
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6182  | https://doi.org/10.1038/s41598-022-10229-5

www.nature.com/scientificreports

Biomechanical consequences 
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Treatment of posterior meniscal roots tears evolved after biomechanical evidence of increased 
pressures on the tibiofemoral cartilage produced by this lesion and the subsequent accelerated 
development of arthritis or osteonecrosis observed clinically. However, little is known about the 
consequences of the detachment of the anterior roots. This in-vitro study analyzes the biomechanical 
changes in the tibiofemoral joint caused by avulsion of the anterior root of the lateral meniscus. The 
effectiveness of surgical root re-insertion to restore the pre-injured conditions is also evaluated. Using 
cadaveric knees at flexion angles from 0° to 90°, results show that the lesion significantly reduces the 
contact area and raises the pressure on the tibiofemoral cartilage of the injured compartment at all 
angles. Said modifications become larger at low flexion angles, which are the most frequent positions 
adopted by the knee in daily and sports activities, where they result similar to total meniscectomy. 
In-situ repair partially restores the contact biomechanics. Consequently, careful attention should be 
paid to proper diagnosis and treatment of detached anterior roots since the observed altered knee 
contact might induce similar degenerative problems in the cartilage as with completely detached 
posterior roots.

Integrity of the posterior meniscal roots is crucial to preserve meniscal function. The effects of an avulsion of the 
posterior roots have been well studied in recent years1–6. Biomechanical consequences of their detachment can 
be similar to those of a total meniscectomy1,3,6, leading to an increase in pressure on the affected compartment, 
and subsequently, rapid development of arthritis7 or osteonecrosis8. Root reinsertion applying surgical treatments 
promotes recovery towards the pre-injury biomechanics1,2.

Lesions of the anterior roots has received much less attention. Although it could be attributed to a low 
reported incidence compared with lesions of the posterior roots, there is a shortfall of comprehensive analyses 
addressing the incidence rate of anterior root tears. Recently, injuries to the anterior root of the lateral menis-
cus (ARLM) have been reported concomitant with some tibial fractures7,9 or in the setting of anterior cruciate 
ligament (ACL) reconstruction10,11, where a high risk of iatrogenic damage to the root during tunnel reaming 
exists due to the proximity of the root insertion to the tibial footprint of the ACL12,13, which occurred in up to 
18% of the interventions in a study of Asian women13. After anterior meniscal root tears, early occurrence of 
osteoarthritis has been suggested in an animal model14. Specifically, in porcine models, histopathological changes 
in the cartilage (a hallmark of OA) from 1 month after surgical detachment of the anterior horn of the medial 
meniscus were reported15–17 as well as significant cartilage wear which became progressively more evident at 3 
and 6 months15,16. Chondral lesions were also identified in a small series of humans after chronic anterior root 
tears18, indicating that disinsertion of the ARLM might have deleterious consequences. When a torn anterior 
root is found in the clinical context, the surgeon must choose the best treatment to apply. However, regarding 
ARLM avulsion a decision protocol is lacking and biomechanical studies are still needed to fully understand the 
effects of the lesion on the biomechanics of the knee and to assess the effectiveness of the repair.

The objective of this study was to analyze the consequences on the tibiofemoral contact mechanics of the 
human knee of an avulsion of the ARLM and its repair with an in-situ fixation technique. Our hypotheses were 
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that the avulsion of the ARLM modifies tibiofemoral contact, increasing the pressure on the articular cartilage 
and that the repair of such injuries restores the biomechanical behavior of the knee.

Methods
After approval by the Ethics Committee for Experimentation of the University of Málaga, nine frozen cadaveric 
human knees were initially included in the study (5 men and 4 women; mean age, 84 years; range 68–91 years). 
Specimens were provided by a specialized company that obtained informed consent from donor or next of kin. 
One specimen was discarded because an anomalous geometry of the external tibial compartment was observed 
after disarticulation at the end of its test. Thus, the final sample size was n = 8. The knees were suplied by a 
company (Ekokoes Tecnología y Servicios SL, Valencia, Spain) specialized in providing cadaveric specimens for 
educational, surgical training, or research purposes, and all experiments were performed in accordance with 
relevant guidelines and regulations.

