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Combined Use of Texture Features and Morphological Classification
Based on Dynamic Contrast-enhanced MR Imaging: Differentiating

Benign and Malignant Breast Masses with High
Negative Predictive Value

Shigeharu Ohyu1*, Mitsuhiro Tozaki2, Michiro Sasaki3, Hisae Chiba4,
Qilin Xiao5, Yasuko Fujisawa1, and Yoshiaki Sagara2

Purpose: We evaluated the diagnostic performance of the texture features of dynamic contrast-enhanced
(DCE) MRI for breast cancer diagnosis in which the discriminator was optimized, so that the specificity
was maximized via the restriction of the negative predictive value (NPV) to greater than 98%.

Methods: Histologically proven benign andmalignantmass lesions of DCEMRI were enrolled retrospectively.
Training and testing sets consist of 166 masses (49 benign, 117 malignant) and 50 masses (15 benign,
35 malignant), respectively. Lesions were classified via MRI review by a radiologist into 4 shape types: smooth
(S-type, 34 masses in training set and 8 masses in testing set), irregular without rim-enhancement (I-type, 60 in
training and 14 in testing), irregular with rim-enhancement (R-type, 56 in training and 22 in testing), and
spicula (16 in training and 6 in testing). Spicula were immediately classified as malignant. For the remaining
masses, 298 texture features were calculated using a parametric map of DCE MRI in 3D mass regions. Masses
were classified into malignant or benign using two thresholds on a feature pair. On the training set, several
feature pairs and their thresholds were selected and optimized for each mass shape type to maximize specificity
with the restriction of NPV> 98%. NPV and specificity were computed using the testing set by comparison with
histopathologic results and averaged on the selected feature pairs.

Results: In the training set, 27, 12, and 15 texture feature pairs are selected for S-type, I-type, and R-type
masses, respectively, and thresholds are determined. In the testing set, average NPV and specificity using
the selected texture features were 99.0% and 45.2%, respectively, compared to the NPV (85.7%) and
specificity (40.0%) in visually assessed MRI category-based diagnosis.

Conclusion: We, therefore, suggest that the NPV of our texture-based features method described per-
forms similarly to or greater than the NPV of the MRI category-based diagnosis.

Keywords: breast cancer, magnetic resonance imaging, benign mass, texture feature, diagnostic performance

Introduction

Dynamic contrast-enhanced (DCE) MRI has a high sensitivity
(88%–92%) and reasonable specificity (67%–77%) in the diag-
nosis of breast lesions.1,2 For the differentiation of benign and
malignant breast lesions, a kinetic curve analysis of DCE MRI
and texture-based features of kinetic maps have been used in
recent studies.3–5 Karahaliou et al.3 applied texture features of
DCEMRI for the diagnosis of breast lesions, and an area under
receiver-operating characteristic curve (ROC-AUC) greater
than 0.9was obtained by assessing the heterogeneity of features.
Gibbs et al.4 reported a sensitivity of 56%–67% and specificity
of 97%–100% in the characterization of sub-1 cm breast lesions
using texture features of DCE MRI. They obtained a negative
predictive value (NPV) of 89%–91% in subjects, where 70%
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had benign lesions and 30% malignant lesions. These studies
suggest that texture-based features of DCEMRI have the poten-
tial to achieve high diagnostic performance in the differentiation
of benign and malignant breast lesions.

In studies discriminating benign and malignant lesions
using features extracted from DCE MRI, ROC-AUC is fre-
quently used as the criterion for optimizing the discriminator,
including the selection of features.3,5 However, the discrimi-
nator with the highest ROC-AUC does not always have the
best balance of sensitivity and specificity necessary for a
decision on patient management.

We postulated that the criterion for the optimization of the
discriminator including the feature selection should be consis-
tent with the clinical requirement. Breast imaging reporting and
data system (BI-RADS)6 is widely used in the reporting of
breast MRI. In BI-RADS MRI, category 3 (probably benign)
is described as an examination with a likelihood of malignancy
> 0% but ≤ 2% and that a short-interval of patient follow-up is
recommended for management. Examinations in categories 4
(suspicious) and 5 (highly suggestive of malignancy) are
described as having a likelihood of malignancy ≥ 2% and that
an invasive tissue diagnosis (biopsy) is recommended. In a
diagnostic examination, those lesions with a category 3 or less
are classified as negative (benign decision), and categories 4 and
5 are classified as positive (malignant decision). Thus, the NPV
of diagnostic examination should optimally be 98% or larger. A
very high NPV is required in order to reduce the potential for a
malignant lesion to be classified inaccurately as negative, so the
decision to do an invasive examination is not selected.

For the optimization of a discriminator including feature
selection, a reasonable combination of criteria consistent with
clinical demand is high NPV and specificity. A higher NPV
reduces the mis-classifications of malignant lesions in nega-
tively classified cases. And higher specificity reduces the false
positive in benign lesions; thus, it reduces unnecessary biopsy.

Assesments of both morphological feature and kinetic pat-
tern are efficient in classification of MRI category.6,7

Integration of morphological features and kinetic features into
the discriminator would be efficient to improve the discrimina-
tion performance. However, interobserver variability of mor-
phological and kinetic features needs to be considered. Grimm
et al.8 reported interobserver variability of BI-RADS MRI
descriptors. Mass margin and mass shape features showed
large agreement (κ = 0.78 and κ = 0.72) between breast imaging
specialists, and lesion kinetic curve assessments, such as per-
sistent, plateau, and washout, showed lower agreement (κ =
0.17). From their studies, we presumed that combination use of
texture features of kinetic maps and visual classification of
shape and margin features of masses may improve diagnostic
performance with smaller affection of interobserver variability.

