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Psychophysiological correlates 
between emotional response 
inhibition and posttraumatic stress 
symptom clusters
Hongxia Duan1, Li Wang2 & Jianhui Wu1

Post-traumatic Stress Disorder (PTSD) is characterized by diverse executive function impairments as well 
as abnormal emotion processing. The goal of the present study was to examine the relationships between 
emotional response inhibition and distinct PTSD symptom clusters from a six-factor DSM-5 model. Event-
related potentials (ERPs) were measured in an emotional Go/NoGo task among 58 adult survivors from a 
deadly earthquake. Overall, the commission errors were lower and reaction time was faster for negative 
pictures compared to neutral pictures. The negative pictures elicited a smaller N2 but larger P3 amplitude 
compared to neutral and positive pictures, and larger P3 amplitude was further associated with a faster 
response. Multivariate regression models showed that the PCL score was related to smaller NoGo-N2 
amplitude in the negative context, suggesting that the severity of posttraumatic stress symptoms is 
associated with worse conflict detection. Furthermore, the severity of anhedonia symptom cluster 
rather than negative affect symptom cluster was associated with fewer commission errors in the positive 
context, and this result provided electrophysiological evidence for the six-factor model, i.e., a distinction 
should be made between negative affect symptom cluster and anhedonia symptom cluster.

Posttraumatic stress disorder (PTSD) is a severe and complex mental disorder precipitated by exposure to a cata-
strophic event involving actual or threatened death or injury, or a threat to the physical integrity of him/herself or 
others (DSM-5)1. Impairments in cognitive functions, such as emotion, attention, memory and executive control 
functions are frequently observed in PTSD population2–6.

The capacity for continually monitoring and updating our actions is critical for effective performance in daily 
life. Response inhibition, the ability to inhibit prepared or proponent behaviors, is the key determinant of success-
ful cognitive and motor control7. Neuroimaging studies have shown that fronto-basal ganglia networks, especially 
pre-supplementary motor area (preSMA), inferior frontal gyrus (IFG) and anterior cingulate cortex (ACC) are 
critical for inhibiting motor system and response tendencies8–10. Patients with PTSD generally exhibit abnormal 
top-down inhibitory control in the motor system, i.e., less activation in frontal brain areas and less deactivation of 
the motor cortex, suggesting there may be a deficiency of frontal inhibitory control to an enhanced motor readi-
ness or an increased prepotency to respond11–13.

Studies with event-related brain potentials (ERPs), which have high time resolution, have also demonstrated 
abnormal inhibitory function at different processing stages in patients with PTSD. Specifically, during a Go/
NoGo task, the frontocentral N2 elicited 200–400 ms following NoGo stimuli is considered an earlier step of 
response inhibition, i.e., detection of the conflict between the internal representation of the Go response and 
the NoGo stimulus14–16. The N2 is followed by a frontocentral P3 which is a positive component typically seen 
300–700 ms post-stimulus onset, and this frontocentral P3 might represent a later stage of response inhibition, 
i.e., response evaluation/decision or response inhibition success16,17. Wu et al.18 found that adolescent earthquake 
survivors with PTSD exhibited a shorter NoGo-N2 latency than survivors without PTSD when performing a Go/
NoGo task. Using a continuous performance task, Shucard et al.19 demonstrated that PTSD veterans had longer 
NoGo-P3 latency than civilian controls.
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Incorporating emotionally salient stimuli into the Go/NoGo paradigm might help us elucidate the inhibition 
mechanism from the perspective of affective-modulated executive function. Previous studies showed that both 
implicit and explicit emotion stimulus processing modulates response inhibition20–23 and that behavioral dysreg-
ulation from psychiatric disorders became more prominent within emotional contexts24. From the perspective 
of PTSD, an exaggerated fear response and an inability to inhibit fear responses after trauma exposure are pro-
posed to be a risk factor for the PTSD patients or an acquired trait of the illness25. The affective Go/NoGo task 
was proposed as a useful tool to assess psychiatric pathologies characterized by abnormal emotion processing26. 
Several studies with affective Go/NoGo paradigm in healthy participants have shown that emotional stimuli can 
influence the performance of response inhibition, as higher false alarm (incorrect NoGo response) rate for pos-
itive stimuli than negative and neutral stimuli20,21,23,27. With the method of ERPs, Zhang and Lu28 found smaller 
amplitudes and shorter latencies of Go-N2 following positive and negative faces than neutral faces, with larger P3 
amplitudes and shorter P3 latencies for positive and negative faces than neutral faces in both Go and NoGo trials. 
On the other hand, Albert et al.20 found that NoGo-P3 amplitude is greater to positive pictures than to negative 
and neutral pictures. However, to our knowledge, there were no ERPs studies exploring the emotional response 
inhibition in individuals with posttraumatic stress symptoms to date.

