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Abstract: Nuclear grade is important for treatment selection and prognosis in patients with clear cell
renal cell carcinoma (ccRCC). This study aimed to determine the ability of preoperative four-phase
multiphasic multidetector computed tomography (MDCT)-based radiomics features to predict the
WHO/ISUP nuclear grade. In all 102 patients with histologically confirmed ccRCC, the training
set (n = 62) and validation set (n = 40) were randomly assigned. In both datasets, patients were
categorized according to the WHO/ISUP grading system into low-grade ccRCC (grades 1 and 2)
and high-grade ccRCC (grades 3 and 4). The feature selection process consisted of three steps,
including least absolute shrinkage and selection operator (LASSO) regression analysis, and the
radiomics scores were developed using 48 radiomics features (10 in the unenhanced phase, 17 in the
corticomedullary (CM) phase, 14 in the nephrographic (NP) phase, and 7 in the excretory phase).
The radiomics score (Rad-Score) derived from the CM phase achieved the best predictive ability,
with a sensitivity, specificity, and an area under the curve (AUC) of 90.91%, 95.00%, and 0.97 in
the training set. In the validation set, the Rad-Score derived from the NP phase achieved the best
predictive ability, with a sensitivity, specificity, and an AUC of 72.73%, 85.30%, and 0.84. We con-
structed a complex model, adding the radiomics score for each of the phases to the clinicoradiological
characteristics, and found significantly better performance in the discrimination of the nuclear grades
of ccRCCs in all MDCT phases. The highest AUC of 0.99 (95% CI, 0.92–1.00, p < 0.0001) was demon-
strated for the CM phase. Our results showed that the MDCT radiomics features may play a role as
potential imaging biomarkers to preoperatively predict the WHO/ISUP grade of ccRCCs.

Keywords: clear cell renal cell carcinoma; radiomics; WHO/ISUP nuclear grade; multiphasic multi-
detector computed tomography

1. Introduction

Clear cell renal cell carcinoma (ccRCC) encompasses around 70% of all renal cell
carcinomas, making it the most common pathological subtype [1,2]. It has the worst
prognosis of all types of RCC, and its biological aggressiveness significantly changes the
prognosis [3].
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Tumor grading is among the most important prognostic factors as an independent
predictor of cancer-specific survival for ccRCC stages [4]. The World Health Organi-
zation/International Society of Urological Pathology (WHO/ISUP) grading system for
ccRCC [5] has improved interobserver reproducibility compared to the former Fuhrman
grading system, being easier to apply and more clinically relevant. This four-grade system
is based primarily on nucleolar prominence assessed to determine grades 1–3. Grade 4
is defined by the presence of highly atypical “pleomorphic” cells and/or sarcomatoid or
rhabdoid morphology. Grades 1–2 are classified as low grades, and grades 3–4 are classified
as high grades. Patients with low-grade ccRCC may be candidates for less invasive pro-
cedures, such as nephron-saving surgery, radiofrequency ablation, or active surveillance,
whereas radical interventions are acceptable in patients with high-grade ccRCC [6].

Percutaneous renal mass biopsy is an accurate procedure that can identify the histology
of the lesions [7]. Due to the heterogeneity of ccRCCs, the accuracy of tumor grading
through biopsy is controversial, as the biopsy shows some discrepancies of the resection
sample for grading systems. Some studies focusing on renal tumor biopsies and tumor
grading [8–11] have reported that biopsies usually underestimate the final grade and
less often overestimate the final grade. The percentage of accurate biopsy grading was
reported between 43% and 75%, and the percentage of differentiation between low and
high grade was reported between 64% and 87%. Moreover, different parts of a tumor
have distinct molecular characteristics and such differences change over time. Thus,
optimal characterization of tumor grading by percutaneous biopsy cannot be obtained
properly because it is not possible to biopsy each part of a tumor at different times [12,13].

The field of medical and biological image analysis has recently grown exponentially,
and a new method called radiomics has been developed [14–16]. Radiomics is a promis-
ing technique that extracts and analyzes large numbers of imaging features to provide
more information than only human imaging evaluation can offer. This method uses high-
throughput extraction of large numbers of quantitative radiomics features obtained from
medical images using advanced mathematical algorithms to determine tumor pheno-
types [17–19]. Thus, the heterogeneity of the entire tumor volume is assessed compared to
biopsies that assess the heterogeneity in a small portion of the tumor and at a single anatom-
ical site [20–24]. Several previous studies [25–32] have shown that radiomics features based
on multiphasic multidetector computed tomography (MDCT) images perform efficiently
in differentiating between high-/low-grade ccRCC tumors. Given these promising results,
we assume that MDCT-based radiomics features may play a feasible role in predicting
high-/low-grade ccRCCs. This study aims to evaluate if radiomics features extracted from
a four-phase MDCT study may be helpful to preoperatively differentiate the WHO/ISUP
nuclear grades of ccRCCs.