One day before the test, the specimen was left at room temperature, wrapped in dampened gauze. Once 
thawed, the knee was dissected up to its capsular plane and visually inspected via an open arthrotomy incision 
for no previous pathologies, with special attention to the integrity of menisci and principal knee ligaments and 
no chondral injuries (the absence of pathologies was rechecked at the end of the test by disarticulating the joint 
up to the intraarticular surface was exposed). The arthrotomy was left open for the rest of the testing procedure. 
Next, the bones were cut to approximately 150 mm from the joint, and the distal ends of the bones were potted 
with epoxy resin in rectangular wooden receptacles while keeping the tibial and femoral axis at 90° to the bot-
tom plane of the containers.

To characterize tibiofemoral contact pressure, pressure sensors were used (K-scan 4000, Tekscan Inc., Boston, 
MA) that consisted of two sections, each with an area 27.9 × 33 mm2 and a spatial resolution of 62 sensels/cm2. 
A new sensor was used for each specimen. Four tabs incorporated in the sensor were reinforced with adhesive 
tape before applying sutures that were used to guide sensor insertion. On the test day, immediately before use, 
the sensor was preconditioned by applying 5 cycles of 1000 N, and then a 3-point law calibration was performed 
before its insertion, following the manufacturer’s protocol.

Next, an orthopedic surgeon from our team performed all the preparations and surgical simulations. First, 
the coronary ligament was sectioned only as strictly necessary to introduce the sensor between each meniscus 
and the tibial articular surface, ensuring that the meniscal and knee ligaments were not damaged. The anterior 
intermeniscal ligament was also sectioned to homogenize the sample because this structure is not present in all 
the specimens, and when it is found, its characteristics are highly variable and its unclear role may influence knee 
biomechanics19,20. As the rectangular sections of the sensor did not exactly match the intraarticular surfaces, 
they were specifically placed to maximize coverage of the contact areas for each meniscal condition and flexion 
angle, as assessed by the computer image of the sensor with the knee flexed under manual compression. Once 
positioned, the sutures used for insertion were tied to screws attached to the tibia container to minimize sensor 
movement during loading (Fig. 1).

Each knee was tested in four different conditions of the lateral meniscus (Fig. 2) in the following order: (1) 
intact (reference condition); (2) injured: detachment of the ARLM; (3) repair: simulated surgical reinsertion 

Figure 1.   Experimental setup: (a) frontal and (b) lateral view showing the testing machine with a right knee 
specimen mounted at 90° flexion. White arrows highlight the machine elements that enable the movements 
associated with the degrees of freedom of the experiment. (a) Tibial container; (b) femoral container; 2: clamp 
that permits three-dimensional rotation used to fix the femur; 3: actuator of the machine with linear ball guides 
interposed; 4: pressure sensor; 5: load cell; 6: screws to fix the sensor to the tibial container.
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of the ARLM; and (4) total meniscectomy. For every condition, the specimen was tested at four flexion angles 
in the following order: 0°, 30°, 60°, and 90°, where 0° corresponded to full extension. These flexion angles are 
consistent with those used in previous studies on the human meniscus1,3,6,21,22.

Once the tests were completed in the intact condition, the ARLM was transected with a scalpel. When the 
tests with the simulated lesion were completed, the repair was carried out using a suture anchor (Iconix® 2.3 mm, 
two threads; Stryker, Greenwood Village, CO, USA) for in-situ fixation (Fig. 2). After inserting the anchor in 
the anatomic footprint of the ARLM articular tibial surface according to the manufacturer’s instructions, proper 
stability of the implant was checked by pulling on the thread tails. Subsequently, with the aid of a needle, two 
sutures were applied by passing an end of each thread through the meniscus and then knotting both tails together. 
The suture locations were approximately 5 mm from the anterior edge of the lateral meniscus and separated by 
5 mm from each other. Finally, the lateral meniscus was removed to test for the last condition.