PTSD is a highly heterogeneous clinical syndrome which is composed of distinct symptom clusters. 
Examining the relationships between cognitive functions, such as response inhibition, and severity of PTSD 
dimensional symptoms on a continuum rating may both yield higher reliabilities29 and help to further elucidate 
the psychopathology and core elements that underlie PTSD, in turn improving clinical assessment and inter-
vention. A few studies to date have examined this relationship. For example, with three-factor DSM-IV model 
(i.e., re-experiencing, avoidance and hyperarousal)30, Swick et al.31 reported that commission errors were most 
strongly associated with re-experiencing symptoms in a behavior Go/NoGo task. Shucard et al.19 showed that 
NoGo-P3 latency was positively related to hyperarousal symptoms in Vietnam veterans. On the other hand, Wu 
et al.32 found that NoGo-P3 latency was positively associated with avoidance symptoms in a five-factor dysphoric 
arousal PTSD model (i.e., re-experiencing, avoidance, negative alterations in mood and cognitions, dysphoric 
arousal and anxious arousal) based on the DSM-51.

In the most recent version of the DSM (DSM-5), negative affect and anhedonia are grouped into one clus-
ter as negative alterations in mood and cognitions1. However, the cluster of negative alterations in mood and 
cognitions is a diverse construct within PTSD, which comprises symptoms involving enhanced negative affect/
general distress and symptoms of reduced positive affect/anhedonia. Previous theoretical and empirical studies 
also suggested that negative affect and positive affect are different constructs33–35. More importantly, the Research 
Domain Criteria (RDoC) project initiated by the National Institutes of Mental Health (NIMH) specified that neg-
ative valence and positive valence are two distinct domains in psychopathology field36,37. Based on this evidence, 
Liu et al.38 proposed a new six-factor model in which the single symptom cluster of “negative alterations in mood 
and cognitions” from DSM-5 model was further divided into a negative affect symptom cluster (negative affect 
potentiation) and an anhedonia symptom cluster (positive affect deterioration) in an epidemiological sample 
of Chinese earthquake survivors. This six-factor model emerged as the best-fitting as compared to the current 
DSM-5 models38. Moreover, previous work from our own group showed that cortisol activity during cognitive 
task was only related with negative affect cluster, but not anhedonia cluster in participants who suffered from 
posttraumatic stress symptoms, providing preliminary evidence for this differentiation of negative affect and 
anhedonia39.

Thus, the aim of the present study was to explore the relationship between indices of emotional response 
inhibition (commission error and NoGo related ERP components) and each of the six symptom clusters from 
newly proposed PTSD six-factor model in trauma-exposed victims by using an emotional Go/NoGo paradigm 
adapted from Albert et al.20. To increase statistical power and decrease parameter estimation bias40, all partic-
ipants, instead of only probable PTSD cases, were included in the regression analysis to capture the full range 
of symptom severity. This approach is also consistent with the RDoC proposal that the biological and clinical 
variables can be measured in a dimensional way, i.e., on a continuum ranging from normal to pathological41,42 
as well as Lobo et al.43 suggestion that traumatized populations without PTSD diagnoses should also be included 
in dimensional analysis to identify putative EEG biomarkers of posttraumatic stress symptom severity. Based on 
the hallmark of this six-factor model and result from our previous work (distinction of negative affect and anhe-
donia), we predicted that the negative affect cluster and anhedonia cluster will have distinct associations with the 
behavioral performance or amplitude/latency of NoGo-N2/P3.