We proposed the benign and malignant discrimination
method on texture features of DCE MRI in which the NPV
and specificity are consistently used as the criteria of opti-
mization, and where the features and thresholds are selected
to maximize specificity with restriction of NPV greater than

98%. Visual classifications of MRI mass shape and margin
type are incorporated into discrimination process. Our expec-
tation was that the proposed criteria in optimization would
make the higher NPV possible. Our goal was to assess the
performance of the proposed method in differentiating
benign and malignant masses in DCE MRI.

Materials and Methods

Subjects
The training set consisted of 189 histologically verified lesions
selected in January 2019 from 179 breast DCEMRI examina-
tions acquired between November 2013 and November 2018.
After the exclusion of 23 lesions (11 non-mass lesions, 7
lesions not identified on MRI, 4 lesions without contrast
enhancement, and 1 lesion of the nipple), 166 mass lesions
(49 benign and 117 malignant) in 159 patients were used for
the optimization of the discriminator (Table 1).

The testing set consisted of 50 histologically verified
masses in 47 patient examinations selected, applying the
same exclusion criteria from breast DCE MRI examinations
acquired before August 2019 excluding the masses in train-
ing set. The acquisition period of DCE MR in testing set was
from July 2017 to March 2019 (Table 1).

Lesions enrolled in this study for both the training and testing
sets were lesions where cancer was suspected on either mam-
mography or ultrasound, and where mass lesions were identi-
fied in DCE MRI with a size of 5 mm or larger. All were
histologically proven. Lesions were retrospectively enrolled
from sequentially acquired lesions in the acquisition periods.
Benign and malignant lesions were enrolled separately so that
the malignant lesions accounted for 70% of the total number of
masses. To adjust the fraction of benign and malignant lesions,
several lesions in latter periods were not included in the data set.
In the patient enrollment for testing set, lesions selected for
training set were not selected. Hence, no duplicated lesions
are contained in the training set and the testing set. Minimum,
maximum, mean, and median diameters of masses are 5, 51,
19.3, and 17.4 mm, respectively, in the training set, whereas
they are 5, 60, 17.2, and 13.2mm, respectively, in the testing set.

This retrospective study was conducted with the approval
of our institutional review board. All the patients were pro-
vided with written informed consent for our review of their
medical records and access to images. Our study was per-
formed using retrospectively collected MR images obtained
from outpatient clinical examinations.

MRI protocol
Two different MRI scanners were used for the acquisition.
Different acquisition parameters were used across scanners.
However, both applied standard breast DCE MRI sequences
using a 3D-gradient echo. The first scanner was a 3T MRI
(Biograph mMR; Siemens Healthcare, Erlangen, Germany);
spatial resolution was 0.80–0.89 mm; slice interval was 0.9–
1.2 mm; RE was 3.09–3.68 ms; TE was 1.32–1.38 ms; matrix
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size was 448 × 448; and 160–192 slices were acquired in the
coronal plane to cover the breasts bilaterally. After the acquisi-
tion of pre-contrast image, gadobutorol (Gadvist 0.1 mmol/kg;
Bayer Schering Pharma, Berlin, Germany) was used for the
post-contrast sequences acquired at 5 time points (60s/120s/
180s/240s/300s). The second scanner was a 1.5T MRI (Optima
MR360; GE Healthcare, Chicago, IL, USA); spatial resolution
was 0.59–0.68 mm; slice interval was 1.0 mm; RE was 5.1–6.0
ms; TE was 2.4–2.9 ms; matrix size was 512 × 512; and 152–
196 slices were acquired in the trans-axial plane to cover both
breasts bilaterally. Gadopentetate dimeglumine (Magnevist 0.1
mmol/kg; Bayer Schering Pharma, Berlin, Germany) was used
for contrast enhancement. Acquisition time points were similar
to those used on the first scanner. For the training set, two
different MRI scanners were used for the acquisition. The
training set consists of 98 lesions from the first scanner and
68 lesions from the second scanner. All the 44 lesions in the
testing set are acquired using the first scanner.

Image review
Themasses assessed in the DCEMRI scans were reviewed by a
radiologist (M.T) with 26 years of experience in breast radiol-
ogy and who was not involved in the patient enrollment. The
MRI category was assessed individually for each mass.
Categories 1, 2, and 3were treated as negative (benign decision)
according to the BI-RADS negative diagnostic examination.
Categories 4 and 5 were treated as positive (malignant deci-
sion). The masses were then classified into four mass shape
types: S (smooth), I (irregular-without rim-enhancement), R
(irregular with rim-enhancement), and spicula (Fig. 1). Tozaki
et al. introduced the classification of mass shape and margin.7

They classifiedmasses into smoothmargin, irregular lesion, and
spiculated margin. We used similar classification; however,
irregular lesion is further divided into two types by the presence
or absence of rim-enhancement. In our method, the oval- or
round-shaped masses with circumscribed margin masses were
classified as S-type. In the masses with irregular shapes or

Table 1 Characteristics of lesions in the training set and testing set

Histology type

Number of mass lesions

Lesions in training set for feature
selection and threshold optimization

Lesions in testing
set for validation

Benign Benign phyllodes tumor 14 4

Fibroadenoma 19 6

Papilloma 1 3

Intraductal papilloma 3 1

Intracystic papilloma 5 1

Ductal adenoma 1 0

Adenomyoepithelioma 2 0

Granular cell tumor 1 0

Subareolar sclerosing duct hyperplasia 1 0

Undefined benign lesion 2 0

Total benign 49 15

Malignant Ductal carcinoma in situ 7 0

Papillotubular carcinoma 14 4

Solid-tubular carcinoma 28 9

Scirrhous carcinoma 51 18

Mucinous carcinoma 4 1

Invasive lobular carcinoma 6 0

Adenoid cystic carcinoma 0 1

Apocrine carcinoma 1 0

Undefined malignant lesion 6 2

Total malignant 117 35

Total 166 50
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irregular margins, masses without rim-enhancement were clas-
sified as I-type and masses with rim-enhancement were classi-
fied as R-type. The masses that had spiculated margins were
immediately classified as positive, and they were excluded from
case samples for following analysis.

