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Abstract
Background Necroptosis is a novel programmed cell death mode independent on caspase. A number of studies have 
revealed that the induction of necroptosis could act as an alternative therapeutic strategy for drug-resistant tumors as 
well as affect tumor immune microenvironment.
Methods Gene expression profiles and clinical data were downloaded from XENA-UCSC (including The Cancer Genome 
Atlas and Genotype-Tissue Expression), Gene Expression Omnibus, International Cancer Genome Consortium and Chi-
nese Glioma Genome Atlas. We used non-negative matrix factorization method to conduct tumor classification. The least 
absolute shrinkage and selection operator regression was applied to establish risk models, whose prognostic effective-
ness was examined in both training and testing sets with Kaplan–Meier analysis, time-dependent receiver operating 
characteristic curves as well as uni- and multi-variate survival analysis. Principal Component Analysis, t-distributed Sto-
chastic Neighbor Embedding and Uniform Manifold Approximation and Projection were conducted to check the risk 
group distribution. Gene Set Enrichment Analyses, immune infiltration analysis based on CIBERSORT, EPIC, MCPcounter, 
ssGSEA and ESTIMATE, gene mutation and drug sensitivity between the risk groups were also taken into consideration.
Results There were eight types of cancer with at least ten differentially expressed necroptosis-related genes which could 
influence patients’ prognosis, namely, adrenocortical carcinoma (ACC), cervical squamous cell carcinoma and endocervical 
adenocarcinoma (CESC), acute myeloid leukemia (LAML), brain lower grade glioma (LGG), pancreatic adenocarcinoma 
(PAAD), liver hepatocellular carcinoma (LIHC), skin cutaneous melanoma (SKCM) and thymoma (THYM). Patients could 
be divided into different clusters with distinct overall survival in all cancers above except for LIHC. The risk models could 
efficiently predict prognosis of ACC, LAML, LGG, LIHC, SKCM and THYM patients. LGG patients from high-risk group had 
a higher infiltration level of M2 macrophages and cancer-associated fibroblasts. There were more CD8+ T cells, Th1 cells 
and M1 macrophages in low-risk SKCM patients’ tumor microenvironment. Gene mutation status and drug sensitivity 
are also different between low- and high-risk groups in the six cancers.
Conclusions Necroptosis-related genes can predict clinical outcomes of ACC, LAML, LGG, LIHC, SKCM and THYM patients 
and help to distinguish immune infiltration status for LGG and SKCM.
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Abbreviations
TCGA   The Cancer Genome Atlas
GTEx  Genotype-Tissue Expression
GEO  Gene Express Omnibus
ICGC   International Cancer Genome Consortium
CGGA   Chinese Glioma Genome Atlas
ACC   Adrenocortical carcinoma
BLCA  Bladder urothelial carcinoma
BRCA   Breast invasive carcinoma
CESC  Cervical squamous cell carcinoma and endocervical adenocarcinoma
CHOL  Cholangiocarcinoma
COAD  Colon adenocarcinoma
DLBC  Lymphoid neoplasm diffuse large B-cell lymphoma
DLBC  Lymphoid neoplasm diffuse large B-cell lymphoma
ESCA  Esophageal carcinoma
GBM  Glioblastoma multiforme
HNSC  Head and neck squamous cell carcinoma
KICH  Kidney chromophobe
KIRC  Kidney renal clear cell carcinoma
KIRP  Kidney renal papillary cell carcinoma
LAML  Acute myeloid leukemia
LGG  Brain lower grade glioma
LIHC  Liver hepatocellular carcinoma
LUAD  Lung adenocarcinoma
LUSC  Lung squamous cell carcinoma
MESO  Mesothelioma
OV  Ovarian serous cystadenocarcinoma
PAAD  Pancreatic adenocarcinoma
PCPG  Pheochromocytoma and paraganglioma
PRAD  Prostate adenocarcinoma
READ  Rectum adenocarcinoma
SARC   Sarcoma
SKCM  Skin cutaneous melanoma
STAD  Stomach adenocarcinoma
TGCT   Testicular germ cell tumors
THCA  Thyroid carcinoma
THYM  Thymoma
UCEC  Uterine corpus endometrial carcinoma
UCS  Uterine carcinosarcoma
UVM  Uveal melanoma
FADD  Fas-associated protein with death domain
TNF-α  Tumor necrosis factor α
NCCD  Nomenclature Committee on Cell Death
TNFR1  Tumor necrosis factor receptor 1
TRADD  TNF receptor 1-associated death domain protein
TRAF2  Tumor necrosis factor and receptor related factor 2
RIPK1  Receptor-interacting protein kinase 1
CIAP1/2  Cellular inhibitors of apoptosis 1 and 2
LUBAC  Linear ubiquitin Chain assembly complex
TGF-β  Transforming growth factor-beta
TAK1/TAB  TGF-β activated kinase 1/TGF-β activated kinase 1 binding protein
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CYLD  Cylindromatosis
RIPK3  Receptor-interacting protein kinase 3
MLKL  Mixed lineage kinase domain-like
DAMPs  Damage associated molecular patterns
TAM  Tumor-associated macrophage
CXCL1  C-X-C motif chemokine ligand 1
KEGG  Kyoto Encyclopedia of Genes and Genomes
DENGs  Differentially expressed necroptosis-related genes
NMF  Non-negative matrix factorization
OS  Overall survival
DSS  Disease specific survival
PFS  Progression free survival
DFS  Disease free survival
LASSO  Least absolute shrinkage and selection operator
ROC  Receiver operating characteristic
PCA  Principal Component Analysis
t-SNE  T-distributed Stochastic Neighbor Embedding
UMAP  Uniform Manifold Approximation and Projection
GSEA  Gene Set Enrichment Analyses
TMB  Tumor mutational burden
MSI  Microsatellite instability
MHC  Major Histocompatibility Complex
FDA  Food and Drug Administration
GO  Gene Ontology
CAFs  Cancer-associated fibroblasts
Treg  Regulatory T
Tfh  Follicular helper T
TP53  Tumor protein p53
IDH1  Isocitrate dehydrogenase (NADP(+)) 1
CIC  Capicua transcriptional repressor
FUBP1  Far upstream element binding protein 1
SMARCA4  SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4
ARID1A  AT-rich interaction domain 1A
TTN  Titin
EGFR  Epidermal growth factor receptor
NF1  Neurofibromin 1
PTEN  Phosphatase and tensin homolog
RYR2  Ryanodine receptor 2
MUC16  Mucin 16, cell surface associated
ANK3  Ankyrin 3
PKHD1L1  PKHD1 like 1
GTF2I  General transcription factor IIi
HRAS  HRas proto-oncogene, GTPase
CTLA4  Cytotoxic T-lymphocyte-associated protein 4
PD-1  Programmed cell death protein 1
LAG-3  Lymphocyte-activation gene 3
CA125  Carbohydrate antigen 125
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1 Introduction