Results
Descriptive results. Table 1 showed the demographic and clinical variables of the study group (n = 58). The 
mean age of the participants was 50.16 ± 5.67 yrs. Among the 58 participants, 26 (44.83%) were male. The mean 
PCL-5 total score was 30.76 ± 16.06. The mean trauma exposure score was 5.12 ± 1.40, and the mean depression 
score was 41.16 ± 10.30.

Behavioral performance. Table 2 showed the behavioral performance in the Go/NoGo task (means and 
standard deviations (SDs)).

For the commission error (CE), there was a marginally significant valence effect (F(2,114) = 2.717, p = 0.070). 
Post-hoc analysis showed that participants have significantly lower commission error for negative than neutral 
pictures (p = 0.008). There was no significant difference between positive and negative pictures (p = 0.154) or 
between positive and neutral pictures (p = 0.464).

The grand mean of omission error (OE) rate was 1.6 ± 3.0%, and there was no valence effect on OE 
(F(2,114) = 0.133, p = 0.876).
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For the RT of correct go trials, there was a significant valence effect (F(2,114) = 6.4053, p = 0.002). Post-hoc 
analysis showed that participants had a faster RT for negative/neutral than positive pictures (p = 0.002 and 
p = 0.008, respectively), but there was no significant difference between negative and neutral pictures (p = 0.781).

ERPs. As illustrated in Fig. 1, the N2 amplitude was larger for NoGo stimuli than for Go stimuli 
(F(1,57) = 8.843, p = 0.004). The valence main effect was also significant (F(2,114) = 6.233, p = 0.003), and 
post-hoc analysis showed that negative picture elicited a decreased N2 as compared to both neutral and posi-
tive pictures (p = 0.008 and p = 0.003, respectively), while there was no difference between neutral and positive 
pictures (p = 0.706). The interaction effect between valence and GoNoGo was not significant (F(2,114) = 1.42, 
p = 0.246).

For P3 amplitude, NoGo stimuli elicited significantly larger amplitude than Go stimuli (F(1,57) = 123.762, 
p = 0.000). The valence main effect was also significant (F(2,114) = 5.161, p = 0.007), and post-hoc analysis 
showed that negative picture elicited significantly larger P3 as compared to both neutral and positive pictures 

Variable n Mean % SDs range

Sex

   Male 26 44.83

   Female 32 55.17

Education Level

   High school or above 20 34.48

   Less than high school 38 65.52

Age (yrs) 50.16 5.67 41–60

Trauma exposure 5.12 1.40 2–8

Depression 41.16 10.30 24–67

PCL-5 30.76 16.06 3–69

   RE 9.78 4.43 1–20

   AV 3.72 2.31 0–8

   NA 4.74 3.93 0–14

   AN 3.38 2.75 0–11

   DA 5.95 3.84 1–16

   AA 3.22 2.10 0–8

Table 1. Demographic and clinical variables of the study group. Note: PCL-5 = PTSD Checklist for DSM-
5, RE = re-experiencing, AV = avoidance, NA = negative affect, AN = anhedonia, DA = dysphoric arousal, 
AA = anxious arousal.

CE (%) OE (%) RT (ms)

Negative Neutral Positive Negative Neutral Positive Negative Neutral Positive

Mean 7.58 8.96 8.46 1.59 1.67 1.66 467.11 467.44 471.37

SDs 6.14 7.56 7.56 2.67 2.98 3.33 59.19 57.39 57.26

Table 2. Descriptive statistics for the behavioral performance (n = 58). Note: CE = rate of commission errors in 
NoGo trials; OE = rate of omission errors in Go trials; RT = reaction time in the Go trials.

Figure 1. Grand average ERP for the NoGo and Go conditions at FCz under three different valence conditions.
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(p = 0.000 and p = 0.039, respectively), with no difference between neutral and positive pictures (p = 0.347). The 
interaction effect between valence and GoNoGo was not significant (F(2,114) = 0.292, p = 0.747).