Image processing
In-house software was used for the execution of image
processing steps: motion correction, mass region extrac-
tion, calculation of DCE kinetic maps, and the calculation
of texture features. The reviewer used the software for
both image review and processing. Masses seen in DCE
MRI were identified by a reviewer. No other part of the
medical record was referred to throughout the image review
except for the lesion position. Mass regions were extracted
three-dimensionally using the semi-automatic mass region
extraction tool. The software generates five candidate mass
regions by applying five different thresholds of enhance-
ment ratios. The reviewer determined one mass region from
five candidate regions by choosing a region, which is simi-
lar to contrast-enhanced region of the mass. Rigid motion
correction was applied if large motion was found around the

mass in DCE MRI. DCE parametric maps, initial enhance-
ment (IE),3 post initial enhancement (PIE),3 maximum
slope (MS), peak percentage enhancement (PPE)3, signal
enhancement ratio (SER)3, peak time (PT), maximum
enhancement in initial phase (MEIP), subsequent enhance-
ment to initial peak (SEIP), were generated. All of the maps
are calculated as

IE %ð Þ ¼ 100� S1�S0
S0

; PIE %ð Þ ¼ 100� Slast�S1
S1

;

MSð%=minÞ ¼ 100�max
Siþ1�Si

S0 � ðTiþ1�TiÞ ;

PPE %ð Þ ¼ 100� Speak�S0
S0

; SER %ð Þ ¼ 100� S1�S0
Slast�S0

;

MEIP %ð Þ ¼ 100� Speak2�S0
S0

;

SEIP %ð Þ ¼ 100� Slast�Speak2
Speak2

;

where S0, S1, and Slast are signal intensity at pre-contrast
phase, initial phase around 120 s, and last phase around 5

Fig. 1 Discrimination scheme of masses using texture values of DCE parametric maps. Masses in testing set are visually classified into S-
type, I-type, and R-type on DCE MRI. Texture features (298) are calculated in extracted mass region. Two features and corresponding
thresholds are used for the discrimination of negative (benign) or positive (malignant). Different feature pairs are applied for S-, I-, and R-
type masses. Feature pairs for S-, I-, and R-types and corresponding thresholds are determined in the training set. DCE, dynamic contrast-
enhanced; I, irregular without rim-enhancement; R, irregular with rim-enhancement; S, smooth.
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min; Speak is maximum intensity; Speak2 is maximum inten-
sity before initial phase; (Si+1−Si) is intensity difference of
adjoining phases; Ti+1−Ti (min) is time between adjoining
phases. PT (s) is defined as time to peak from injection. Then,
298 texture features of DCE parametric maps shown in Table 2
were calculated for each mass region. From single parametric
maps, 112 univariate statistics are calculated by applying mean,
standard deviation, and 12 other formulas to 8 maps. From 2 of
8 parametric maps, 100 bivariate statistics are calculated by 5
formulas and 20 combinations of parametric maps. From 3 × 3
cross-histogram of Initial Enhancement map and Post Initial
Enhancement map in the mass region, 31 features are calcu-
lated. These features are frequency percentage of pixels in
defined range of the cross-histogram. Remaining 55 features
are defined as arithmetic of univariate statistics, bivariate statis-
tics, and 3 × 3 cross-histogram features.

Masses were discriminated into negative (benign decision)
or positive (malignant decision) by the application of two
thresholds each corresponding with one of two features.
Total 44253 = (298 × 297)/2 feature pairs were possible as
the pair is a combination of 298 features. Eight different
inequality determination formulas were able to be composed
of two inequality comparison (less than, greater than) for the
two features and two logical operations (AND, OR). Final
selected inequality determination formulas were selected from

the 44253 feature pairs and 8 inequality determination formu-
las in the optimization process described in the next section.

Optimization of discriminator on training set
In the optimization process, feature pairs were selected from
44253 pairs on training set. Feature pairs having larger specifi-
city and NPV ≥ 98%were selected. Here, benign andmalignant
histopathologic results were referred in the calculation of spe-
cificity and NPV. Estimated 2D cumulative histograms were
used in the evaluation of the NPVand specificity in the feature
pair selection and threshold optimization. First, for benign
masses in the training set, 2D histograms of a feature pair
were estimated using a kernel density estimation with
Gaussian kernels. A map of the true negative number of masses
was obtained by integrating the 2D histogram of a feature pair
of benignmasses. Similarly, a map of true positive numbers was
obtained by the integration of a 2D histogram of a feature pair of
malignant masses. Next, the NPV map, specificity map, posi-
tive predictive value (PPV) map, and sensitivity map were
calculated from the true negative map and true positive map
as follows:

NPV = true negative/(true negative + false negative),
Specificity = true negative/(true negative + false positive),
PPV = true positive/(true positive + false positive),
Sensitivity = true positive/(true positive + false negative).

Table 2 Total 298 texture features calculated in detected mass region

Texture features of mass (298)

Univariate statistics 14 formulas × 8 maps = 112
(mean, standard deviation, CV, skewness, kurtosis, Shannon index [entropy], Simpson index
[energy], min, C5 [5 percentile], C25 [25 percentile], C50 [50 percentile], C75 [75 percentile],
C95 [95 percentile], max) × (IE, MEIP, PPE, MS, PIE, SEIP, SER, PT)

Bivariate statistics 5 formulas × (4 maps × 4 maps + 2 maps × 2 maps) = 100
(covariance, correlation, Shannon index[entropy], Simpson index [energy], bivariate SD) × ([IE,
MEIP, PPE, MS] × [PIE, SEIP, SER, PT], [PIE, SEIP] × [SER, PT])