Although recent authoritative statistics showed that the death rate of cancer declined over the past 30 years, cancer 
remains one of the primary causes of death worldwide no matter in developed or developing countries, which greatly 
increases economic burden and seriously affects life quality [1]. The occurrence and development of tumor involves a 
series of extremely complex biological processes, and the treatment effect of many tumors is still not satisfactory even 
under the combination of multiple therapies. It is urgent and of great importance to find novel insights and effective 
agents for cancer.

The resistance to cell death has been identified as one of the most important characters of malignant tumors [2]. Clas-
sical theory divided cell death forms into apoptosis and necrosis, according to the whether it’s under the programmed 
regulation of genetic materials [3]. However, in the 1990s, a new pattern of necrosis-like cell death featured by non-cas-
pase dependency gradually emerged. Researchers found that, under the inhibition of key proteins in apoptosis pathway 
[such as Caspase-8 or Fas-associated protein with death domain (FADD)] and the stimulation of tumor necrosis factor α 
(TNF-α), the cell morphology was similar to the necrotic cell [4, 5]. Then, at the beginning of the twenty-first century, the 
concept and process of programmed necrosis or necroptosis was gradually proposed and elaborated [6–8]. In 2018, the 
Nomenclature Committee on Cell Death (NCCD) officially defined this special form of cell death as necroptosis [9]. Unlike 
apoptosis which involves kinds of morphological changes, such as cell shrinkage and detachment from the surrounding 
cells, nucleoplasm concentration, fragmentation of nuclear membrane and nucleolus as well as the appearance of apop-
totic bodies, several special biological events occur in cells undergoing necroptosis, including the damage of membranes, 
disorder of metabolism and the extravasation of inflammatory substances [8]. Necroptosis and apoptosis share the same 
initiating stage. When tumor necrosis factor receptor 1 (TNFR1) on the cell membrane surface is activated by TNF-α, TNF 
receptor 1-associated death domain protein (TRADD) and tumor necrosis factor and receptor related factor 2 (TRAF2) 
will be recruited by its death domain at C-terminal. Subsequently, TRADD and TRAF2 separately recognizes and binds to 
receptor-interacting protein kinase 1 (RIPK1) and cellular inhibitors of apoptosis 1 and 2 (CIAP1/2), and protein complex 
scaffold is formed by linear ubiquitin Chain assembly complex (LUBAC). Then, with the combination of these molecules 
and transforming growth factor-beta (TGF-β) activated kinase 1/TGF-β activated kinase 1 binding protein (TAK1/TAB) 
complex, the supramolecular structure (TNFR1 Complex I) come into being [10]. The deubiquitination of RIPK1 by the 
cylindromatosis (CYLD) can result in the cleavage of Complex I and the dissociation of RIPK1 as well as TRADD, where 
different endings of the cell happen. Complex IIa constituted of TRADD, FADD as well as Caspase-8 and Complex IIb 
composed of PIPK1, receptor-interacting protein kinase 3 (RIPK3), FADD and Caspase-8 would lead cell to apoptosis. The 
catalytic activity inhibition of caspase-8 would allow RIPK1 to phosphorylate RIPK3, which recruits mixed lineage kinase 
domain-like (MLKL) to form necroptosome [11, 12]. MLKL migrates to cell membrane to result in necroptosis.