2. Materials and Methods

The ethical approval for this retrospective study was obtained from the Institutional
Review Board of Clinical Municipal Hospital of Cluj-Napoca (Approval Code: No. 15/2020;
Approval Date: 11 June 2020). No formal written consent was required for this study.

2.1. Study Population

We performed a retrospective analysis of the medical database for patients with patho-
logically proven ccRCC from January 2018 to February 2020. The inclusion criteria were as
follows: patients with four-phase MDCT scan before surgery; WHO/ISUP nuclear grades,
which were available from the pathology reports. The exclusion criteria were: significant
artifacts on images (motion or metal artifacts), previous tumor treatment, and patients with
cystic lesions. Our study comprised 102 patients (mean age: 61.92 ± 13.03), which were
divided into two groups: the training set (62 patients) and the validation set (40 patients).
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2.2. Image Acquisition

MDCT scans were performed with a 64-row scanner (Somatom Sensation, Siemens,
Erlangen, Germany) using: a 120 kV variable tube current (variable setting from 200 to
400 mAs based on patient size); section collimation, 0.6 mm; table feed, 5 mm/s; slice thick-
ness, 3.0 mm; and a pitch of 1. Nonionic contrast material was injected via an antecubital
vein at a rate of 3.0 mL/s using a CT-compatible power injector with a total volume of
80–150 mL. A region of interest (ROI) in the thoracoabdominal aorta junction was placed,
with a trigger set to begin at 150 HU. The renal mass protocol consisted of a four-phase
study: an unenhanced (UN) scan followed by contrast-enhanced acquisitions during the
corticomedullary (CM, 30 s delay), nephrographic (NP, 90 s delay), and excretory (EX,
8 min delay) phases.

2.3. Histopathological Assessment of Nuclear Grade

WHO/ISUP nuclear grades were obtained from the pathology reports of the histopatho-
logical examination. The samples were obtained from the partial nephrectomy of 22 pa-
tients, total nephrectomy of 13 patients, and radical nephrectomy of 67 patients. All tumors
were divided into low-grade ccRCC (WHO/ISUP grades 1 and 2) and high-grade ccRCC
(WHO/ISUP grades 3 and 4).

2.4. Tumor Segmentation, Preprocessing, and Radiomics Feature Extraction

From the pictured archiving and communication system (PACS, Carestream, Canada),
all MDCT acquisitions were exported and transferred to a workstation to be segmented
using the open-source 3D Slicer software, version 4.10.2 (www.slicer.org). For each renal
mass, the volume of interest (VOI) segmentation was manually and slightly delineated
slice by slice by a radiology resident (Claudia-Gabriela Moldovanu), in accordance with a
senior radiologist with 9 years of experience in urogenital imaging (Attila Tamas-Szora)
to ensure the accuracy of the tumor boundaries. The two radiologists were blinded to the
pathological results. To minimize the partial volume effect from surrounding structures,
the segmentations were carefully delineated, reducing the size of the tumors by 1 mm
from the current visible edge. The nephrographic phase was used for segmentation
because it provides an adequate delimitation between the tumor and uninvolved adjacent
parenchyma (Figure 1).

Prior to radiomics features extraction, the images of each patient were preprocessed:
first, the images and VOIs were resampled to an isotropic voxel size of 1 × 1 × 1 mm3 using
B-Spline interpolation; then, normalization of the images was performed by centering in
the chosen place by division through standard deviation; finally, image discretization was
performed of the gray level by a fixed bin width of 25 in the histogram.

A total of 4184 radiomics features of the four-phase MDCT study per patient (1046 fea-
tures per phase) were extracted from the VOIs and divided into four groups: (1) image
intensity (first-order statistics features); (2) shape and size-based features; (3) second-order
statistics features (textural features); and (4) higher-order statistical features (obtained after
applying filters and mathematical transforms to the images). We used Laplacian transforms
of Gaussian-filter- and wavelet-transformed images. The Laplacian of Gaussian (LoG)
filter was used with values of 2 mm, 4 mm, and 6 mm, representing fine, medium, and
coarse patterns, respectively. Wavelet-based texture features were generated using eight
different frequency band combinations, applying either a high- or low-pass filter in each of
the three dimensions including high–high–high, high–high–low, high–low–low, high–low–
high, low–high–low, low–high–high, low–low–high, and low–low–low. Radiomics features
were extracted from images with and without preprocessing filters from all four MDCT
phases separately. PyRadiomics version 2.1.2. was used for both preprocessing and feature
extraction.

www.slicer.org
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Figure 1. Example of volume of interest (VOI) segmentation in the nephrographic (NP)
phase of a pathologically proven clear cell renal cell carcinoma (ccRCC).