3 × 3 histogram parameters of
initial enhancement and post
initial enhancement

31 features
very_fast (percentage of IE ≥ 200%), typical_fast (200% > IE ≥ 100%), fast (IE ≥ 100%), medium
(100% > IE ≥ 50%), slow(IE < 50%), washout (PIE < –10%), plateau (10% > PIE ≥ –10%),
persistent (PIE ≥ 10%), very_fast-washout, very_fast-plateau, very_fast-persistent,typical_fast-
washout, typical_fast-plateau, typical_fast-persistent, fast-washout, fast-plateau, fast-persistent,
medium-washout, medium-plateau, medium-persistent, slow-washout, slow-plateau, slow-
persistent, not_fast-not_washout, not_slow-washout, fast-not_persistent, not_slow-not_persistent,
shannon 3 × 3, simpson 3 × 3, shannon 4 × 3, simpson 4 × 3

Shannon/Simpson combinations 8 formulas × 5 map combinations = 40
(shannon_multiply, shannon_ratio, shannon_diff, shannon_rel_diff, simpson_multiply, simpson_ratio,
simpson_diff, simpson_rel_dif) × (IE_PIE, PPE_PIE, IE_SER, PPE_SER, SER_PIE)

Others 15 features
Parameters from percentiles (C95_IEm 100 × C5_PIE, Max_IEm 100 × C5_PIE, C95_IEm 100 ×
Min_PIE, Max_IEm 100 ×Min_PIE, C95_IE × C5_PIE, C75-C25 IE, C95-C5 IE, C75-C25 PPE, C95-
C5 PPE, C75-C25 MS, C95-C5 MS, C75-C25 PIE, C95-C5 PIE, C75-C25 SER, C95-C5 SER)

C95_IEm 100 × C5_PIE = (C95_IE – 100) × C5_IE; Max_IEm 100 × C5_PIE = (max_IE–100) × C5_PIE; C95_IEm 100 × Min_PIE = (C95_IE–100) ×
min_PIE; Max_IEm 100 ×Min_PIE = (max_IE–100) × min_PIE. CV, coefficient of variance; IE, initial enhancement; MEIP, maximum enhancement in
initial phase; MS, maximum slope; PIE, post initial enhancement; PPE, peak percentage enhancement; PT, peak time; SD, standard deviation; SEIP,
subsequent enhancement to initial peak; SER, signal enhancement ratio.
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Finally, a point having the maximum specificity in the
area of NPV ≥ 98% was obtained from the NPV map and
specificity map to determine the two thresholds of the feature
pair. This process was repeated for all of the 44253 feature
pairs; thus, the NPV and specificity of all feature pairs and
thresholds were determined.

The training set was divided into two groups. The feature
pairs were selected in two steps. In the first step, the top 1000
feature pairs were selected on the first division of the training
set. Feature pairs with larger specificity were selected in
restriction of NPV ≥ 98%. The thresholds of the feature
pairs were determined in this step. In the second step, the
NPV and specificity were calculated on the second division
of the training set with the determined thresholds from the
first step. Histogram estimation was not used in the second
step. Feature pairs with a larger specificity were selected in
the restriction of NPV ≥ 98%. Feature pair selection and
threshold optimization consisted of these two steps and
were repeated for each mass shape type.

Evaluation on testing set
Selected feature pairs and thresholds were applied to the
masses in the testing set for each shape type, for the classi-
fication of either negative or positive. By referring to histo-
pathologic benign and malignant results, the numbers of
masses of true negatives, false positives, false negatives,
and true positives were counted to produce contingency
tables of corresponding shape type of mass. NPV, specificity,
PPV, and sensitivity were calculated from contingency
tables, and they were averaged over feature pairs selected
for the shape type. From these averages, the NPVs for the

three shape types and average NPV of total masses were
calculated considering the number masses of S-, I-, and R-
type masses. Similarly, average specificity, average PPV, and
average sensitivity of total masses were calculated.

Results

Image review
MRI category and shape type of masses assessed by the
reviewer are shown in Table 3. No masses assessed as cate-
gory 1 or 2 were included. After exclusion of spiculated
masses, the total numbers of S-type, I-type, and R-type
masses were 150 (49 benign, 101 malignant) in the training
set and 44 (15 benign, 29 malignant) in the testing set. The
NPV and specificity in the MRI category were 85.7% and
40%, respectively (Table 4).

Image processing
During the image review and identification of masses, sig-
nificant motion was identified in 20 masses in the training set
and in 12 masses in the testing set. Rigid motion correction
was applied for each of them. For each of the 150 masses in
the training set and 44 masses in the testing set, 298 texture
features were calculated.

Optimization of discriminator on training set
Sets of texture feature pairs were selected for S-type, I-type,
and R-type in the optimization process for the training set.
Selected feature pairs and corresponding thresholds are shown
in Tables 5, 6, and 7. The numbers of selected feature pairs are
27, 12, and 15 for S-type, I-type, and R-type, respectively.

Table 3 Number of masses with respect to each shape type of mass and each MRI category classified on DCE MRI

Histology MRI Category

Training set Testing set

Shape type of mass Shape type of mass

S I R Spicula Total S I R Spicula Total

Benign 3 11 1 0 0 12 4 2 6

4 12 15 9 0 36 3 3 3 9

5 0 0 1 0 1

23 16 10 0 49 7 3 5 15

Malignant 3 2 0 0 0 2 1 1

4 9 38 34 2 83 11 11 22

5 0 6 12 14 32 6 6 12

11 44 46 16 117 1 11 17 6 35

Total 34 60 56 16 166 8 14 22 6 50

150 44

DCE, dynamic contrast-enhanced; I, irregular without rim-enhancement; R, irregular with rim-enhancement; S, smooth.
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Evaluation on testing set
NPV, specificity, PPV, and sensitivity calculated for
selected feature pairs are shown in four columns on the
right side of Tables 5, 6, and 7. In S-type feature pairs
(Table 5), NPV and sensitivity for all 27 pairs were 100%.
Specificity ranged from 43% to 71%. Note that the reliabil-
ities of NPV and specificity were restricted by the number
of masses. In S-type masses, the total number of masses was
8, and 7 of those masses were benign. In I-type feature pairs
(Table 6), the NPV was 100% and specificity was 33% for
10 pairs in 12 pairs. The remaining 2 pairs could not
identify any benign masses from a total of 3 I-type benign
masses. In R-type feature pairs (Table 7), the NPV was
100% for 14 pairs in 15 pairs. Specificity ranged from
20% to 60%. The number of R-type masses was 22, and 5
of those masses were benign.