Figure 2.   Schematics of the lateral meniscus conditions tested: (a) intact meniscus, (b) anterior root 
detachment, (c) In-situ repair, (d) meniscectomy. The detail shows a magnified representation of the repair 
technique.
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Biomechanical testing.  A custom uniaxial traction/compression testing machine23 was used for the tests 
(Fig. 1). The bottom of the tibial container was coupled to the actuator of the machine with the tibial axis aligned 
in the loading direction. Two perpendicular flat linear ball guides (BWU 60–60, IKO, Tokyo, Japan) were placed 
between the container and actuator to free the mediolateral and anteroposterior tibial displacements (Fig. 1). 
The container of the femur was connected to the base of the testing machine with a clamp that fixed the flexion 
angle and allowed varus-valgus and internal–external rotations.

For each flexion angle and meniscal condition, firstly, a slowly increasing compressive load from 0 to 100 N 
was applied at 0.1 mm/s while permitting natural alignment of the specimen. Once this load level was reached, 
anteroposterior displacement was blocked , as in previous works24,to avoid later instability of the knee owing to 
the absence of muscles25 (as was evidenced in our pilot tests, specially at the higher flexion angles). Immediately 
after, axial compression was increased at 1 mm/s from 100 N until it reached 1000 N. Then, this load was held 
for 1 min to let stabilize the signal from the pressure sensors (Fig. 3) and to minimize the possible variations in 
these recordings between testing conditions due to viscoelastic effects. At this point the contact pressure was 
recorded. The 1000 N axial compression was selected to facilitate comparisons with previous studies on the 
human meniscus1,3,6,21,22, although the value is greater than that expected in the immediate postoperative period.

The force was recorded by a class 1 load cell of 2kN rating (HBM, Darmstadt, Germany) located between the 
container of the tibia and the machine actuator (Fig. 1). The data were exported to a text file and was processed 
using MatLab®v.R2019b (The Mathworks Inc., Massachusetts, USA). Some studies have reported a decrease in 
the pressure magnitude measured by Tekscan after the application of several dynamic loading cycles3,26,27. In our 
pilot test, we also observed a linear decline over time of the load recorded after 16 measuring cycles per sensor. 
As in previous works18, to correct the discrepancy between applied load and total force provided by the sensor 
(computed as summation of sensel pressure x area), the data acquired in every test case was normalized. To 
exclude signal noise and other confounding values, such as those generated by the presence of wrinkles in the 
sensor, from the analyses, only pressures greater than 0.07 MPa were considered28. The following values were 
computed for each compartment at every combination of lateral meniscus condition and flexión angle: contact 
area, mean pressure, and peak pressure.

Statistical analyses.  To control the inter-specimen variability due to differences in shape, size, or natural 
alignment, the parameters related to the pressure and size of the contact area were normalized by calculating 
their ratios relative to the same parameter in the intact condition at the same flexion angle.

To assess for differences between testing conditions, non-parametric tests were applied as the most appropriate 
for small samples in which it is not known whether the population distribution is normal. The resulting ratios of 
the contact area, mean pressure, and peak pressure for each testing condition were compared with a value of 1 to 

Figure 3.   Representative distribution of pressures in the lateral and medial compartments. The four lateral 
meniscus conditions tested are represented for specimen n° 3 at 0° of flexion: anterior root avulsion of the 
lateral compartment resulted in a more concentrated distribution of pressures in the injured side, with steeper 
gradients. These effects were similar to meniscectomy. With repair, pressure distribution tended to recovered 
that of the intact condition.
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assess for any variation relative to the reference condition using a Wilcoxon signed-rank test. Differences between 
treatments were evaluated using Friedman’s analysis of variance test. The statistical software package SPSS Sta-
tistics v.25 (IBM, Chicago, IL, USA) was used for all analyses; p ≤ 0.05 was considered statistically significant. 
When an overall significant difference was detected, preplanned pairwise comparisons of injured versus repaired 
and injured versus meniscectomy groups were carried out using a Wilcoxon signed-rank test with Bonferroni 
correction to account for multiple variations (corrected statistical significance p ≤ 0.025).