2.5. Reliability Validation of Texture Features

According to previously published guidelines [33–35], the reproducibility of texture
features was calculated using the interclass correlation coefficient (ICC) of the radiomics
features. Another radiologist (Andrei Lebovici, with 8 years of experience in urogenital
imaging) independently resegmented all renal masses and extracted radiomics features,
also blinded by the pathological results. Thus, for each extracted texture features, the ICC
was calculated. For the feature selection process, the features with an ICC value of ≥0.75
were included, indicating excellent reproducibility, resulting in a total of 3429 features
(826 in the UN phase, 861 in the CM phase, 864 in the NP phase, and 878 in the EX phase).

2.6. Statistical Analysis

Statistical analysis was performed using SPSS Statistics software for Windows, ver-
sion 18.0 (SPSS Inc., Chicago, IL, USA) and R software version 3.6.3 using the “glmnet”
package. The Mann–Whitney U-test was used for univariate analysis to identify the fea-
tures with a significant difference between low/high-grade ccRCC groups. The Benjamini–
Hochberg (BH) correction method was applied to control the false discovery rate in multiple
hypothesis testing. BH-adjusted p-values < 0.05 were considered significant. Spearman’s
correlation coefficient was used to assess the correlation between all radiomics features.
This was performed between any two features, and when the Spearman coefficient was >
0.9/< −0.9, the feature with the higher p-value in the univariate analysis was eliminated.
For standard comparison and mitigating the effects of the data splitting, the radiomics
scores were built using the least absolute shrinkage and selection operator (LASSO) per-
formed by 10-fold cross-validation. The radiomics score (Rad-Score) was computed for
each MDCT phase of each patient through a linear combination of features weighted by
their LASSO coefficients. To evaluate the predictive performance of the radiomics score
for the differentiating ability of low/high-grade ccRCC in the training and validation
sets, the area under the receiver operating characteristic (ROC) curve (AUC) was used,
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and p < 0.05 was considered statistically significant. Multivariate analysis using binary
logistic regression (enter method) was conducted to detect independent predictors of the
WHO/ISUP nuclear grade of ccRCCs, including the clinicoradiological characteristics and
radiomics score as independent variables.

3. Results
3.1. Patients Characteristics

A total of 102 patients (mean age: 61.92 ± 13.03) were included in this study, divided
into training sets and validation sets based on the random split method. Thus, 62 patients
constituted the training set (40 men, 22 women; mean age: 61.09 ± 12.64), whereas 40
patients constituted the validation set (27 men, 13 women; mean age: 63.2 ± 13.66). In the
training set, 40 patients were classified according to the WHO/ISUP grading system as
low-grade ccRCC, and the remaining 22 patients were classified as high-grade ccRCC.
The validation set comprised 29 patients with low-grade ccRCC and 11 patients with
high-grade ccRCC. The baseline characteristics of training and validation sets are provided
in Table 1.

Table 1. Demographic and clinicoradiological characteristics of the study population. * p < 0.05 was considered statistically significant.

Training Set Validation Set

Characteristic Low Grade High Grade p-Value Low Grade High Grade p-Value

Number 40 22 29 11

Age (years) 58.2 ± 12.92 66.36 ± 10.45 0.009 * 61.89 ± 13.30 66.63 ± 14.66 0.36

Gender 0.91 1.00
Male 26 (65%) 14 (35%) 20 (74.1%) 7 (25.9%)

Female 14 (63.6%) 8 (36.4%) 9 (69.2%) 4 (30.8%)

Tumor size (mm) 46.65 ± 28.53 73.22 ± 26.25 0.001 * 53.17 ± 22.68 79.45 ± 25.15 0.008 *

Tumor stage (n) 0.001 * 0.01 *
1 30 (85.7%) 5 (14.3%) 18 (94.7%) 1 (5.3%)
2 3 (50%) 3 (50%) 6 (100%) -
3 7 (35%) 13 (65%) 5 (35.7) 9 (64.3%)
4 - 1 (100%) - 1 (100%)

Vein thrombosis 0.02 * 0.009 *
No 33 (73.3%) 12 (26.6%) 22 (88%) 3 (12%)
Yes 7 (41.1%) 10 (58.8%) 7 (46.6%) 8 (53.3%)

Tumor necrosis 0.47 1.00
No 7 (77.7%) 2 (22.2%) 2 (66.6%) 1 (33.3%)
Yes 33 (60%) 22 (40%) 27 (72.9%) 10 (27.0%)

Perinephritic
invasion 0.009 * 0.49

No 34 (73.9%) 12 (26.0%) 12 (80%) 3 (20%)
Yes 6 (37.5%) 10 (62.5%) 17 (68%) 8 (32%)

Intratumoral
neovascularity 0.003 * 0.29

No 30 (78.9%) 8 (21.0%) 11 (85.6%) 2 (15.3%)
Yes 10 (41.6%) 14 (58.3%) 18 (66.6%) 9 (33.3%)