The average NPV, specificity, PPV, and sensitivity in the
testing set of S-type, I-type, R-type, and total masses are
shown in Table 8. The average NPVs for S-type, I-type, and
R-type were 100% or a value close to 100%. Specificity in S-
type masses was relatively larger than the specificity for I-
type and R-types because of the larger fraction of benign
masses. Average NPV and average specificity of the total
masses were 99.0% and 45.2%, respectively. These values
were comparable with the diagnostic values for the MRI
category (NPV 85.7%, specificity 40.0%) in Table 4.
Average PPV and average sensitivity were 77.9% and
99.8%, respectively.

Feature distributions in testing set
Feature values of benign and malignant masses in testing set
are shown in scatter plots (Fig. 2). Horizontal and vertical
axes correspond with values of feature pairs selected on the
training set for S-type, I-type and R-type masses. Benign
masses and malignant masses are plotted with crosses and
circle, respectively. Dotted lines in the graphs indicate the
cut-off values, and masses in gray area are classified as
negative (benign).

Figure 2a shows two scatter plots with two examples
of feature pairs for S-type masses. DCE images of masses
indicted by a1 and a2 in scatter plots are shown in
Fig. 3a1 and 3a2, respectively. Feature values of a1 and
a2 are listed in Table 9a1 and 9a2. Two masses are
proven as benign by biopsy and classified as negative
with two feature pairs. The feature shannon_diff
PPE_SER represents the subtraction of Shannon entropy
of PPE from Shannon entropy of SER. With this feature,
masses with homogeneous SER and inhomogeneous PPE
were classified as negative. This property confirms the
inhomogeneous enhancement and uniform enhancement
change after initial phase as seen in DCE images of
Fig. 3a1 and 3a2. Refer schematic diagrams in Fig. 4,
for example, time-intensity curve patterns relating with
inhomogeneous enhancement and uniform enhancement
change after initial phase. The feature shannon_index_2
IE_PIE represents joint entropy of IE and PIE. With this
feature, masses with a lower correlation in IE and PIE are
classified as negative. This property confirms the inho-
mogeneous enhancement and uniform enhancement
change after the initial phase as seen in Fig. 3a1 and
3a2. The feature skewness IE has a higher value if
regions with very large IEs are broader than the regions
with very small IEs. Masses with a lower skewness IE
value were classified as negative. This property confirms
that the fewer regions in Fig. 3a1 and 3a2 have very large
enhancement. Figure 4 also illustrates this type of time-
intensity curves that few curves plotted in upper area of
graph indicated with light gray.

The I-type masses indicated by b in Fig. 2b are shown in
Fig. 3b in DCE images. Feature values of the mass b are
listed in Table 9b. This mass was benign and classified as
negative. With the feature C95 PT, I-type masses were clas-
sified as negative if the 95th percentile of peak time was
nearby at the time of last phase, or with the feature shannon
index PIE, I-type masses were classified as negative if the
initial enhancement was uniform. DCE image in Fig. 3b

Table 4 NPV, Specificity, PPV, and Sensitivity of MRI category in the training set and testing set

Training set Testing set

Including Spicula Excluding Spicula Including Spicula Excluding Spicula

NPV (%) 85.7 85.7 85.7 85.7

Specificity (%) 24.5 24.5 40.0 40.0

PPV (%) 75.7 72.8 79.1 75.7

Sensitivity (%) 98.3 98.0 97.1 96.6

Malignant/total lesions (%) 70.5 67.3 70.0 65.9

MRI category 3 and lower categories are regarded as negative, while categories 4 and 5 are regarded as positive. NPV, negative predictive value;
PPV, positive predictive value.
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Table 5 NPV, specificity, PPV, and sensitivity of individual texture future pairs of S-type masses in the testing set

Feature 1 Feature 2 Sign
1

Thresh-
old 1

Sign
2

Thresh-
old 2 Operation NPV

(%)

Spec-
ificity
(%)

PPV
(%)

Sensi-
tivity
(%)

skewness IE shannon_diff PPE_SER > 1.8132 > -0.7151 OR 100 57.14 25 100

skewness IE shannon_rel_diff PPE_SER > 1.8132 > -0.2196 OR 100 71.43 33.33 100

skewness MEIP shannon_diff PPE_SER > 1.7875 > -0.7151 OR 100 57.14 25 100

skewness MEIP shannon_rel_diff PPE_SER > 1.7875 > -0.2196 OR 100 71.43 33.33 100

skewness PPE shannon_diff PPE_SER > 1.9054 > -0.7151 OR 100 57.14 25 100

skewness PPE shannon_rel_diff PPE_SER > 1.9054 > -0.2196 OR 100 71.43 33.33 100

shannon_diff PPE_SER kurtosis IE > -0.7376 > 7.3338 OR 100 57.14 25 100

shannon_diff PPE_SER kurtosis PPE > -0.7151 > 7.5401 OR 100 57.14 25 100

shannon_rel_diff PPE_SER kurtosis IE > -0.2281 > 7.3338 OR 100 71.43 33.33 100

shannon_rel_diff PPE_SER kurtosis PPE > -0.2196 > 7.5401 OR 100 71.43 33.33 100

shannon_rel_diff PPE_SER shannon_index_2 MS_PIE > -0.2196 < 5.4489 OR 100 57.14 25 100