Necroptosis played an indispensable role in the maintenance of internal environment homeostasis and the progression 
of several inflammation-related diseases, such as neurodegenerative disease, ischemia–reperfusion injury and pathogen 
infection [10, 13]. A number of studies have also revealed the significance of necroptosis induction at cancer treatment 
in recent years, which especially worked for the apoptosis-resistant tumors [14]. Meanwhile, with the rise of immuno-
therapy, the relationship between different forms of cell death and tumor immunity has gradually attracted extensive 
attention [15]. There was no effective anti-tumor immune response observed in the tumor area where apoptosis or 
necrosis occurred. However, increasing number of studies have revealed the influence of necroptosis on tumor immune 
microenvironment, where the results were opposite in different tumor models. Damage associated molecular patterns 
(DAMPs) and various cytokines and chemokines which leaked out of necroptotic cells of colon carcinoma and melanoma 
could strengthen cytotoxic function of CD8+ T cells and the activity of antigen-presenting cells [16–18]. However, the 
necroptotic cells of pancreatic ductal adenocarcinoma enhanced the immunosuppressive function of tumor-associated 
macrophage (TAM) by C-X-C motif chemokine ligand 1 (CXCL1) and Mincle signaling [19]. The studies also showed that 
the synergistic effect of necroptosis-promoting agents and immune checkpoint inhibitors (ICIs) could trigger long-term 
tumor-suppression effect in mouse models [17, 18], indicating that the necroptosis induction of tumor cell was probably 
an effective complement to immunotherapy.

In this study, we comprehensively analyzed the necroptosis-related genes in different kinds of cancers based on data 
from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Gene Express Omnibus (GEO), International 
Cancer Genome Consortium (ICGC) and Chinese Glioma Genome Atlas (CGGA). We developed novel tumor classification 
and constructed risk models based on necroptosis-related genes to predict patients’ clinical outcomes. Immune infiltra-
tion, gene mutation and drug sensitivity were also taken into consideration.



Vol.:(0123456789)

Discover Oncology           (2022) 13:17  | https://doi.org/10.1007/s12672-022-00477-2 Research

1 3

2  Methods

2.1  Gene expression and clinical data collection

We obtained gene profiles, clinical features and survival information of 33 TCGA cancers from XENA-UCSC (https:// xena. 
ucsc. edu/). For thirteen types of cancer with no or very limited number of corresponding normal tissue samples (< 10), 
we obtained gene expression data of normal samples from GTEx at XENA-UCSC, namely, adrenocortical carcinoma 
(ACC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), lymphoid neoplasm diffuse large 
B-cell lymphoma (DLBC), glioblastoma multiforme (GBM), acute myeloid leukemia (LAML), brain lower grade glioma 
(LGG), ovarian serous cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD), rectum adenocarcinoma (READ), 
skin cutaneous melanoma (SKCM), testicular germ cell tumors (TGCT), thymoma (THYM) and uterine carcinosarcoma 
(UCS). Because of no relevant samples for pheochromocytoma and paraganglioma (PCPG) and sarcoma (SARC) found 
in GTEx, we only used TCGA data for the analysis. Mesothelioma (MESO) and uveal melanoma (UVM) were excluded 
from this study, for there were no normal samples in neither TCGA nor GTEx. Necroptosis-related gene list (hsa04217) 
was found in Kyoto Encyclopedia of Genes and Genomes (KEGG). The details of necroptosis-related genes were shown 
in Supplementary file 1.

The other cohorts with patients’ clinical and survival information were obtained for ACC, CESC, LAML, LGG, liver hepa-
tocellular carcinoma (LIHC), PAAD, SKCM from GEO, ICGC and CGGA. The details are as listed:

ACC: GSE19750 [20] https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE19 750.
GSE33371 [21] https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE33 371.
CESC: GSE44001 [22] https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE44 001.
LAML: GSE37642 [23] https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE37 642.
LGG: CGGA_693, CGGA_325 [24] http:// www. cgga. org. cn/.
LIHC: ICGC (LIRI-JP) https:// icgc. org/.
PAAD: ICGC (PACA-AU) https:// icgc. org/.
SKCM: GSE65904 [25] https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE65 904.

2.2  Identification of differentially expressed necroptosis‑related genes (DENGs), survival analysis and tumor 
classification

To identify DENGs between tumors and the corresponding normal tissues, the “limma” R package was applied, with |log2 
(fold change)| > 1 and false discovery rate (FDR) < 0.05 as the thresholds. Then, we conducted survival analysis of DENGs 
in each particular type of cancer. The cancer types with at least 10 DENGs that significantly influence patients’ overall 
survival (OS) were selected. Next, we constructed chord diagrams of the prognostic DENGs in the chosen cancers by 
using “circlize” and “corrplot” R packages, where Pearson correlation analysis was performed. The correlation at protein 
level was visualized by STRING (Version: 11.5, https:// cn. string- db. org/) through “Multiple protein” module with the 
“Homo sapiens” and “low confidence (0.150)” as the main parameters. Finally, based on prognostic DENGs, we used the 
non-negative matrix factorization (NMF) to conducted cancer classification. “NMF” R package was used, with “brunet”, 
“10 iterations” and “clusters k ranks from 2 to 10” as the main parameters. Kaplan–Meier analysis was performed between 
patients’ survival and the different clusters, where four survival endpoints were taken into consideration, namely, OS, 
disease specific survival (DSS), progression free survival (PFS) and disease free survival (DFS).

