc Diffusion

Thirteen multi-resistance patterns were determined by MIC and disc diffusion tech-
niques (Table 6), as reported by Molina et al., (2010), Donado-Godoy et al., (2015) and
Choi et al., (2015). In the study by Molina et al., (2010), the disc diffusion assay was
used to evidence β-lactamase, employing the synergism of double-disc (AMC CAZ CRO
CTX ATM). Hence, the thirteen-antimicrobial resistance patters (Table 6) came from two
different techniques.

The most frequently observed antibiotics (Table 6) were AMP, CTX, and TET, fol-
lowed by CFZ and NAL. The presence of CTX in ten resistance patterns are noteworthy
because this is a third-generation cephalosporin (of extended-spectrum and recent syn-
thesis). Additionally, in the article by Donado-Godoy et al., (2015), two isolates of the
Heidelberg serotype presented resistance to CTX and CRO (Table 6). Heidelberg serovar is
emerging as pathogenic in humans, either due to FBD or zoonosis, and is more invasive
than other serovars causing gastroenteritis. Additionally, it generates complications such
as septicemia, myocarditis, extra-intestinal infections, and death. A significant temporal
correlation has also been demonstrated between the prevalence of Ceftiofur-resistant S.
Heidelberg in chicken and human meat in Quebec (Canada) [146,147].

Resistant Salmonella to third and fourth-generation Cephalosporins became a health
problem since Cephalosporins are the choice-treatment against invasive salmonellosis
in immunosuppressed patients when salmonellosis is due to Fluoroquinolone resistant
Salmonella. Likewise, CRO use has intensified in the treatment against infections in children
due to CRO’s pharmacokinetic properties [75,79,82].

As with other antibiotics, the increase in Salmonella isolates resistant to Cephalosporins
of a broad-spectrum could be conditioned to the use of veterinary treatments. Such is the
case for feeding cattle, where Ceftiofur is used in respiratory diseases. It is also used in pro-
duction practices implemented in some countries such as Japan, where Ceftiofur was used
as a disinfectant in chicken embryos and hatched chickens until March 2012 [62,148,149].
Even though this is the case, Ceftiofur use has decreased or has been eliminated in ani-
mal production. The problem, however, has worsened since some serovars, such as the
Manhattan, maintain the IncX1 plasmid carrying the blaTEM-52 gene [148].

Finally, food production of animal origin is currently changing due to pressure for safer
food and new guidelines on the marketing of food of animal origin, among other reasons.
Consequently, in some countries, there are already restrictions on the use of antibiotics
in animal production. In some cases, producer associations have voluntarily eliminated
antibiotics in animal production. In Canada, the chicken industry has voluntarily removed
the preventive use of some antimicrobials including Ceftiofur. In the United States, some
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producers have opted not to use antibiotics in production, initiatives referred to as either
“no antibiotics ever” (NAE) or “raised without antibiotics” (RWA) [142,150,151].

5. Conclusions

The isolates on the articles herein selected came from poultry, cattle, and pigs, where
poultry was the predominant source (60% articles). Enteritidis and Typhimurium were the
most reported serovars, as evidenced by MIC antimicrobial resistance.

For S. Enteritidis, the highest percentage of resistance was against TET and the lowest
was to CIP, while for Typhimurium the highest percentage of resistance was against TET
and the lowest was to CRO. The most frequent MIC multi-resistance pattern was against
AMP AMC CEP GEN KAN STR TET (five antimicrobial classes and seven antibiotics),
observed in Montevideo and Seftenberg. For disc diffusion, the most frequent multi-
resistance pattern was AMP STR TET, detected in five articles, specifically for the Bredeney
serovar (20%). In the only study that used both MIC and disc diffusion, authors only
described percentage of resistance. No similar pattern was observed in the other studies.

Researchers should have more homogeneity in presenting results, sampling proce-
dures, sample type, identification methods, and selection of the appropriate standard [30],
as the aforementioned affect the frequency of detection for Salmonella spp., [58].

Lastly, it is necessary to punctuate the importance of Resolution WHA 73.5 compliance
for all countries which are members of the WHO [152]. Furthermore, producers of the
different guilds must reduce antibiotic prophylactic use in their production.
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Antimicrobial Agent Abbreviations in the Reports Abbreviations in This Work

Penicillins

Ampicillin AM, AMP, A, Amp, Ap AMP

β-Lactam/β-Lactamase inhibitor combinations

Amoxicillin/clavulanate AUG, AMC, Amc, AC AMC
Ampicillin-sulbactam SAM, AS SAM

Piperacillin-tazobactam PPC-TAZ, TZP TZP

Cephems

Cefazolin CFZ, KZ, CZ, CF, CZD CFZ
Cephalothin CF, CEP, CEF, KF CEP

Cefepime CPM, FEP FEP
Cefotaxime CTX, TAX, CT CTX
Ceftriaxone AXO, CRO, Co, CTR CRO

Cefoxitin FOX FOX
Cefuroxime FUR, CXM CXM
Ceftazidime CAZ, CTZ, CF CAZ

Cefoperazone CFP CFP
Cefaclor CEC, CFC CFC

Cefpodoxime CPD CPD

Monobactams

Aztreonam ATM, AZT, AM ATM
Ertapenem ETP ETP
Imipenem IPM, IMP, IMI IMI

Meropenem MEM MEM

Aminoglycosides

Gentamicin GM, G, CN, GE, Gm, GN GEN
Tobramycin TOB, To TOB
Amikacin AMI, AM, AMK, AN, Ak AMK

Kanamycin KAN, K KAN
Streptomycin S, STR, SM, EST STR

Fluoroquinolones

Ciprofloxacin CIP, Cp, CI, CPF, CPX CIP
Levofloxacin Lvx Lvx

Ofloxacin OFX OFX
Norfloxacin NOR NOR

Quinolones

Nalidixic acid NA, NAL, Nx, N NAL

Folate pathway inhibitors

Trimethoprim- sulfamethoxazole SXT, COT, ST, TMP—SLF, TS SXT
Sulfonamides SSS, SMX, sul, SUL, SMX SUL
Trimethoprim TMP, TRIM, TP, W TMP

Phenicols

Chloramphenicol C, CHL, CM, CLF, CLO, CRO CHL

Nitrofurans

Nitrofurantoin FT, NIT NIT

Tetracyclines

Tetracycline TE, TET, T, TCY TET
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