shannon_index_2 IE_PIE shannon_diff PPE_SER < 5.5455 > -0.6701 OR 100 57.14 25 100

shannon_index_2 IE_SEIP shannon_diff PPE_SER < 5.5629 > -0.6701 OR 100 57.14 25 100

shannon_index_2
MEIP_PIE

shannon_diff PPE_SER < 5.5578 > -0.6701 OR 100 57.14 25 100

shannon_index_2
MEIP_SEIP

shannon_diff PPE_SER < 5.5612 > -0.6701 OR 100 57.14 25 100

shannon_index_2
PPE_PIE

shannon_diff PPE_SER < 5.5594 > -0.6701 OR 100 57.14 25 100

shannon_index_2
PPE_SEIP

shannon_diff PPE_SER < 5.588 > -0.6701 OR 100 57.14 25 100

shannon_index_2 MS_PIE shannon_diff PPE_SER < 5.4489 > -0.7151 OR 100 57.14 25 100

shannon_index_2
MS_SEIP

shannon_diff PPE_SER < 5.4266 > -0.7151 OR 100 57.14 25 100

simpson_index_2 IE_PIE shannon_diff PPE_SER < 0.9951 > -0.6926 OR 100 57.14 25 100

simpson_index_2 IE_SEIP shannon_diff PPE_SER < 0.9952 > -0.6926 OR 100 42.86 20 100

simpson_index_2
MEIP_PIE

shannon_diff PPE_SER < 0.9951 > -0.6701 OR 100 57.14 25 100

simpson_index_2
MEIP_SEIP

shannon_diff PPE_SER < 0.9952 > -0.6926 OR 100 42.86 20 100

simpson_index_2
PPE_PIE

shannon_diff PPE_SER < 0.9953 > -0.6701 OR 100 57.14 25 100

simpson_index_2
PPE_SEIP

shannon_diff PPE_SER < 0.9953 > -0.6701 OR 100 57.14 25 100

simpson_index_2 MS_PIE shannon_diff PPE_SER < 0.9946 > -0.6926 OR 100 42.86 20 100

simpson_index_2
MS_SEIP

shannon_diff PPE_SER < 0.9945 > -0.6926 OR 100 57.14 25 100

IE, initial enhancement; MEIP, maximum enhancement in initial phase; MS, maximum slope; NPV, negative predictive value; PIE, post initial
enhancement; PPE, peak percentage enhancement; PPV, positive predictive value; PT, peak time; S, smooth; SEIP, subsequent enhancement to
initial peak; SER, signal enhancement ratio.
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shows the persistent pattern in an entire region of the mass.
This enhancement pattern makes C95 PT larger leading to a
negative decision. Persistent enhancement pattern and uni-
form enhancement confirm with clinical observations for
benign masses.

DCE images of R-type benign mass indicated by c in
Fig. 2c are shown in Fig. 3c. Feature values of the mass c
are listed in Table 9c. On the left side of the graph,
R-type masses with large values of a fast-plateau feature
and a large value of shannon_diff SER_PIE are classified
as negative. The fast-plateau feature denotes the fraction
of the pixels with higher IE (IE ≥ 100%) and PIE at
around zero (-10% ≤ PIE < 10%) in the mass region.
shannon_diff SER_PIE denotes the difference of Shannon
entropies of PIE and SER. This feature represents a
positive value if the pre-contrast image is uniform in
the region of the mass (Fig. 4). These features led to a
negative decision, which was confirmed with observa-
tions of the mass region in Fig. 3c with a fast-plateau
enhancement pattern and uniform signal intensity in the
pre-contrast phase.

On the right-side graph, R-type masses with smaller
values of C75-C25 SER and smaller values of skewness
PPE are classified as negative. C75-C25 SER represents
a difference of 75th percentile and 25th percentile of
SER. These features led to a negative decision confirm-
ing with observations that the mass region in Fig. 3c had
a uniform signal enhancement after the initial phase, and
that the mass region had a smaller area with very large
enhancement than the area with the very small amount

of enhancement. Figure 4 illustrates time-intensity
curves corresponding with lower value of C75-C25
SER and lower value of skewness IE.

Discussion

In this study, we obtained high NPV (99.0%) in our
testing process in 44 masses in benign and malignant
discrimination using texture-based features of DCE
MRI. The obtained NPV was higher than that for the
MRI categorization (85.7%). Specificity (45.2%) was
similar to that of the MRI categorization (40.0%).
Features and thresholds used in the testing set were
optimized in training set. In the proposed method, the
NPV and specificity are consistently used as the criteria
in the optimization of the discriminator, where specificity is
maximized with restriction of the NPV greater than 98% in
the optimization. Such optimization criteria were introduced
according to the clinical demand: reduction in falsely posi-
tive benign lesions, potentially leading to a reduction in
unnecessary biopsies of benign lesions. According to our
findings, we have shown that we could obtain a high NPV
(99.0%). We considered that a high NPV could be obtained
by consistent criteria in optimization process because fea-
tures associated with a high NPV were selected effectively
in the optimization process.