2.3  Construction and validation of DENGs‑based risk model

First, batch corrections were performed between TCGA cohorts and the corresponding additional cohorts of the selected 
cancers by “sva” R package. Then TCGA and additional cohorts were appointed as the training sets and testing sets sepa-
rately. For each cancer the training set was used to establish necroptosis-related risk model by the least absolute shrink-
age and selection operator (LASSO) regression, employing “glmnet” R package, with fivefold cross-validation applied to 
optimize the model. Patients were classified into low- and high-risk groups according to the median risk score of training 
set. Kaplan–Meier analysis of OS and the risk groups was conducted. To assess the predictive efficiency of the risk model, 

https://xena.ucsc.edu/
https://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19750
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33371
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44001
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37642
http://www.cgga.org.cn/
https://icgc.org/
https://icgc.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE65904
https://cn.string-db.org/
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time-dependent receiver operating characteristic (ROC) curves of 1, 3, 5-years were made using “survivalROC” R package. 
Uni- and multi-variate survival analyses were employed to examine whether the risk score could independently affect 
patients’ prognosis. Model genes expression heat maps were constructed with the increase of risk score by “pheatmap” 
R package, and some clinical factors between patients from low- and high-risk groups were also compared by the use of 
Fisher’s exact test. Principal Component Analysis (PCA), t-distributed Stochastic Neighbor Embedding (t-SNE) and Uniform 

Fig. 1  Identification of differentially expressed necroptosis-related genes (DENGs) and the investigation of their prognostic effect. Top 8 can-
cers with largest number of prognostic DENGs were chosen. The heat maps and forest plots showed the expression state and the prog-
nostic effect of DENGs in adrenocortical carcinoma (ACC) (a), cervical squamous cell carcinoma endocervical adenocarcinoma (CESC) (b), 
acute myeloid leukemia (LAML) (c), brain lower grade glioma (LGG) (d), liver hepatocellular carcinoma (LIHC) (e), pancreatic adenocarcinoma 
(PAAD) (f), skin cutaneous melanoma (SKCM) (g) and thymoma (THYM) (h). |log2 (fold change)| > 1 and false discovery rate (FDR) < 0.05 were 
used as the screening criteria. Logrank p value and hazard ratio were presented beside each forest plot
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Manifold Approximation and Projection (UMAP) were carried out to verify the risk-group assignments according to the 
model genes expression data, where “stats”, “Rtsne” and “umap” R packages were used. Distribution of patients’ risk score 
and survival state was also analyzed. The same procedures were performed in the testing sets.

2.4  Gene set enrichment analyses (GSEA)

In both training and testing sets, GSEA was conducted between low- and high-risk groups by “limma”, “org.Hs.eg.db”, 
“clusterProfiler”, “DOSE” and “enrichplot” R packages, with “kegg.v7.4.symbols” and “go.v7.4.symbols” downloaded from 
the MSigDB database. |Normalized enrichment score (NES)| > 1.5 and adjusted p-value < 0.05 were used as the screening 
criteria.

Fig. 2  Correlation among prognostic DENGs. Chord diagrams and protein protein interaction networks (a–h) showed the correlation among 
the prognostic DENGs at mRNA and protein level in the eight cancers. The width and color of the lines between genes in chord diagrams 
represents the Pearson correlation coefficients and the sources of the protein-interactions were denoted with lines of distinct colors
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2.5  Investigation of tumor immune microenvironment

Five algorithms were applied to assess immune infiltration status of each patient in both training and testing sets, namely, 
CIBERSORT, EPIC, MCPcounter, ssGSEA and ESTIMATE. Then, the immune infiltration level was compared between patients 
from low- and high-risk groups with Wilcoxon signed-rank test. The Spearman’s correlation analysis of risk score and 
immune score, stromal score as well as ESTIMATE score was also conducted. Then, we compared tumor mutational burden 
(TMB) and microsatellite instability (MSI) between the patients from the two risk groups with Wilcoxon signed-rank test, 
and investigated the relationship of risk score and TMB as well as MSI using Spearman’s correlation analysis. In addition, 
we explored whether there existed a correlation of risk score and immune related genes expression with Pearson cor-
relation analysis, including immunoinhibitor genes, immunostimulator genes, Major Histocompatibility Complex (MHC) 
genes, chemokine genes and chemokine receptor genes. The corresponding genes were acquired from TISIDB (http:// 
cis. hku. hk/ TISIDB/ index. php).

2.6  Analysis of gene mutation

Somatic mutation data based on “VarScan2” software was acquired for TCGA samples. Then, we made oncoplots to show 
the mutation status of the top 20 most frequently mutated genes in low- and high-risk groups, with “maftools” R package. 
The mutation rate of the top 20 genes was compared by Fisher’s exact test.

2.7  Drug sensitivity analysis

We downloaded the gene expression and z-score matrix from CellMiner (https:// disco ver. nci. nih. gov/ cellm iner/ home. 
do) and calculated the risk score of each sample according to the genes and corresponding coefficient of the different 
cancers’ risk model. Then, we investigated whether there existed any correlation of risk score and the sensitivity of Food 
and Drug Administration (FDA)-approved drugs with Pearson correlation analysis.

3  Results

3.1  Identification of prognostic DENGs in TCGA‑cancers

As shown in Fig. 1, there were eight types of cancer with at least ten prognostic DENGs, namely, ACC, CESC, LAML, LGG, 
LIHC, PAAD, SKCM and THYM. The situation of other cancers was shown in Fig. S1, and no prognostic DENGs was found in 
colon adenocarcinoma (COAD) (d), stomach adenocarcinoma (STAD) (t), thyroid carcinoma (THCA) (u) and uterine corpus 
endometrial carcinoma (UCEC) (v). Notably, there were no DENGs observed in SARC. We also revealed the correlation 
between the prognostic DENGs in the eight cancers at both transcription and translation level (Fig. 2).