The group size was selected based on the normalized peak pressure obtained at the lateral compartment for 
the first three specimens tested, as clinically relevant differences in the contact parameters are unknown. Calcu-
lations using G*Power 3.1.9.2 software29 yielded a minimum group size of n = 7 with the Wilcoxon signed-rank 
test for a computed effect size of 1.5 between the injured and intact conditions at α = 0.05 with a power of 0.8, and 
n = 4 for a computed effect size of 2.1 between treatment conditions at each flexion angle tested using Friedman’s 
test. Thus, a conservative sample size of n = 9 was initially chosen, which is in accordance with prior studies in 
cadaveric knees1,3,4,21,27,30. One specimen was discarded due to anatomical abnormalities, leaving the final sample 
size n = 8. A sensitivity power analysis with n = 8, α = 0.05, and (1-β) = 0.8 showed a minimum detectable effect 
of 1.2 for the planned paired comparisons using the Wilcoxon signed-rank tests.

Results
Normalized contact area.  At the compartment of the lesion (Table 1, Fig. 4a), the ARLM avulsion pro-
duced a significant decrease in the contact area relative to the control for all flexion angles (p = 0.012 at 0°, 
p = 0.012 at 30°, p = 0.017 at 60°, and p = 0.025 at 90°); the effect was more pronounced at full extension, with a 
reduction of the mean contact area by 45%, while it was the lowest at 90° flexion, reaching only a 24%. Menis-
cectomy also showed significant differences relative to the control at all angles (p = 0.012 at 0°, p = 0.012 at 30°, 
p = 0.018 at 60°, p = 0.018 at 90°), the differences were of a similar magnitude to those caused by ARLM avulsion 
at low flexion but were higher at 90° (p = 0.018) when the effect of anterior root detachment is less pronounced.

The in-situ repair was unable to completely recover the lateral contact area, which was significantly differ-
ent from the intact group for flexion angles of 0°(p = 0.012), 30°(p = 0.012), and 60°(p = 0.025), and it showed a 
tendency to significance at 90°(p = 0.063). However, the repair did show a partial recovery with respect to the 
lesion as the contact area was closer to the intact condition at all flexion angles, showing an increase in the mean 
contact area from injured to repaired by 40% at extension, 17% at 30°, 20% at 60°, and 7% at 90°. Said recovery 
reached significance at 0°(p = 0.024) and 60°(p = 0.05).

In the medial condyle (Table 1), no significant differences were detected in terms of contact area at any flexion 
angle between the meniscal conditions tested.

Normalized mean pressure.  In the lateral condyle (Table 2, Fig. 4b), the injury produced a significant 
increase in the mean pressure at all flexion angles (p = 0.018 at 0°, p = 0.012 at 30°, p = 0.012 at 60°, p = 0.036). 
The effect was more pronounced at extension and softened as flexion progressed, with an increase of 115% at full 
extension versus 41% at 90°. Meniscectomy also showed significant differences with respect to intact condition 
at all angles (p = 0.018 at 0°, p = 0.012 at 30°, p = 0.018 at 60°, p = 0.018 at 90°), although without showing such 
increase of the alteration with flexion. Moreover, compared to the avulsion, meniscectomy only showed signifi-
cant differences at 90° (p = 0.018).