Features selected for characterization of benign and
malignant masses were measures of uniformity and persis-
tent enhancement. Evaluation of these features in the dis-
crimination confirmed the clinically known findings of

Table 6 NPV, specificity, PPV, and sensitivity of individual texture future pairs of I-type masses in the testing set

Feature 1 Feature 2 Sign
1

Thresh-
old 1

Sign
2

Thresh-
old 2 Operation NPV

(%)

Spec-
ificity
(%)

PPV
(%)

Sensi-
tivity
(%)

very_fast-persistent Max PIE < 11.2607 > 31.171 AND 100 0 78.57 100

very_fast-persistent simpson_index_2 IE_PIE < 11.4937 > 0.9924 AND 100 0 78.57 100

standard deviation PIE C95 PT > 6.4225 < 324.2233 AND 100 33.33 84.62 100

standard deviation PIE Max PT > 6.2248 < 320.5147 AND 100 33.33 84.62 100

shannon_index PIE C95 PT > 2.5621 < 324.2233 AND 100 33.33 84.62 100

shannon_index PIE Max PT > 2.5621 < 321.5429 AND 100 33.33 84.62 100

shannon_multiply IE_SER C95 PT > 6.8708 < 323.6521 AND 100 33.33 84.62 100

shannon_multiply IE_SER Max PT > 6.7838 < 320.5147 AND 100 33.33 84.62 100

Max PIE C95 PT > 31.171 < 323.0809 AND 100 33.33 84.62 100

Max PT Max PIE < 320.0006 > 31.171 AND 100 33.33 84.62 100

Max PT C95-C5 PIE < 320.5147 > 20.0022 AND 100 33.33 84.62 100

C95-C5 PIE C95 PT > 20.6713 < 324.2233 AND 100 33.33 84.62 100

I, irregular without Rim-enhancement; IE, initial enhancement; NPV, negative predictive value; PIE, post initial enhancement; PPV, positive
predictive value; PT, peak time; SER, signal enhancement ratio.
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benign and malignant masses. In S-type masses, masses
with inhomogeneous enhancement and with uniform
enhancement after the initial phase were classified as nega-
tive, and masses that had few regions of very large enhance-
ment were classified as negative too. In I-type masses,
masses with a persistent enhancement pattern and with
uniform enhancement were classified as negative. In R-
type masses, masses with a uniform signal enhancement
after the initial phase were classified as negative if the mass

region had a smaller area with very large levels of
enhancement.

The high NPVaspect of the proposed method could have a
contribution to improve the diagnostic performance of breast
cancer characterization in DCE MRI by referring to the
classification of the result in patients with suspicious lesions
on mammography or ultrasound. It has also the potential to
reduce the number of unnecessary biopsies performed on
benign lesions.

Table 7 NPV, specificity, PPV, and sensitivity of individual texture future pairs of R-type masses in the testing set

Feature 1 Feature 2 Sign 1 Thresh-
old 1 Sign 2 Thresh-

old 2 Operation NPV
(%)

Spec-
ificity
(%)

PPV
(%)

Sensi-
tivity
(%)

skewness PPE C75-C25 SER > 2.4667 > 17.3308 OR 100 60 89.47 100

skewness PT plateau > -1.3824 < 29.3175 OR 100 40 85 100

skewness PT fast-plateau > -1.3824 < 24.9494 OR 100 20 80.95 100

kurtosis PPE C75-C25 SER > 10.1444 > 18.0996 OR 100 60 89.47 100

shannon_index PIE C25 PT > 2.8617 < 124.5146 OR 100 20 80.95 100

shannon_index PIE C75-C25 SER > 2.843 > 22.7126 OR 66.67 40 84.21 94.12

shannon_index SEIP correlation IE_SER > 2.8714 < 0.0698 OR 100 60 89.47 100

shannon_multiply PPE_PIE correlation SEIP_PT > 10.6554 > 0.6815 OR 100 40 85 100

shannon_ratio SER_PIE fast-plateau < 1.2677 < 25.8442 OR 100 20 80.95 100

shannon_diff SER_PIE plateau < 0.6367 < 30.8883 OR 100 20 80.95 100

shannon_diff SER_PIE fast-plateau < 0.6367 < 27.6338 OR 100 20 80.95 100

shannon_rel_diff SER_PIE fast-plateau < 0.2364 < 25.8442 OR 100 20 80.95 100

shannon_index_2 PIE_SER correlation IE_PIE > 3.4689 < -0.4061 OR 100 40 85 100

shannon_index_2 PIE_SER correlation IE_SEIP > 3.4689 < -0.3798 OR 100 40 85 100

simpson_index_2 PPE_PT shannon_index SEIP > 0.9645 > 2.8339 AND 100 60 89.47 100

IE, initial enhancement; NPV, negative predictive value; PIE, post initial enhancement; PPE, peak percentage enhancement; PPV, positive predictive
value; PT, peak time; R, irregular with Rim-enhancement; SEIP, subsequent enhancement to initial peak; SER, signal enhancement ratio.

Table 8 Discrimination performance of proposed method in testing set

Shape type of mass S-type I-type R-type Total

Number of feature pairs 27 12 15 –

Number of masses benign 7 3 5 15

malignant 1 11 17 29

Average NPV (%) 100.0 100.0 97.8 99.0

Average specificity (%) 58.2 27.8 37.3 45.2

Average PPV (%) 26.0 83.6 84.5 77.9

Average sensitivity (%) 100.0 100.0 99.6 99.8

NPV, specificity, PPV, and sensitivity of feature pairs are averaged to compute average NPV, average specificity, average PPV, and average
sensitivity for S-type, I-type, and R-type. Combined performances are computed from the number of masses in S-type, I-type, and R-type. I, irregular
without Rim-enhancement; NPV, negative predictive value; PPV, positive predictive value; R, irregular with Rim-enhancement; S, smooth.
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Another possible application of the proposed method is
MRI surveillance in high-risk groups of breast cancer.
Breast MRI could play an important role in the surveillance
of breast cancer due to its high sensitivity. Quantitative
analysis would be an efficient method to improve the sen-
sitivity and the NPV by reducing the interobserver varia-
bility in breast MRI analysis. To apply the proposed method
in MRI surveillance, validation of the diagnostic perfor-
mance of the proposed method would be needed in a larger
number of subjects within a high breast cancer risk. The
larger study should also include smaller lesions and non-
mass lesions.9,10 The selection of features and threshold
designed for high-risk groups is an important challenge
for our future study.