3.2  Tumor classification

We used NMF to classify cancer patients into different subgroups according to the expression profiles of the prog-
nostic DENGs. NMF rank survey with multiple parameters and the consensus matrix heat maps were displayed at K 
value from 2 to 10 for ACC, CESC, LAML, LGG, LIHC, PAAD, SKCM and THYM (Fig. S2). The optimal K value was chosen 
for each cancer and the corresponding classification was shown (Fig. 3a, c, e, g, i, k, m, o). Notably, there existed sig-
nificant difference of OS among the subgroups in all cancers except for LIHC (Fig. 3b, d, f, h, j, l, n, p).

3.3  LASSO regression risk models

The LASSO coefficient spectrum of the selected necroptosis-related genes for ACC, CESC, LAML, LGG, LIHC, PAAD, SKCM 
and THYM were shown in Figs. 4a, g, m, s and 5a, g, m, s. Figures 4b, h, n, t and 5b, h, n, t showed the fivefold cross-vali-
dation. The risk score calculation formulas of the eight cancers were shown in Supplementary file 2. In ACC, LAML, LGG, 
LIHC and SKCM, low-risk patients had obviously better OS compared with patients from high-risk group (Figs. 4c, o, u, 
5c, o), and the time-dependent ROC curves of 1, 3 and 5 years in training and testing sets revealed the good efficiency 

http://cis.hku.hk/TISIDB/index.php
http://cis.hku.hk/TISIDB/index.php
https://discover.nci.nih.gov/cellminer/home.do
https://discover.nci.nih.gov/cellminer/home.do
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Fig. 3  Non-negative matrix factorization (NMF) classification based on prognostic DENGs. The NMF consensus matrix heat maps based on 
optimal K value showed the classification status of ACC (a), CESC (c), LAML (e), LGG (g), LIHC (i), PAAD (k), SKCM (m) and THYM (o). Kaplan–
Meier plots (b, d, f, h, j, l, n, p) showed the relationship of different clusters and overall survival (OS), disease specific survival (DSS), progres-
sion free survival (PFS) as well as disease free survival (DFS) in the eight cancers, with logrank p value marked in the graphs
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of our risk models at predicting patients’ prognosis (Figs. 4d, p, v, 5d, p). The risk score could independently influence 
patients’ prognosis in both training and testing sets (Figs. 4f, r, x, 5f, r). However, In CESC and PAAD, we failed to observe 
the statistically significant difference of patients’ OS between low- and high-risk groups in the testing sets (Figs. 4i, 5i). 
We didn’t find a THYM cohort with sufficient prognostic information, so the analyses were only conducted in TCGA 
cohort (Fig. 5s–x). For ACC, LAML, LGG, LIHC, SKCM and THYM, the variation trend of model genes expression with the 
increase of risk score was shown, along with the comparison of some clinical factors between low- and high-risk groups 
(Fig. 6a, d, g, j, m, p). Dimensionality reduction analysis showed that the risk groups were largely in accordance with the 
two dimensional pattern of PCA, t-SNE and UMAP distribution, while in the testing set of LGG (CGGA cohort), the results 
were less satisfactory (Fig. 6b, e, h, k, n, q). With the increase of risk score, patients’ survival period was shortened and the 
number of deaths increased (Fig. 6c, f, i, l, o, r).

3.4  GSEA result

Gene Ontology (GO) and KEGG pathways related to the cell cycle were enriched in the high-risk group of ACC (Fig. 7a, 
c) and LIHC (Fig. 7e, g) no matter at training or testing sets, such as cell cycle checkpoint, cell cycle G1-S phase transi-
tion, cell cycle G2-M phase transition, chromosome segregation, DNA dependent DNA replication and splicesome, with 
similar situation observed in low-risk group of THYM (Fig. 7j). In addition, innate and adaptive immune-related pathways 
were enriched in LGG high-risk group (Fig. 8e, g) and SKCM low-risk group (Fig. 8j, l) no matter at training or testing sets, 
including activation of immune response, adaptive immune response, antigen presenting and presentation as well as 
complement and coagulation cascades. Surprisingly, in the analysis of LAML, we found visible enrichment discrepancies 
in high-risk group at training and testing sets, with immune-related or cell-circle-related pathways separately enriched 
in the two sets (Fig. 8a, c).

3.5  Immune infiltration analysis of LGG and SKCM

Based on the GSEA results above, we further explored whether there existed any immune infiltration difference between 
low- and high-risk groups in LGG and SKCM. According to five immune infiltration assessment algorithms, high-risk LGG 
patients and low-risk SKCM patients had higher level of immune infiltration and function at both training and testing sets, 
which accorded with the GSEA enrichment results. For LGG patients, the infiltration level of B cells, plasma cells, CD8+ 
T cells, macrophages, endothelial cells, cancer-associated fibroblasts (CAFs) and dendritic cells was higher in high-risk 
group (Fig. 9a–d), while the situation of NK cells (Fig. 9a–d) and regulatory T (Treg) cells (Fig. 9a, d) was different between 
the various algorithms. For SKCM patients, the infiltration level of B cells, plasma cells, CD8+ T cells, CD4+ T cells (Th1 
cells, Th2 cells), gammadelta T cells, macrophages, endothelial cells, dendritic cells, follicular helper T (Tfh) cells and Treg 
cells was higher in low-risk group (Fig. 9f–i). As shown in Fig. 9e, immune score, stromal score and ESTIMATE score were 
higher in LGG patients from high-risk group at both training and testing sets, which also positively correlated with the 
patients’ risk score. For SKCM patients, the results were opposite (Fig. 9j).