The repair of the root decreased the mean pressure compared with the injury at all flexion angles, achieving a 
reduction by 47% at extension, 32% at 30°, 28% at 60°, and 28% at 90°. The difference was statistically significant 
at all angles (p = 0.018 at 0°, p = 0.017 at 30°, p = 0.012 at 60°, and p = 0.018 at 90°). In terms of this parameter, 

Table 1.   Normalized contact area relative to the intact condition in the lateral and medial compartments at 
each flexion angle for the 3 altered meniscal conditions (given as mean value with the 95% CI in parentheses). 
Values of contact area (mm2) in the Intact group are provided for reference. *Significant difference with respect 
to the intact condition. † Significant difference with respect to meniscectomy. • Significant difference with 
respect to injured.

0° 30° 60° 90°

Lateral

Intact (mm2) 58.39 (53.86, 62.92) 53.90 (45.15, 62.64) 49.65 (38.04, 61.26) 38.89 (31.22, 46.55)

Normalized area

Injured 0.55 (0.48, 0.62)* 0.60 (0.49, 0.73)* 0.60 (0.45, 0.76)* 0.76 (0.61, 0.91)*†

Repaired 0.77 (0.71, 0.83)*• 0.70 (0.61, 0.80)* 0.72 (0.59, 0.86)*• 0.81 (0.62, 0.99)

Meniscectomy 0.54 (0.46, 0.61)* 0.53 (0.44, 0.62)* 0.57 (0.41, 0.72)* 0.49 (0.38, 0.61)*•

Medial

Intact (mm2) 54.23 (43.97, 64.62) 43.18 (33.82, 52.54) 43.86 (36.66, 51.06) 43.93 (37.81, 50.05)

Normalized area

Injured 0.90 (0.72, 1.07) 0.77 (0.57, 0.97) 0.87 (0.66, 1.84) 0.95 (0.76, 1.13)

Repaired 1.03 (0.95, 1.12) 0.96 (0.84, 1.09) 0.78 (0.93, 1.08) 1.02 (0.78, 1.25)

Meniscectomy 0.89 (0.76, 1.02) 0.82 (0.70, 0.92) 0.85 (0.71, 1.00) 0.91 (0.76, 1.05)
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Figure 4.   Normalized contact area (a), mean pressure (b), and maximum pressure (c) at the lateral 
compartment for the three altered meniscal conditions (injured, repaired, and total meniscectomy) for the four 
knee flexion angles tested; The vertical line near each dot group represents the 95% CI interval of the mean for 
the group data. Horizontal lines represent significant differences between groups in the preplanned pairwise 
comparisons. *Significant difference with respect to the intact condition.
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the values achieved with the repair were different from those of the intact condition at flexion angles of 30° 
(p = 0.017) and 60° (p = 0.12).

In the medial condyle (Table 2), no statistical differences between tested conditions were detected.

Normalized peak pressure.  In the lateral condyle (Table  3, Fig.  4c), the injury produced a significant 
increase in the peak pressure compared to the intact group for all flexion angles except 90° (p = 0.018 at 0°, 
p = 0.017 at 30°, and p = 0.012 at 60°). The alteration was again more pronounced in extension than at high flex-
ion. As for previous parameters, meniscectomy significantly altered peak pressure (p = 0.018 at 0°, p = 0.017 at 
30°, p = 0.018 at 60°, p = 0.028 at 90°) but without a particularly greater influence at low flexion. Furthermore, 
significant differences between the injured and meniscectomy groups were found only at 90° (p = 0.018).

After repair, the mean normalized peak pressure decreased, reaching a level closer to the intact condition 
values, with significant differences found at 30° (p = 0.017) and 60° (p = 0.025) when comparing the intact and 
repaired groups. Decreases from the injured to the repaired condition reached 43% at extension, 35% at 30°, 
19% at 60°, and 26% at 90°, with significant differences when the lesion was of more influence at 0° (p = 0.018) 
and 30° (p = 0.025).

In the medial condyle (Table 3), no statistical differences were found between the tested conditions.