Hemorrhage 0.01 * 0.48
No 32 (74.4%) 11 (25.5%) 16 (80%) 4 (20%)
Yes 8 (42.1%) 11 (57.8%) 13 (65%) 7 (35%)

Lymphadenopathy 0.05 0.12
No 35 (71.4%) 14 (28.5%) 27 (77.1%) 8 (22.8%)
Yes 5 (38.4%) 8 (61.5%) 2 (40%) 3 (60%)
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No significant difference in the gender of the patients, N stage, and intratumoral
necrosis between low- and high-grade ccRCC in both the training and validation sets
was observed. However, significant differences were observed in the ages of the patients,
tumor size, tumor stage, vein thrombosis, perinephric fat invasion, intratumoral neo-
vascularity, and intratumoral hemorrhage in the training set. These results are partially
confirmed in the validation set, where tumor size, tumor stage, and vein thrombosis were
the only significantly different characteristics.

3.2. Feature Selection and Radiomics Score Building: Training Set

Feature selection and radiomics score building were separately performed on each
MDCT phase of each patient. According to the standard of ICC ≥ 0.75 in the inter-reader
agreement evaluation, 826 radiomics features from the UN phase, 861 features from the
CM phase, 864 features from the NP phase, and 878 features from the EX phase were highly
reproducible and selected for further analysis.

To develop the radiomics signature, univariate analysis was performed to assess the
potential of the radiomics features to differentiate between the low- and high-grade ccRCC
groups. Excluding those with an adjusted p-value > 0.05, the number of features was
further decreased to 1241 features (228 in the UN phase, 387 in the CM phase, 340 in the
NP phase, and 286 in the EX phase). These features were included in the further selection
process.

After applying the Spearman correlation analysis, these features were secondly re-
duced to 302 potential predictors (46 in the UN phase, 110 in the CM phase, 85 in the NP
phase, and 61 in the EX phase). Furthermore, the LASSO binary logistic regression algo-
rithm was used to reduce the dimensionality of the above high-dimensional features; thus,
the best features were selected based on the optimal λ parameters. Forty-eight radiomics
features with nonzero coefficients were then selected to construct the radiomics scores
across all MDCT phases (10 in the UN phase, 17 in the CM phase, 14 in the NP phase,
and 7 in the EX phase). Most of the features included in the radiomics scores were obtained
from filtered images using LoG and wavelet-transformed filters, being mainly texture and
first-order features (Table 2).

Table 2. List of selected radiomics features and their coefficients for calculating the radiomics score.

Radiomic Group Radiomic Feature Associated Filter Coefficient

UN phase

Intercept −0.872

Texture feature JointAverage LoG filter (2 mm) 0.409
Texture feature SizeZoneNonUniformity LoG filter (2 mm) 0.010
Texture feature DependenceVariance LoG filter (4 mm) 0.362

First-order Minimum LoG filter (4 mm) −0.296
Texture feature LongRunEmphasis LoG filter (4 mm) 0.477
Texture feature SmallAreaHighGrayLevelEmphasis LoG filter (4 mm) 0.091
Texture feature LargeAreaLowGrayLevelEmphasis Wavelet-LHL 0.039
Texture feature LongRunLowGrayLevelEmphasis Wavelet-LLH −0.431
Texture feature SmallAreaLowGrayLevelEmphasis Wavelet-LLH −0.349
Texture feature LongRunLowGrayLevelEmphasis Wavelet-HHL 0.343

CM phase

Intercept −1.184

Texture feature SmallAreaLowGrayLevelEmphasis Original −0.387
First-order Skewness LoG filter (2 mm) −0.311
First-order Minimum LoG filter (2 mm) −0.052
First-order 10Percentile LoG filter (2 mm) 0.303

Texture feature LowGrayLevelEmphasis LoG filter (4 mm) −0.373
Texture feature LongRunHighGrayLevelEmphasis Wavelet-HLL 0.306
Texture feature LowGrayLevelZoneEmphasis Wavelet-HLL −0.076
Texture feature Imc2 Wavelet-LHL 0.797

First-order Mean Wavelet-LHL 0.516
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Table 2. Cont.

Radiomic Group Radiomic Feature Associated Filter Coefficient

Texture feature GrayLevelNonUniformity Wavelet-LHL −0.153
Texture feature SmallAreaEmphasis Wavelet-LHL 0.823
Texture feature LongRunLowGrayLevelEmphasis Wavelet-LLH −0.429

First-order Maximum Wavelet-HLH 0.583
Texture feature GrayLevelVariance Wavelet-HHL 0.084

First-order Entropy Wavelet-HHL 0.049
Texture feature RunVariance Wavelet-HHL 0.064
Texture feature ShortRunLowGrayLevelEmphasis Wavelet-LLL −0.379