Then, we took TMB and MSI into consideration and found that high-risk LGG patients possessed higher TMB level 
(Fig. 10a), and TMB increased with risk score (Fig. 10b). Next, we explored the relationship of risk score and the gene 
expression of immunoinhibitors, immunostimulators, MHCs, chemokines and chemokine receptors. As shown in 
Fig. 10i–m, the expression of most immune-related genes positively correlated with risk score of LGG patients in both 
training and testing sets, while the results were opposite for SKCM patients (Fig. 10n–r).

3.6  Gene mutation status

We explored gene mutation status between low- and high-risk groups in TCGA cohorts of ACC, LAML, LGG, LIHC, 
SKCM and THYM, and screened out the top 20 genes with the highest mutation frequency. Higher mutation rate of 
tumor protein p53 (TP53) occurred in ACC and LIHC patients from high-risk group (Fig. 11a, d). For LAML and SKCM 

Fig. 4  Risk model construction and validation based on prognostic DENGs in ACC, CESC, LAML and LGG. LASSO coefficient spectrum of 
the selected genes (a, g, m, s) and the fivefold cross-validation (b, h, n, t) for variable selection were shown. Kaplan–Meier plots (c, i, o, u) 
showed the OS difference between patients from low- and high-risk groups sorted by median risk score of the training set, with logrank p 
value marked in the graphs. Time-dependent receiver operating characteristic (ROC) curves of 1, 3, 5-years (d, j, p, v) showed the predictive 
efficiency of the risk model, with area under curve (AUC) values noted in the graphs. The forest plots showed the results of univariate (e, k, q, 
w) and multivariate (f, l, r, x) survival analyses
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Fig. 5  Risk model construction and validation based on prognostic DENGs in LIHC, PAAD, SKCM and THYM. LASSO coefficient spectrum of 
the selected genes (a, g, m, s) and the fivefold cross-validation (b, h, n, t) for variable selection were shown. Kaplan–Meier plots (c, i, o, u), 
time-dependent ROC curves of 1, 3, 5-years (d, j, p, v) and forest plots (e, f, k, l, q, r, w, x) showed the prognostic effectiveness of the risk 
models
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Fig. 6  Model genes expression, dimensionality reduction analysis and distribution of risk score and survival state. The heat maps (a, d, g, j, m, p) 
showed the variation trend of model genes expression with the increase of risk score and the comparison of several clinical factors between low- 
and high-risk groups in the six selected cancers. Fisher’s exact test was used. *p < 0.05; **p < 0.01; ***p < 0.001. Principal Component Analysis (PCA), 
t-distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP) (b, e, h, k, n, q) confirmed the 
stratification of patients into low- and high-risk clusters. The scatter diagrams (c, f, i, l, o, r) showed the condition of patients’ risk score and distribu-
tion of their survival time and state, with dotted line separating patients into low- and high-risk groups



Vol:.(1234567890)

Research Discover Oncology           (2022) 13:17  | https://doi.org/10.1007/s12672-022-00477-2

1 3

patients from low-risk group and LIHC patients form high-risk group, higher mutation rate of mucin 16, cell surface 
associated (MUC16) was observed (Fig. 11b, d, e). In addition, isocitrate dehydrogenase (NADP(+)) 1 (IDH1), capicua 
transcriptional repressor (CIC), far upstream element binding protein 1 (FUBP1), SWI/SNF related, matrix associ-
ated, actin dependent regulator of chromatin, subfamily a, member 4 (SMARCA4) and AT-rich interaction domain 
1A (ARID1A) were more likely to mutate in LGG patents from low-risk group. However, higher mutation rate of titin 
(TTN), epidermal growth factor receptor (EGFR), neurofibromin 1 (NF1), phosphatase and tensin homolog (PTEN) and 

Fig. 7  Gene Set Enrichment Analyses (GSEA) in ACC, LIHC and THYM. GSEA shows the top 5 gene ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways enriched in low- and high-risk groups of ACC (a–d) and LIHC (e–h) at both training and testing sets. 
For THYM (i, j), GSEA was only conducted in TCGA cohort. Normalized enrichment score (NES), adjusted p-value and q-value were marked in 
the plots
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Fig. 8  GSEA in LAML, LGG and SKCM. GSEA shows the top 5 GO and KEGG pathways enriched in low- and high-risk groups of LAML (a–d), 
LGG (e–h) and SKCM (i–l) at both training and testing sets. NES, adjusted p-value and q-value were marked in the plots
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ryanodine receptor 2 (RYR2) was found in high-risk LGG patents (Fig. 11c). The mutations of general transcription 
factor IIi (GTF2I) and HRas proto-oncogene, GTPase (HRAS) were more common in high-risk THYM patients (Fig. 11f ).

3.7  Correlation between risk score and drug sensitivity

Finally, we paid attention to the drug selection. As shown in Fig. 12a, d, with the increase of risk score, ACC and LIHC 
may be more sensitive to adenine nucleotide analogues, such as nelarabine, clofarabine and cladribine. For high-risk 
LGG and LAML/SKCM with low-risk score, dasatinib was perhaps a good choice (Fig. 12b, c, e). For THYM, the irofulven 
sensitivity positively correlated with risk score, but a negative correlation was detected between the sensitivity of 
vinorelbine, vinblastine as well as eribulin mesilate and risk score (Fig. 12f ).