There was no significant correlation between Go/NoGo-N2 amplitude and CE/RT in negative valence con-
dition (ps > 0.10). There was a significantly negative correlation between Go-P3 amplitude and RT (r = −0.351, 
p = 0.007) as well as between NoGo-P3 amplitude and RT (r = −0.381, p = 0.003) in negative valence condition, 
i.e., the larger of P3 amplitude, the faster participants responded to Go trials under negative context. There was no 
significant correlation between Go/NoGo-P3 amplitude and CE (ps > 0.10).

Regression analysis. The relationship between total PCL-5 and emotional response inhibition. The multi-
variate regression analyses showed that total PCL-5 score model predicted 27.3% for NoGo-N2 amplitude under 
negative valence condition (R2 = 0.273, F(6,57) = 3.197, p = 0.01): PCL-5 score had a positive association with 
NoGo-N2 amplitude (β = 0.301, t = 2.034, p = 0.047, see Fig. 2). Because N2 is a negative component, thus the 
positive correlation coefficient, in fact, denotes a negative correlation, i.e., the higher of total PCL-5 score the 
smaller of NoGo-N2 amplitude in negative context. There was no significant correlation between PCL-5 total 
score and NoGo-N2 amplitude in neutral or positive condition (ps > 0.10).

No significant correlations were found between PCL-5 total score and commission error, NoGo-N2 latency, or 
NoGo-P3 amplitude/latency in each of the three valence conditions (ps > 0.10).

The relationship between six symptom clusters and emotional response inhibition. Multivariate regression anal-
yses showed that the six-cluster model predicted 41.5% for commission error under positive valence condition 
(R2 = 0.415, F(11,57) = 2.972, p = 0.005): only anhedonia cluster had a negative association with it (β = −0.476, 
t = −2.418, p = 0.02, see Table 3 and Fig. 3). None of these six clusters were significantly associated with commis-
sion error under neutral or negative valence condition (ps > 0.10).

None of these six clusters models were significantly associated with NoGo-N2 amplitude/latency in each of 
three valence conditions (ps > 0.10).

None of these six clusters models were significantly associated with NoGo-P3 amplitude/latency in each of 
three valence conditions (ps > 0.10).

Figure 2. The partial regression scatter plot of NoGo-N2 amplitude under negative valence condition at FCz 
site with PCL-5 total score. Note: Because N2 is a negative component, thus the positive correlation coefficient, 
in fact, denotes a negative correlation, i.e., the higher of PCL-5 total score, the smaller of NoGo-N2 amplitude in 
the negative context.

β t p

RE 0.019 0.094 0.926

AV −0.172 −0.857 0.396

NA −0.053 −0.234 0.816

AN −0.476 −2.418 0.020

DA 0.363 1.778 0.082

AA 0.084 0.416 0.679

Table 3. Results of regression analysis for whole participants with commission error under positive valence 
condition as a dependent variable and six clusters as independent variables (with age, gender, education, trauma 
exposure, and depression as covariates). Note: RE = re-experiencing, AV = avoidance, NA = negative affect, 
AN = anhedonia, DA = dysphoric arousal, AA = anxious arousal.
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Discussion
The current study investigated the relationship between posttraumatic stress symptom clusters based on the newly 
proposed six-factor PTSD model and response inhibition process under the emotional context at the behavioral 
and neural levels. First of all, the NoGo trials elicited larger N2 and P3 amplitudes than Go trials, which suggested 
the classical response inhibition effects on ERPs in this emotional Go/NoGo paradigm. Secondly, the results from 
the present study showed that emotional valence can modulate the response inhibition process: compared to in 
the neutral or positive context, participants committed fewer errors to NoGo and responded faster to Go in the 
negative context; there was a smaller N2 amplitude and larger P3 amplitude in the negative context compared to 
in the neutral or positive context. Furthermore, by utilizing a dimensional approach, we were able to identify dis-
tinct relationships between symptom clusters and distinct stages of response inhibition under emotional context 
within trauma-exposed individuals. We found that PCL-5 total score was negatively correlated with NoGo-N2 
amplitude in the negative context, suggesting that PTSD severity is associated with worse conflict detection in 
the negative context. Furthermore, regression analysis showed that anhedonia, but not negative affect symptom 
cluster was associated with commission errors, which confirmed our hypothesis that anhedonia and negative 
affect symptoms should be differentiated.