NP phase

Intercept −0.765

Texture feature HighGrayLevelRunEmphasis Original 0.325
Texture feature ShortRunHighGrayLevelEmphasis LoG filter (6 mm) −0.087
Texture feature Imc2 Wavelet-HLL 0.191
Texture feature ShortRunHighGrayLevelEmphasis Wavelet-HLL 0.225
Texture feature Contrast Wavelet-LHL 0.192
Texture feature SmallAreaHighGrayLevelEmphasis Wavelet-LHL 0.353
Texture feature ZoneEntropy Wavelet-LHL 0.049

First-order Entropy Wavelet-LHH 0.070
Texture feature DependenceNonUniformityNormalized Wavelet-LLH 0.013
Texture feature SumEntropy Wavelet-HLH −0.190
Texture feature Imc2 Wavelet-HLH 0.331
Texture feature GrayLevelVariance Wavelet-HHL 0.019
Texture feature Idn Wavelet-LLL 0.223
Texture feature SmallAreaLowGrayLevelEmphasis Wavelet-LLL −0.189

EX phase

Intercept −0.653

Texture feature DependenceVariance LoG filter (4 mm) −0.234
First-order Kurtosis LoG filter (4 mm) 0.139

Texture feature RunVariance LoG filter (4 mm) 0.163
Texture feature SizeZoneNonUniformity LoG filter (4 mm) 0.032
Texture feature DependenceNonUniformityNormalized Wavelet-HLL 0.165
Texture feature SmallDependenceLowGrayLevelEmphasis Wavelet-HLL −0.046
Texture feature SmallAreaHighGrayLevelEmphasis Wavelet-LHL 0.028

A significant difference in the radiomics scores between low- and high-grade ccRCCs
in all MDCT phases, with patients from the second group having higher values (Table 3),
was observed. Rad-Score was calculated according to the following formula:

Rad − Score =
a

∑
c=0

Cc ∗ Xc + b

where a is the number of radiomics features with nonzero coefficients for each MDCT phase
(10 for the UN phase, 17 for the CM phase, 14 for the NP phase, and 7 for the EX phase),
Cc is the coefficient of the cth feature, Xc the cth feature, and b the intercept.

3.3. Performance of the Radiomics Scores: Training Set

To compare the detection performance, the Rad-Scores were validated in terms of ROC
curve and AUC in the training set (Figure 2). Sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV) were also calculated. The radiomics
scores showed a favorable predictive efficacy for differentiating low- from high-grade
ccRCC based on each phase of the MDCT protocol. The results are summarized in Table 4.
In the training set, the Rad-Scores derived from the UN and CM phases achieved the best
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predictive ability, with a sensitivity, specificity, and an AUC of 81.82%, 92.50%, and 0.89 in
the UN phase and 90.91%, 95.00%, and 0.97 in the CM phase.

Table 3. Difference of the radiomics score (Rad-Score) between low- and high-grade ccRCC in the
training and validation sets.

WHO/ISUP Nuclear Grades Radiomic Score
Mean ± SD p-Value MDCT Phase

Training set

Low grade (n = 40)

−1.68 ± 1.16 p < 0.001 UN
−2.50 ± 1.95 p < 0.001 CM
−1.26 ± 0.68 p < 0.001 NP
−0.92 ± 0.53 p < 0.001 EX

High grade (n = 22)

0.60 ± 1.34 p < 0.001 UN
1.21 ± 1.29 p < 0.001 CM
0.15 ± 1.18 p < 0.001 NP
−0.16 ± 0.51 p < 0.001 EX

Validation set

Low grade (n = 29)

−1.18 ± 1.70 p = 0.051 UN
−2.21 ± 2.42 p < 0.001 CM
−1.12 ± 0.72 p = 0.001 NP
−0.80 ± 0.62 p = 0.009 EX

High grade (n = 11)

−0.03 ± 1.32 p = 0.051 UN
1.53 ± 3.43 p < 0.001 CM
0.19 ± 1.56 p = 0.001 NP
−0.24 ± 0.45 p = 0.009 EX

Table 4. Radiomic score performance in the training and validation sets in all MDCT phases.

Variable AUC
(95% CI)

Se
(95% CI)

Sp
(95% CI)

PPV
(95% CI)

NPV
(95% CI) Cut-Off Value p-Value

Training set

Radiomic score:
UN phase

0.89
(0.796–0.961)

81.82
(59.7–94.8)

92.50
(79.6–98.4)

85.7
(63.7–97.0)

90.2
(76.9–97.3) −0.34 <0.001

Radiomic score:
CM phase

0.97
(0.89–0.99)

90.91
(70.8–98.9)

95.00
(83.1–99.4)

90.9
(70.8–98.9)

95.0
(83.1–99.4) −0.25 <0.001

Radiomic score:
NP phase

0.87
(0.76–0.94)

81.82
(59.7–94.8)

92.50
(79.6–98.4)

85.7
(63.7–97.0)

90.2
(76.9–97.3) −0.55 <0.001

Radiomic score:
EX phase

0.85
(0.73–0.92)