Table 2.   Normalized mean pressure relative to the intact condition in the lateral and medial compartments at 
each flexion angle for the 3 altered meniscal conditions (given as mean value with the 95% CI in parentheses). 
Values of mean pressure (N/mm2) in the Intact group are provided for reference. *Significant difference with 
respect to the intact condition. † Significant difference with respect to meniscectomy. • Significant difference 
with respect to injured.

0° 30° 60° 90°

Lateral

Intact (N/mm2) 1.02 (0.80, 1.24) 1.06 (0.77, 1.34) 1.17 (0.78, 1.56) 1.26 (1.07, 1.45)

Normalized pressure

Injured 2.15 (1.75, 2.55)* 2.12 (1.72, 2.52)* 1.91 (1.54, 2.28)* 1.41 (1.12, 1.70)* †

Repaired 1.14 (0.96, 1.31)• 1.44 (1.16, 1.73)*• 1.38 (1.14, 1.61)*• 1.01 (0.74, 1.27)•

Meniscectomy 2.06 (1.62, 2.50)* 1.95 (1.56, 2.33)* 2.05 (1.71, 2.40)* 2.24 (1.78, 2.70)*•

Medial

Intact (N/mm2) 0.79 (0.43, 1.15) 1.91 (1.01, 1.61) 1.39 (1.02, 1.77) 1.41 (1.00, 1.83)

Normalized pressure

Injured 1.23 (0.97, 1.58) 1.24 (0.84, 1,64) 1.16 (0.88, 1.44) 1.09 (0.93, 1.35)

Repaired 1.24 (0.96, 1,52) 1.18 (0.93, 1,43) 1.18 (0.93, 1.44) 1.27 (0.87, 1.31)

Meniscectomy 1.22 (0.84, 1.60) 1.39 (1.11, 1.68) 1.17 (0.91, 1.42) 1.16 (0.96, 1.36)

Table 3.   Normalized peak pressure relative to the intact condition in the lateral and medial compartments at 
each flexion angle for the 3 altered meniscal conditions (given as mean value with the 95% CI in parentheses). 
Values of peak pressure (N/mm2) in the Intact group are provided for reference. *Significant difference with 
respect to the intact condition. † Significant difference with respect to meniscectomy. • Significant difference 
with respect to injured.

0° 30° 60° 90°

Lateral

Intact (N/mm2) 2.91 (2.18, 3.65) 3.53 (1.98, 5.07) 3.67 (2.45, 4.89) 4.35 (3.87, 4.84)

Normalized pressure

Injured 2.30 (1.73, 2.87)* 2.48 (1.93, 3.03)* 2.00 (1.37, 2.64)* 1.56 (1.04, 2.08)†

Repaired 1.32 (0.83, 1.81)• 1.60 (1.23, 1.97)*• 1.62 (1.20, 2.05)* 1.16 (0.69, 1.63)

Meniscectomy 2.21 (1.61, 2.82)* 2.09 (1.56, 2.62)* 2.06 (1.57, 2.56) 1.91 (1.28, 2.54)*•

Medial

Intact (N/mm2) 2.91 (1.66, 4.17) 5.58 (3.54, 7.62) 5.11 (3.35, 6.88) 6.41 (4.19, 8.63)

Normalized pressure

Injured 1.21 (0.84, 1.58) 0.99 (0.65, 1.32) 1.07 (0.85, 1.30) 0.99 (0.76, 1.21)

Repaired 1.21 (1,04, 1.39) 0.92 (0.68, 1.16) 1.12 (0.92, 1.33) 1.27 (0.92, 1.62)

Meniscectomy 1.08 (0.84, 1.58) 1.06 (0.65, 1.32) 1.07 (0.85, 1.30) 0.97 (0.76, 1.21)
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Discussion
The main findings of this study are that avulsion of the ARLM significantly alters the contact pressure distribu-
tion on the tibiofemoral cartilage of the compartment with the lesion; the alteration was especially pronounced 
at low flexion angles where it showed effects similar to meniscectomy. Surgical repair of the root using an in-situ 
technique partially restored the pre-injury condition.