Picture valence influenced the response inhibition performance. Behaviorally, participants had a lower com-
mission error rate to negative pictures compared to neutral pictures. This result was partially consistent with 
several previous studies with healthy participants, as indicated by the fewer commission error for negative/neu-
tral than positive stimuli (e.g., words, facial expressions, and pictures)20,21,23,26,27. These results suggested that 
“approach pleasant and reward-related events might make stopping responses to positive stimuli–more difficult 
than to other types of emotional stimuli”20, and avoidance of negative events makes stopping responses to nega-
tive stimuli easier in traumatized individuals.

On the neural level, ERP results showed that negative pictures elicited smaller N2 amplitude than neutral and 
positive pictures in traumatized individuals. The frontocentral N2 component has been proposed as an index 
of executive function, including attention deployment and conflict detection arising from competition between 
execution and inhibition of a single response in Go/NoGo task10,53,54, and the N2 amplitude increases with the 
amount of conflict and the extent to which cognitive control resources are recruited to detect current and future 
conflict53,55. In both normative and clinical populations, negative or threat-related stimuli can automatically cap-
ture attention and also interfere with the top-down cognitive control56,57. These negative interference effects have 
been explained by changes in processing priority that emotional processing is prioritized over cognitive process-
ing when there is conflict or competition in the task58,59. Therefore, in the negative context, the facilitation of irrel-
evant negative characteristic in frequent Go trials (enhanced emotional engagement) may reduce the cognitive 
resources to detect the conflict between Go and NoGo trails. This study is among the first to show that N2 is sen-
sitive to the emotional context in traumatized individuals. The reduced N2 amplitude to negative stimuli suggest 
poor conflict detection and less discrimination between Go and NoGo trials in the negative context.

The negative pictures elicited a larger P3 amplitude compared to neutral or positive stimuli, which was con-
sistent with other studies in healthy population60,61. Furthermore, the correlation analysis showed that the larger 
P3 amplitude was associated with better behavior performance (RT to Go trials) in the negative context, which 
echoes the previous finding that larger P3 amplitudes in young adults were associated with more efficient work-
ing memory performance (RT and accuracy)62. P3 component reflects higher order cognitive processes such as 
evaluation of stimulus salience, categorization processing, and the subsequent memory encoding63. P3 ampli-
tude increases with task relevance, motivational significance, arousal level, and top-down mental resource allo-
cation63. Recent reviews proposed that P3 is modulated by dopaminergic activity which is exerted by the locus 
coeruleus-norepinephrine arousal system64. As stimuli with negative valence would be evaluated as more evo-
lutionarily important, negative stimuli will elicit higher arousal level56 and recruit more top-down attentional 

Figure 3. The partial regression scatter plot of commission error rate under positive valence condition with 
anhedonia score.
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resources65, thus leading to a larger P3 amplitude in the negative context. Therefore, the positive association 
between higher P3 amplitude and better performance under negative context suggested that individuals achieve 
better performance partially by recruiting more top-down attentional resources to the task.

Previous taxometric investigations have suggested that PTSD might be better classified as the upper extreme 
of the posttraumatic stress continuum instead of a categorical mental disorder in diagnosis and treatment66–68. 
In the present study, regression analysis within the whole group showed that PCL-5 total scores were negatively 
associated with NoGo-N2 amplitude only in the negative context. This result was consistent with the previous 
research that PTSD symptom severity is associated with worse inhibitory performance11,69. Our results further 
indicated that the overall PTSD symptoms severity was associated with the early stage of inhibition processing, 
i.e., poorer conflict detection, especially in the negative context.