72.73
(49.8–89.3)

87.50
(73.2–95.8)

76.2
(52.8–91.8)

85.4
(70.8–94.4) −0.34 <0.001

Validation set

Radiomic score:
UN phase

0.72
(0.56–0.85)

72.73
(39.0–94.0)

72.41
(52.8–87.3)

50.0
(24.7–75.3)

87.5
(67.6–97.3) −0.43 0.0157

Radiomic score:
CM phase

0.81
(0.66–0.92)

72.73
(39.0–94.0)

75.90
(56.5–89.7)

53.3
(26.6–78.7)

88.0
(68.8–97.5) −0.85 <0.001

Radiomic score:
NP phase

0.84
(0.69–0.93)

72.73
(39.0–94.0)

85.30
(68.3–96.1)

66.7
(34.9–90.1)

89.3
(71.8–97.7) −0.58 <0.001

Radiomic score:
EX phase

0.77
(0.61–0.89)

100.0
(71.5–100.0)

51.72
(32.5–70.6)

44.0
(24.4–65.1)

100.0
(78.2–100.0) −0.88 <0.001

Using the variables with a significant difference among low- and high-grade ccRCCs
in the training set (including age, tumor size, vein thrombosis, perinephric invasion, tu-
mor stage (2–4), intratumoral neovascularity, and hemorrhage), we conducted a multivari-
ate logistic regression analysis to develop a clinicoradiological model for the preoperative
prediction of the WHO/ISUP nuclear grade of ccRCCs (Table 5). Further, we constructed
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four complex models, adding the radiomics score of each phase to the clinicoradiological
model (Table 6).

1 

  

Figure 2. ROC curves of radiomics scores of all MDCT phases in the training and valida-
tion sets. ROC, receiver operating characteristic, AUC area under the curve.
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Table 5. Multivariate logistic regression analysis for the preoperatively prediction of the WHO/ISUP nuclear grade of ccRCCs:
clinicoradiological model.

Variable Coefficient Std. Error p-Value Odds Ratio (OR)

Age (years) 0.05 0.03 0.10 1.05
Tumor size (mm) 0.006 0.01 0.74 1.00

Vein thrombosis: positive −1.32 1.22 0.27 0.26
Perinephric invasion: positive 1.60 1.39 0.25 4.98

Tumor stage (2, 3, or 4) 2.09 1.07 0.05 8.13
Intratumoral neovascularity: positive 1.04 0.99 0.29 2.85

Hemorrhage: positive −1.81 1.55 0.24 0.16
Constant −5.55

Table 6. Multivariate logistic regression analysis for the preoperative prediction of the WHO/ISUP nuclear grade of ccRCCs:
complex model.

Variable Coefficient Std. Error p-Value Odds Ratio (OR)

UN phase

Age (years) 0.03 0.05 0.4997 1.03
Tumor size (mm) −0.02 0.02 0.4156 0.97

Vein thrombosis: positive 1.64 1.81 0.3653 5.16
Perinephric invasion: positive −0.17 1.73 0.9176 0.83

Tumor stage (2, 3, or 4) 0.99 1.42 0.4860 2.70
Intratumoral neovascularity: positive 0.07 1.17 0.9485 1.07

Hemorrhage: positive −1.75 1.87 0.34 0.17
Radiomic score: UN phase 1.83 0.59 0.0021 6.27

Constant −0.90

CM phase

Age (years) 0.12 0.09 0.1772 1.13
Tumor size (mm) −0.08 0.07 0.2576 0.91

Vein thrombosis: positive 1.13 16.78 0.9460 3.11
Perinephric invasion: positive 2.76 17.36 0.8735 15.86

Tumor stage (2, 3, or 4) 3.62 3.38 0.2837 37.59
Intratumoral neovascularity: positive −2.36 2.85 0.4075 3.11

Hemorrhage: positive −4.07 17.52 0.8161 0.01
Radiomic score: CM phase 4.92 2.37 0.0384 137.75

Constant −1.50

NP phase

Age (years) 0.11 0.05 0.03 1.12
Tumor size (mm) −0.03 0.02 0.2121 0.96

Vein thrombosis: positive −3.15 1.68 0.0610 0.04
Perinephric invasion: positive 3.88 2.23 0.0827 48.76

Tumor stage (2, 3, or 4) 2.19 1.50 0.1449 8.98
Intratumoral neovascularity: positive 0.34 1.24 0.7830 1.41

Hemorrhage: positive
Radiomic score: NP phase 2.78 0.91 0.0023 16.17

Constant −4.64

EX phase

Age (years) 0.05 0.04 0.2408 1.05
Tumor size (mm) −0.05 0.03 0.0879 0.94

Vein thrombosis: positive −0.24 1.42 0.8639 0.78
Perinephric invasion: positive 1.01 1.57 0.5184 2.77