This study was subject to several limitations. First, the
number of case samples was limited. We could not sta-
tistically prove the similar or superior NPV of the pro-
posal method in comparison with the NPV in MRI
categorization. The confidence interval of NPV in the
proposed method was estimated at (53% and 100%) in
the Clopper-Pearson’s exact confidence interval, estimat-
ing NPV 99% and specificity 50% in a total of 44
masses with 70% of prevalence. The NPV of the pro-
posed method was not demonstrated to be similar or
superior to the NPV in MRI categorization (85.7%).
Further validation would be needed with larger case
samples in a multi-center study. The limitation of case
samples also affects the selection of feature pairs.

Fig. 2 Six examples of scatter plots of S-type masses (a), I-type masses (b), and R-type masses in the testing set. Horizontal and vertical axes
are corresponding with the values of feature pairs selected on the training set for S-type masses (a), for I-type masses (b), and R-type masses
(c). Masses in gray area are classified as negative (benign). DCE MRI of masses indicated by (a1), (a2), (b), and (c) are shown in Fig. 3 (a1),
(a2), (b), and (c), respectively. See body texts for individual features. DCE, dynamic contrast-enhanced; I, irregular without Rim-enhance-
ment; IE, initial enhancement; PIE, post initial enhancement; PPE, peak percentage enhancement; PT, peak time; R, irregular with Rim-
enhancement; S, smooth; SER, signal enhancement ratio.
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Feature pairs were selected from a large number of
combinations with a limited number of cases in training
set, and they were validated with a limited number of
cases in the testing set. Feature pairs also needs further
validation with larger case samples. Second is the bias in
lesions characteristics. Case samples in this study con-
sisted of a larger number of lesions with an MRI cate-
gory 4, and a smaller number of MRI category 3. No
lesions with MRI categories 1 and 2 were included. The
case selection of this study centered on cancer-suspected
lesions in either mammography or ultrasound, and histo-
logically proven benign and malignant lesions were
enrolled. Most of the typical benign cases were excluded
in this case selection. Further validation would be desir-
able in a study design with a larger variation of benign
lesions more in line with the lesion characteristics seen in
routine examinations. The third limitation is the depen-
dency on the MRI systems. Kinetic curves measured in

DCI MRI can have inter-system variability.11 In this study,
two MRI systems and two contrast medium injection
protocols were used in the acquisition of the training set
to reduce the inter-system variability; however, we used
a single MRI system (Biograph mMR) with a field
strength of 3.0T for the testing set. Further validation is
required to establish any validity in multiple MRI systems.
Especially, MRI systems with different field strengths and
cases with different types of contrast medium should be
included in the validation. Finally, the mass shape types of
lesions were visually classified by one MRI reviewer.
Discrimination of malignancy in the proposed method
depends on mass shape type, so any variation of the
mass shape type will cause variation in the discrimination
performance. Reducing the possibility of interobserver
variability is also key to the discrimination process by
characterizing the mass shape analysis with morphology
features.

Fig. 3 DCE MRI of masses corresponding with benign masses indicated by (a1, a2, b, and c) in Fig. 2 are shown in (a1), (a2), (b), and (c),
respectively. Figures at left, center, and right corresponding with pre-contrast phase, initial phase around 2 min after injection, and last
phase around 5 min after injection, respectively. I, irregular without Rim-enhancement; R, irregular with Rim-enhancement; S, smooth.
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Fig. 4 Two graphs for illustrating varia-
tion of time-intensity curves at different
points distributed in a mass and their
relationship with features. Upper graph
is a schematic diagram of time-intensity
curves of mass with inhomogeneous
enhancement and uniform enhance-
ment change after initial phase. shan-
non_diff PPE_SER is lower value and
shannon_index_2 IE_PIE is higher
value in this type of time-intensity
curves. Lower graph is another example
of same time-intensity curves of mass
with inhomogeneous enhancement
and uniform enhancement change
after initial phase. If the number of
pixels corresponding with the curves
in light gray area is smaller than the
curves in dark gray area, skewness IE is
smaller value. Uniform signal intensity
of pre-contrast image makes shan-
non_diff SER_PIE smaller. These prop-
erties lead to negative decision. IE,
initial enhancement; PIE, post initial
enhancement; PPE, peak percentage
enhancement; SER, signal enhance-
ment ratio.

Table 9 Feature values of masses in Figures 2 and 3

Feature Value Range of positive decision

(a1) S-type benign

shannon_index_2 IE_PIE 6.03 < 5.55
OR

shannon_diff PPE_SER -1.57 > -0.67

skewness IE 0.64 > 1.81
OR

shannon_diff PPE_SER -1.57 > -0.72

(a2) S type benign

shannon_index_2 IE_PIE 6.56 < 5.55
OR

shannon_diff PPE_SER -1.65 > -0.67

skewness IE 0.86 > 1.81
OR

shannon_diff PPE_SER -1.65 > -0.72

(b) I type benign

shannon_index PIE 3.48 > 2.56
AND

C95 PT 335.64 < 324.22

simpson_index_2 IE_PIE 0.999 > 0.992
OR

very_fast-persistent 4.90 < 11.49

(c) R type benign

shannon_diff SER_PIE 0.74 < 0.64
OR

fast-plateau 50.67 < 27.63

skewness PPE 0.124 > 2.467
OR

C75-C25 SER 8.16 > 17.33

IE, initial enhancement; PIE, post initial enhancement; PPE, peak percentage enhancement; SER, signal
enhancement ratio.
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Conclusion

In this study, a benign and malignant discrimination method
for texture features of breast DCE MRI was presented in
which the specificity is maximized with the restriction of
NPV greater than 98% in optimization process of discrimi-
nator in training. According to the criteria used in the opti-
mization process, a high NPV and a reasonable specificity
were obtained in the testing process. We, therefore, suggest
that the NPV of the present method has the potential to be
similar to or greater than the NPV in MRI category-based
diagnosis by the expert radiologist.
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