Interestingly, we found that the severity of anhedonia symptoms was inversely related to commission error 
to NoGo trials only in the positive context, i.e., individuals with more anhedonia symptoms could hold their 
response better when response inhibition is needed in the positive context. Previous studies found that individ-
uals with high level of anhedonia reported diminished positive experience to stimuli in a lab70 as well as in daily 
life situation71. Frewen and colleagues72–74 have found that participants with severe trauma exposure reported 
decreased positive emotion to positive stimuli, and this decreased positive response was related with anhedonia 
severity and increased amygdala activation. These findings indicated that less processing of positive stimuli or 
under-engagement of appetitive motivation system in individuals with high anhedonia level could generate less 
interference when inhibition response is needed, which might explain the association between anhedonia and the 
lower commission error to positive stimuli in the present study.

In the DSM-5, negative affect and anhedonia are grouped into one cluster as negative alterations in mood and 
cognitions1. However, within PTSD, negative alterations in mood and cognitions is a diverse construct involv-
ing symptoms of enhanced negative affect/general distress and symptoms of reduced positive affect/anhedonia. 
Furthermore, the RDoC project by the NIMH specified that negative valence and positive valence are two distinct 
domains in psychopathology field36,37. Previous theoretical and empirical studies also suggested that negative 
affect and positive affect are two different constructs33–35. This study showed that only anhedonia cluster, but not 
the negative affect cluster, was associated with commission error, which provides electrophysiological support for 
the current distinction of anhedonia and negative affect symptoms in the 6-factor DSM-5 model.

The present study had several limitations. First, we use a self-report measure, the PCL, to evaluate PTSD 
symptoms. The clinically administered instruments will be needed in the future studies. Secondly, all the partici-
pants were exposed to a deadly earthquake, thus the generalizability of the current findings was limited. Last but 
not the least, we only measured the response inhibition process among the survivors about five years after the 
trauma, thus it is hard to discriminate whether our results reflect the vulnerability factor before the trauma or 
consequences after the trauma. Nevertheless, the emotional response inhibition paradigm we took in this study is 
a promising first step towards the development of an electrophysiological index to explore the emotional inhibi-
tory control in individuals with posttraumatic stress symptoms.

In conclusion, results from the present study showed that emotional stimuli can influence response inhibi-
tion. The negative stimuli impair conflict detection (smaller N2 amplitude) by prioritizing irrelevant emotional 
processing over cognitive processing on the one hand. On the other hand, negative stimuli facilitated behavioral 
performance (faster RT) partially by recruiting more top-down attentional resources to the task at hand (larger P3 
amplitude). Consistent with prior work32,66,75, our study further emphasized the importance of assessing symptom 
severity dimensionally to improve our understanding of psychiatric disorders. The clinical–electrophysiological 
regression results showed that the severity of posttraumatic stress symptoms is associated with impaired inhibi-
tion processing at an early stage, i.e., poorer conflict detection in the negative context. Furthermore, the severity 
of anhedonia rather than negative affect symptom cluster was related with less commission error only in the 
positive context, which might be associated with less interference from positive emotion by under-engagement 
of motivational system. This result also provided electrophysiological evidence for the six-factor model, i.e., a 
distinction should be made between negative affect symptom cluster and anhedonia symptom cluster.

Methods
Participants. Participants were recruited through advertisements posted at local resident communities in 
Hanwang county. The participants selected were those who had been directly exposed to the devastating earth-
quake in Wenchuan County, Sichuan Province, China, on May 12, 2008, and with the current age range from 41 
to 60 years. We excluded participants by self-report with (1) significant substance abuse, including drug, alcohol, 
and nicotine; (2) a past or current head injury; (3) self-reported neurological diseases or other serious medical 
condition. Sixty-one qualified volunteers meeting the inclusion and exclusion standards were selected to partici-
pate. The data from three participants were discarded because of too few accepted ERP trials due to poor behav-
ioral performance and/or excessive movement artifacts.

All the participants didn’t take any psychiatric medication for at least four weeks before the experiment, which 
was conducted from 13–31 December 2013, approximately five and a half years after the earthquake. All the 
participants reported normal hearing and normal or corrected-to-normal vision. There were four participants 
reporting left-hand dominance.