Tumor stage (2, 3, or 4) 1.87 1.19 0.1170 6.49
Intratumoral neovascularity: positive 0.09 1.07 0.9263 1.10

Hemorrhage: positive −1.20 1.71 0.4832 0.29
Radiomic score: EX phase 4.64 1.75 0.0081 103.88

Constant 1.40
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The ability of the clincoradiological model and the complex model to categorize nu-
clear grades was evaluated by the AUC of the ROC curves (Figure 3). The clincoradiological
model showed a high performance in the discrimination of low- and high-grade ccRCCs
with an AUC of 0.83 (95% CI, 0.71–0.91, p < 0.0001). We found that the addition of radiomics
score to the clincoradiological characteristics improved their performance in all MDCT
phases: AUC = 0.93 (95% CI, 0.84–0.98, p < 0.0001) vs. AUC = 0.89 (95% CI, 0.79–0.96,
p < 0.0001) in the UN phase, AUC = 0.99 (95% CI, 0.92–1.00, p < 0.0001) vs. AUC = 0.97
(95% CI, 0.89–0.99, p < 0.0001) in the CM phase, AUC = 0.91 (95% CI, 0.81–0.97, p < 0.0001)
vs. AUC = 0.87 (95% CI, 0.76–0.94, p < 0.0001) in the NP phase, AUC = 0.87 (95% CI,
0.77–0.94, p < 0.0001) vs. AUC = 0.85 (95% CI, 0.73–0.92, p < 0.0001) in the EX phase.
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3.4. Validation of the Radiomics Score

The performance of the Rad-Scores for the discrimination of low- and high-grade
ccRCCs was confirmed in the validation set in each MDCT phase of each patient (Table 3).
ROC curve analysis was conducted, and the AUC, sensitivity, specificity, PPV, and NPV for
the determined cut-off values were calculated. The results are presented in Figure 2 and
Table 4. Compared with the training set, in the validation set, the Rad-Scores derived from
the CM and NP phases achieved the best predictive ability, with a sensitivity, specificity,
and an AUC of 72.73%, 75.90%, and 0.81 in the CM phase and 72.73%, 85.30%, and 0.84 in
the NP phase.

4. Discussion

In this study, we evaluated if radiomics features extracted from a four-phase MDCT
study may be helpful to preoperatively differentiate the WHO/ISUP nuclear grades of
ccRCC. In the era of personalized medicine, radiomics features, along with metabolic,
histopathologic, and genetic datasets, may be useful to improve patient management,
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a biomarker that could be useful in tumor characterization, treatment selection, and prog-
nosis [36–39]. Many radiomics features have proven to be useful in differentiating between
early- and advanced-stage diseases of various types of cancers [40–43]. In recent years, con-
cerning renal imaging, little research [25–32] has investigated the radiomics potential based
on MDCT to predict the ccRCC nuclear grade. Regarding the histologic tumor grading
system, the majority of studies used the Fuhrman classification system as a pathological
reference. Although the Fuhrman and WHO/ISUP grading systems are linboth used in
current medical practice for ccRCC grading, some studies [44–47] have reported that the
Fuhrman grading system has poor interobserver reproducibility compared to the new
WHO/ISUP grading system.

In recent years, the WHO/ISUP grading system has been accepted in current medical
practice, replacing the former Fuhrman grading system. To the best of our knowledge,
there are only a few published papers that have studied radiomics features based on MDCT
for predicting the ccRCC WHO/ISUP nuclear grade [29,48–51]. However, no previous
work used parameters extracted from a four-phase MDCT study to develop the prediction
model, as our study does.

Our results show that our constructed MDCT-based radiomics scores using a four-
phase protocol achieved a considerably promising performance in differentiating high-
from low-grade ccRCCs. The Rad-Scores derived from the UN and CM phases achieved
the best predictive ability in the training set. However, in the validation set, the Rad-Scores
from the CM and NP phases achieved the best predictive ability. We found that the best
predictive ability with an AUC of 0.94 was for the CM phase in the training dataset and 0.84
was for the NP phase in the validation datasets. This diversity illuminates that the CM and
NP phases are valuable and necessary for ccRCC grading. Our results are in concordance
with the results of previous studies on ccRCC grading using texture analysis or machine
learning (ML), which reported an accuracy between 0.78 and 0.82 and an AUC between
0.71 and 0.98 [29,48,49].