Fig. 9  Immune infiltration analysis. The box plots and violin plots showed the difference of immune infiltration level and immune function 
between low- and high-risk groups of LGG and SKCM patients based on CIBERSORT (a, f), EPIC (b, g), MCPcounter (c, h) and ssGSEA (d, i), 
with Wilcoxon signed-rank test applied. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. The scatter diagrams (e, j) showed the relationship 
between risk score and immune score, stromal score as well as ESTIMATE score, with Spearman’s correlation coefficient R value and p value 
marked in the plots
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4  Discussion

Necroptosis is a novel programmed cell death mode independent on caspase, with increasing evidence of anti-tumor 
effects discovered in recent years. As we know, traditional chemotherapeutic agents usually induced cell apoptosis 
to exert anti-tumor effects [26]. However, tumor cells are inherently anti-apoptotic. In spite of the prevalence of 
heterogeneity in various tumors, there’s a high possibility that the subpopulation of tumor cells with greater anti-
apoptotic selection superiority will gradually clone and govern the entire tumor as the treatment proceeds. There-
fore, drug resistance has become a common fact during clinical practice, and tumors which relapse or progress after 
treatment are extremely difficult to deal with [26]. Thus, it became a natural idea to induce other types of cell death 
for drug-resistant tumors, and alternative choices mainly included ferroptosis, pyroptosis as well as necroptosis [27]. 
Numerous studies have proven that the transition of apoptosis to necroptosis or the direct induction of necroptosis 
could make for overcoming drug resistance and inhibiting tumor development for various cancers, such as acute 
myeloid leukemia [28, 29], breast cancer [30], osteosarcoma [31], nasopharyngeal carcinoma [32], prostate cancer 
[33, 34] and colon cancer [35, 36].

In this study, based on TCGA and GTEx data, we identified eight types of cancer with the highest number of prog-
nostic DENGs and for the first time sorted ACC, CESC, LAML, LGG, LIHC, PAAD, SKCM and THYM patients into different 
subgroups based on necroptosis-related genes. Kaplan–Meier analysis of four follow-up endpoints showed that the 
classification was excellent in distinguishing patients’ OS in all cancers above except for LIHC. Then, the risk models 
were set up. Unfortunately, the risk models didn’t work at testing sets of CESC and PAAD, but we do find a method 
to efficiently distinguish patients’ OS in ACC, LAML, LGG, LIHC and SKCM. The testing set of LAML (GSE37642) lacked 
M3-subtype patients and the testing set of LGG (CGGA) only consisted of Asian patients, so there existed some intrin-
sic discrepancies between TCGA cohorts (used as training set) and these testing sets. This might cause the inconsist-
ency of AUC values between training and testing set. Notably, among these five cancer types, ACC is relatively less 
studied. As a rare malignancy with great complexity, the 5-year DFS rate of ACC was only about 30%, and there still 
existed many therapeutic challenges [37, 38]. Due to the heterogeneity of ACC, the prognostic efficiency of the most 
widely accepted TNM staging was inevitably limited [39]. Thus, it is necessary to seek new risk factors for ACC patients. 
Our ACC risk model based on necroptosis-related genes has good predictive ability for patient’ survival, which might 
provide meaningful references for patients’ prognosis in the future clinical practice.

Although kinds of immunotherapies have achieved remarkable success in cancer treatment, only limited number of 
patients could exhibit long-lasting anti-tumor response, where tumor immune infiltration status played a significant 
role [40]. Identification of cancer patients with abundant infiltration of immune cells is of great importance to screen 
out potential candidates for immunotherapy. Our GSEA results of SKCM and LGG cohorts highlighted immune-related 
GO and KEGG pathways in low- and high- risk groups, which along with results of the estimated immune infiltration 
level based on five algorithms could contribute to the distinction of “cold” and “hot” tumors.

As we know, immunotherapies have not acquired satisfactory results in glioma patients in recent years, including 
adoptive lymphocyte transfer, tumor associated vaccine, viral-based therapy and ICIs, where T-cell exhaustion played 
a dominant role, and tumor heterogeneity, blood brain barrier as well as lack of immune organs in central nerve 
systems also shared the blame [41]. Although there is a higher CD8+ T cells infiltration level in high-risk LGG patients, 
we failed to observe the difference of cytotoxic lymphocytes between the two risk groups according to MCPcounter. 
Noteworthy is the infiltration level of M2 macrophages and CAFs is higher in high-risk LGG patients. Recent studies 
have revealed the fact that M2 macrophages played a vital part in the development of glioma by promoting tumor 
invasion and metastasis, facilitating tumor stemness as well as suppressing immunity of the tumor area and the whole 
body [42, 43]. CAFs were involved in tumor cell replication, angiogenesis, chemotherapy insensitivity and the sup-
pression of CD8+ T cell function [44, 45]. M2 macrophages and CAFs have been considered as promising therapeutic 
targets by number of studies [44–46], and high-risk LGG patients perhaps benefit from the agents which inhibit M2 
macrophages or CAFs.