It was confirmed that the lesion significantly reduced the contact area in comparison to the intact knee at all 
flexion angles tested and increased the mean and peak pressures on the cartilage of the injured compartment at 
flexion angles between 0° and 60°. Such alterations were more acute at full extension than at greater flexion angles. 
Even more, the lesion resembles a total lateral meniscectomy except at 90°, where the effects of the lesion were 
less pronounced. Specifically, changes in the mean values at full extension multiplied those observed at 90° by a 
factor of 1.4 for contact area, and 1.5 for mean and peak pressures. On repairing, all contact parameters showed 
a recovery towards the levels of the intact condition, especially at low flexion angles. However, most values 
reached were still statistically different from the intact condition, thus showing that the recovery was incomplete.

Most biomechanical studies on meniscal root avulsion focus on the posterior roots. Evidence of the alteration 
of contact pressures caused by this lesion of medial1,4,31,32 and lateral3,6,22,23,30,32,33 menisci have been published. 
The alterations reported after detachment of the posterior root of the medial meniscus are of similar magnitude 
to our findings in terms of mean contact area, peak and mean pressure in the injured compartment, although 
there is no a clear range of knee flexion most influenced by the injury accordling the published data. Focusing 
on the lateral meniscus, the detachment of the posterior root significantly reduces the contact area and increases 
the mean and peak pressures on the injured compartment3,6,21,22,30, analogous to what we found for anterior root 
avulsion. The variations from the intact condition reported with a detachment of the posterior root by LaPrade 
et al.3, when pooled across all angles (34% in contact area, 56% in mean and peak pressures) show magnitudes 
that are similar in the contact area and less pronounced in terms of pressures than those found in our work 
with the anterior root avulsion (37% in contact area, 90% in mean pressure and 109% in peak pressure). This 
result suggests that, when not repaired, the anterior root avulsion can lead to cartilage damage comparable to a 
detached posterior root.

On the other hand, when the biomechanical consequences of the posterior root avulsion are assessed in a 
range of flexion angles3,6,33, the intensities of alterations of the contact parameters are greater at the higher flexion 
angles. Laprade et al.3 reported a variation relative to intact in the contact area that was 1.5 greater at 90° than at 
full extension, 1.9 in mean pressure, and 1.8 in peak pressure. Pérez-Blanca et al.6 also found variations greater 
at 90° compared to 0°, although differences were more moderated, with factors of 1.3 for contact area and mean 
pressure and 1.1 for peak pressure. Recently, Ohori et al.33 also reported a rise in the alterations caused by the 
complete rupture of the posterior root as the flexion angle increased from 30 to 120, although the study was 
performed in a porcine model. This outcome is the opposite of our findings for the anterior root avulsion, which 
we believe could be owing to the articular kinematics: at low flexion angles, the contact area34 is placed more 
anteriorly, closer to the anterior root, and it is displaced posteriorly as the knee is flexed, nearing the posterior 
root and, therefore, it is reasonable that its detachment becomes of less influence. It is also in accordance with 
the conclusions of previous works that reported higher pressure load at the anterior portion of the meniscus in 
extension and at the posterior portion in deep flexion under compressive knee load33,35. Therefore, we believe 
that the ARLM avulsion may be of higher clinical significance than posterior root detachment, considering that 
daily routine and sports activities involve longer periods of knee loading at lower flexion angles comparatively. 
Furthermore, it should be considered that while the stabilizing function of the posterior lateral root is reinforced 
by the meniscofemoral ligament (when present)2,5,30, there is no similar structure that collaborates with the ARLM 
and, therefore, its integrity may be more critical.