Our feature selection results showed that the first-order features and second-order
statistics features were significantly associated with the WHO/ISUP grade. In building
our radiomics scores, most of the features included were obtained from filtered images,
especially from wavelet-transformed filters. Shu et al. [50] used two predictive models
constructed by radiomics features extracted from the nephrographic and medullary phases
and reported no significant difference in the AUC between them to differentiate low-
from high-grade ccRCC. Conversely, they showed that the combined model of radiomics
features from two certain phases had the highest differential diagnostic efficiency (AUC:
0.82 (95% CI: 0.76–0.86). A recent study [51] showed that the value of the NP phase is limited
in predicting the ISUP grade. This may be due to two reasons: firstly, regarding tumor
delineation, Sun et al. used a single-slice approach (largest cross-section diameter of
the tumor) and did not perform data analysis of the entire tumor VOI. Although VOIs
segmentations are time-consuming processes, we believe that the single-slice approach
does not fully reflect the heterogeneity of the tumor, and the information obtained from the
VOI might be more reliable for the characterization of the tumor. Secondly, their features
extraction algorithm is different; they extracted the radiomics features from original and
wavelet-filtered images, without the use of LoG filters. It is known that filtered-based
images can limit the impact of technical noise [52]. More and more studies are using them,
but a current technical standardization regarding their use has not yet been established [53].

MRI-derived ADC values are useful in characterizing tumor activity [54]. Some stud-
ies [55,56] that evaluated the utility of ADC to differentiate low- from high-grade ccRCC
reported that MRI has a favorable predictive accuracy in detecting high-grade ccRCC
(AUC = 0.80). With all its advantages, MRI is not as widely used as MDCT for the analysis
of renal masses, being used only in selected cases. Cui et al. [48] used MRI- and CT-based
radiomics models to differentiate low- from high-grade ccRCCs, and then the authors
compared their performance. They reported that radiomics models based on a three-phase
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MDCT performed better than the radiomics model based on a single-phase MDCT, with an
ACC ranging from 77 to 79% in internal validation and 61 to 69% in external validation.

Similarly, the radiomics model based on all-sequence MRI was also superior to the
radiomics model based on single-sequence MRI, with an ACC ranging from 71 to 73% in
internal validation and 64 to 74% in external validation. When comparing the performance
between MDCT and MRI, they found that the MRI-based radiomics model had performed
better than the MDCT-based radiomics model for diagnosing low-grade ccRCC and showed
a similar ability for diagnosing high-grade ccRCC.

Regarding the statistical approach, our study included one classification method:
the binary logistic regression method. This algorithm is used to predict the probability of
the class of a categorical dependent variable [57]. Several studies [58,59] have assessed
the performance of quantitative MDCT texture analysis combined with different machine-
learning-based classifiers to discriminate low- from high-grade ccRCC. It was observed
that the highest predictive performance was obtained by the support vector machine
classifier. However, these results were obtained for the Fuhrman grading system of ccRCC.
Despite differences in the procedure followed, we believe that all studies support each
other with the same conclusion that MDCT-based radiomics features may be a promising
noninvasive method in predicting preoperative ccRCC grades.

In this study, the radiomics scores combined with the clinicoradiological characteristics
showed a high performance in the discrimination of ccRCC grades. Two characteristics
(age and tumor stage) were consistent with previous studies [29,56]. Li et al. proved a
correlation between radiological characteristics and the ccRCC nuclear grade [28]. Shape,
margin, and necrosis may be independent predictors of high-grade ccRCC, whereas a
regular shape can often be seen in low-grade ccRCC lesions [28]. Another paper [60]
demonstrated statistically significant differences in WHO/ISUP grading and pT staging
between ccRCCs. In addition, they found that coagulative necrosis often occurs in high-
grade and high-stage tumors.

This study may have important practical implications. The new WHO/ISUP grading
system is a prognostic factor for ccRCCs. ccRCC grades were strongly related to patient
outcomes and tumor biological behavior [61,62]. If low-grade tumors can be identified
preoperatively, the treatment would consist of less invasive procedures. Moreover, par-
tial nephrectomy can preserve partial renal function, thus reducing overall mortality and
the incidence of cardiovascular disease [63]. Therefore, medical images can become a
valuable source of information, and radiomics features may be used as a noninvasive
method for characterizing and classifying lesions. However, further larger prospective
studies to validate the performance of our proposed radiomics model in differentiating
high from low-grade ccRCC are necessary for the future.

The present study has some limitations. (1) It was a single-center retrospective study
with a small sample size of patients. (2) The statistical approach included one classification
method, the binary logistic regression method, and advanced classifiers may offer better
prediction performance. (3) External validation in more centers with more samples size
is needed to overcome these limitations and validate the results in order to improve
generalization and evaluate the potential for clinical translation of our radiomics models.
(4) Volume effect interference cannot be completely avoided due to the fact that the tumor
boundary was manually drawn. (5) The four-phase MDCT renal mass protocol involves
a high dose of radiation to the patient and should be performed where it is necessary to
discriminate the lesions before treatment selection.

5. Conclusions

Although there are limitations with regard to sample size, we have shown that ra-
diomics features extracted from the four-phase MDCT study may play a role as a potential
imaging biomarker to predict preoperatively the WHO/ISUP grade of ccRCCs, help-
ing urologists to better stratify patients and choose the best treatment.
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