Unlike the situation in LGG, the infiltration level of immune cells widely known for suppressing tumor develop-
ment is higher in low-risk SKCM patients, including CD8+ T cells, Th1 cells and M1 macrophages. According to the 
correlation analysis of risk score and immune-related gene expression, SKCM patients from low-risk group also pos-
sessed a higher gene expression level of plenty of immunosuppressive molecules, some of which were identified as 
immune checkpoints and their therapeutic potential has been proven by numerous studies. ICIs were initially studied 
and applied for the clinical application in melanoma, and Ipilimumab, targeting cytotoxic T-lymphocyte-associated 
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protein 4 (CTLA4), is the first drug in history to significantly prolong the survival period of patients with this highly 
malignant tumor [47]. Programmed cell death protein 1 (PD-1) antibody was also approved for the treatment of 
advanced melanoma by FDA in the year of 2014 and phase 3 clinical trial of Relatlimab, targeting lymphocyte-activa-
tion gene 3 (LAG-3), has met its primary endpoint of PFS, which may offer new hope for SKCM patients in the future. 
It needs to be mentioned that there existed a higher mutation rate of MUC16 in low-risk SKCM patients. MUC16, also 
known as carbohydrate antigen 125 (CA125), ranks third in the list of gene mutation frequency of cancers, whose 
mutation occurs most frequently in SKCM [48]. The study also showed that MUC16-mutated melanoma patients 
treated with ICIs had significantly longer OS. Given that our study could help to recognize SKCM patients with higher 
level of immune infiltration and immune-checkpoint genes expression as well as higher MUC16 mutation rate, it is 
reasonable to believe that low-risk SKCM patients are more likely to benefit from ICIs treatment.

Although we failed to find a cohort to check the predictive ability of prognosis in the THYM risk model, there were 
still some results which could arouse our attention. First, the nine-genes risk model successfully assigned all death 
cases into high-risk group, and the following time-dependent ROC analysis exhibited an excellent predictive ability 
of the model with 1, 3, 5-year OS area under the ROC curve up to 0.854, 0.936 and 0.966. Regardless of the application 
of which dimensionality reduction method, the cases could be obviously divided into low- and high-risk clusters. 
Thymoma has a low incidence and favorable prognosis, so the associated studies are relatively limited compared with 
other common or highly malignant tumors. For patients classified as high-risk, their review period perhaps needs to 
be shortened so that the tumor progression can be detected and treated in time.

For THYM, it is still controversial whether adjuvant radiotherapy or chemotherapy should be applied after surgery. 
According to our result, some of the patients classified as high-risk might be the potential candidates for postopera-
tive adjuvant therapies. We noticed a decline in the sensitivity of tumor cells to vincaleukoblastinum drugs with the 
increase of risk score based on THYM risk model. However, irofulven exhibited anti-tumor activity in cells with high 
risk score, which is a kind of cytotoxic drug proven to be an effective agent for tumors with DNA repair deficiency by 
several studies [49, 50]. This finding may provide some useful information for the clinical chemotherapy of THYM. In 
addition, we noticed the mutation rate of GTF2I in the high-risk patients was about twice as high as that in low-risk 
patients. Researchers have found that there existed a high mutation rate of GTF2I in indolent thymomas, which was 
extremely rare in aggressive thymomas and thymic carcinomas [51]. Mutant GTF2I, identified as a novel tumorigenic 
driver, can promote growth, proliferation and transformation of epithelial cell as well as alter glucose and lipid 
metabolism [51, 52], and whether it could work as a therapeutic target requires further research.

5  Conclusions

In summary, this is the first study to comprehensively investigate the genes of necroptosis pathway in all TCGA 
cancers. We conducted NMF to classify ACC, CESC, LAML, LGG, PAAD, SKCM and THYM patients into subgroups with 
different prognosis. The risk model based on necroptosis-related genes can effectively predict the prognosis of ACC, 
LAML, LGG, LIHC, SKCM and THYM patients. The risk score contributes to the identification of immune infiltration 
level for LGG and SKCM patients, which could help to screen out the potential candidates who might benefit from 
immunotherapy. Genetic mutation status and drug sensitivity were also different for patients from different risk 
groups, which may offer meaningful information for the future clinical practice.

Fig. 10  Tumor mutational burden (TMB), microsatellite instability (MSI) and immune-related genes expression analysis. Bar graphs showed 
the comparison of TMB (a, e) and MSI (c, g) between low- and high-risk groups and scatter diagrams showed the correlation between TMB 
(b, f) or MSI (d, h) and the risk score of LGG and SKCM patients. Wilcoxon signed-rank test p value and Spearman’s correlation coefficient R 
value as well p value were marked in the graphs. The correlations between risk score and the expression of immunoinhibitor genes (i, n), 
immunostimulator genes (j, o), MHC genes (k, p), chemokine genes (l, q) as well as chemokine receptor genes (m, r) were shown, with “*” 
representing Pearson correlation p value < 0.05
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Fig. 11  Gene mutation status in low- and high-risk groups. The oncoplots showed the mutation status of the top 20 most frequently 
mutated genes of ACC (a), LAML (b), LGG (c), LIHC (d), SKCM (e) and THYM (f) at low- and high-risk groups, with different colors referring to 
gene mutation types. The mutation rate of each gene between the two risk-groups was compared by Fisher’s exact test, and the genes with 
higher mutation rate in low- or high-risk groups were highlighted by blue or red color accordingly
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Fig. 12  Drug sensitivity exploration. We calculated the risk score of each CellMiner sample according to the genes and coefficient of the risk models 
of the six cancers. The scatter diagrams showed the correlation between risk score and sensitivity (z-score) of Food and Drug Administration (FDA)-
approved drugs in ACC (a), LAML (b), LGG (c), LIHC (d), SKCM (e) and THYM (f), with Pearson correlation coefficient (Cor) and p value marked above 
the graphs
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