Regarding the success in repairing the injury, several analysis of clinical outcomes after posterior meniscal 
root repairs36,37 suggested that this intervention could retard the progression of degenerative changes in the knee 
in up to 80 to 84% of the patients. From a biomechanical point of view, it was reported that the repair of the pos-
terior root using transtibial techniques partially restored the preinjury contact condition3,6. In our study, using 
an in-situ surgical technique, we also found that the repair of the ARLM partially recovered the intact condition 
at all flexion angles, although direct comparison of the levels of recovery is difficult due to the different surgical 
techniques applied which may have lead to distinct results. With the in-situ repair, the contact parameters did 
not reach the levels of the intact knee, with differences of up to 23% in contact area, 42% in mean pressure and 
60% in peak pressure at low flexion angles. From a clinical point of view, it is not known what degree of altera-
tion is needed to trigger the onset of knee osteoarthritis. As the in-situ repair technique applied in our research 
achieved a partial restoration, it could be expected to contribute in lessening knee damage as seen with the repair 
of posterior roots. However, the important differences observed between the contact parameters in the natural 
knee and after repair indicate that, application of other surgical techniques should be further investigated in 
order to improve the outcomes, such as root suturing or a transosseous pullout procedure.

To our knowledge, only one published study37 addressed the possible alterations in the contact parameters 
due to a lesion at the anterior area of the lateral human meniscus, although it focused on a 2 cm longitudinal 
tear in the peripheral 1/3 of the anterior horn, its repair, and a partial meniscectomy about the tear. Eight 
human knees were tested at extension and 30° flexion, subjected to an axial load similar to the compression in 
our study. Only partial meniscectomy showed a significant increase in the peak pressure and contact area in 
the injured compartment with respect to the intact knee, but neither did the tear nor its repair. In our work, we 
did find significant differences in the contact parameters between the intact and injury groups, which we think 
is due to the fact that the root avulsion analyzed in our work fully disrupt the continuity of the circumferential 
fiber, while the tear studied by Prince et al.38 does not. In line with this result, previous studies reported that 
incomplete radial tears of the lateral meniscus of up to 66% width in a porcine model39 and up to 75% width in a 
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human model24 did not induce any significant changes in the contact or kinematic parameters of the knee under 
compression, whilst complete radial tears generated significant alterations in both cases. As for meniscectomy, 
we also observed changes in all contact parameters at 0° and 30°, albeit the contrast of the results is prevented 
because they conducted only a partial meniscectomy that preserved the continuity of the circumferential fibers.

The present work has certain limitations, owing to the use of cadaveric specimens that do not allow repro-
duction of the biological response of the tissues, which is inherent to the use of ex vivo specimens. As no muscle 
activity was reproduced, to keep the knee stable at imposed angles in high flexion conditions, the actuation neces-
sary was supplied by blocking anteroposterior displacement, a common practice24 but which may have altered the 
final contact position at 90°. To lessen this possible effect, the flexed knee was free to reorient naturally under a 
load of up to 100 N before fixing this degree of freedom, following the same protocol in all meniscal conditions, 
and hence, we believe that the comparative result presented would stand. Additionally, no dynamic phenomena 
were assessed, like creep effects due to the viscoelastic response of soft tissues or cyclic loading; as in similar 
studies, a static compressive load was applied and the variables were registered after specimen stabilization. Also, 
although an arthrotomy was conducted and most of the soft tissue of the knee had to be removed and the coronal 
ligament partially sectioned to allow insertion of the sensors, special care was taken not to damage the meniscal 
roots or the knee ligaments to minimize the anatomical alterations of the joint. Finally, it has been reported that 
the load output of the Tekscan pressure sensors used to measure intraarticular pressures on cadaveric specimens 
could diminish over time and after the application of several dynamic loading cycles26–28. To correct this possible 
inaccuracy, the pressure measured in each test was normalized by the total applied force.

In conclusion, avulsion of the ARLM produces significant alterations in the contact biomechanics of the knee, 
increasing the pressure and reducing the contact area on the articular cartilage of the injured compartment. 
Alterations were greater at low knee flexion angles, where they were similar to total meniscectomy. In-situ repair 
partially restored these biomechanical alterations to the pre-injury condition.
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