Questionnaires. The PTSD Checklist for DSM-5 (PCL-5) used in the current study is a self-report instru-
ment to assess the PTSD symptoms44,45. The PCL-5 is adapted from the original PCL to map onto PTSD symptoms 
of the DSM-545, and it includes six symptom clusters according to Liu et al.38: re-experience (B1–B5), avoidance 
(C1–C2), negative affect (D1–D4), anhedonia (D5–D7), dysphoric arousal (E1–E2, E5–E6), and anxious arousal 
(E3–E4). In the PCL-5, respondents rate all the 20 items from 0 (not at all) to 4 (extremely), to measure the sever-
ity of a particular symptom that has bothered them during the past month. The original PCL has been proven, 
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reliable and valid46,47, and the Chinese version has been applied in previous research on earthquake-related PTSD 
symptomatology38,40.

The Center for Epidemiological Studies-Depression Scale (CESD) was used to assess depressive symptoms 
in the past week48. The version used here was translated into Chinese and its reliability and validity have been 
confirmed49.

The severity of trauma exposure was assessed by Trauma Exposure Scale38.

Stimuli. Thirty trauma-unrelated pictures were selected from the International Affective Picture System 
(IAPS)50, including ten positive pictures, ten negative and ten neutral pictures. These pictures were re-rated by 
48 Chinese volunteers, and analysis showed that positive > neutral > negative pictures at the valance value 
(7.29 ± 0.21 vs. 5.11 ± 0.25 vs. 2.88 ± 0.45, ps < 0.001). Positive pictures have a similar arousal value as negative 
pictures (5.69 ± 0.65 vs. 5.63 ± 0.75, p > 0.05), and both positive and negative pictures have significantly higher 
arousal scores than neutral pictures (4.64 ± 1.14) (ps < 0.05). Pictures were edited into three color frames, i.e., red, 
blue and green, resulting in 90 pictures total. All pictures were presented on a black background in the center of a 
computer screen at a visual angle of approximately 10° horizontally and 8° vertically.

Procedure. After completing the questionnaires, the participants were seated comfortably in a normally lit 
room and completed an emotional Go/NoGo task which was adapted from Albert et al.20. After a practice block 
of 18 trials, two experimental blocks were completed with a short break between the blocks. Each block consisted 
of 45 pictures and each of them repeated four times, thus 180 trials for each block (1/3 NoGo and 2/3 Go). Each 
trial started with the presentation of a color framed picture for 300 ms, followed by a 1000–1400 ms interval with 
a white central fixation-cross presented on a black screen. The participants were required to either press a button 
(Go) as accurately and quickly as possible when pictures with one of the two color frames (e.g., red and blue: Go 
stimulus) were presented, or withhold their response (NoGo) when pictures with the other color frame (e.g., 
green: NoGo stimulus) were presented. Go/Nogo and picture valance conditions were presented in random order. 
The frame color indicating NoGo was counterbalanced across participants.

EEG Recording and Preprocessing. An electroencephalogram (EEG) was recorded from 64 scalp sites 
using Ag/AgCl electrodes mounted in an elastic cap (Compumedics Neuroscan, Charlotte, NC). The EEG had an 
online reference to the left mastoid and an offline algebraic reference to the average of the left and right mastoids. 
The vertical and horizontal electrooculograms were recorded from two pairs of electrodes. One pair was placed 
above and below the left eye, and the other, 10 mm from the outer canthi of each eye. Interelectrode impedance 
was maintained at <5 kΩ. The signals were amplified with a 0.05–100 Hz bandpass filter and digitized at 500 Hz.

The EEG data were digitally filtered using a 30-Hz low-pass filter and were epoched into periods of 1000 ms 
(including a 200 ms prestimulus baseline) time-locked to the onset of the picture. Ocular artifacts were removed 
from the EEG signal using a regression procedure available through Neuroscan software. Trials with various 
artifacts were rejected if they exceeded the criterion of ±70 μV. The ERPs from both the Go and NoGo conditions 
were individually averaged. Behaviorally incorrect trials were not included in the ERP analysis.

The peak amplitudes and latencies of the frontocentral N2 and frontocentral P3 were measured at the Fz (fron-
tal region), FCz (frontocentral region), and Cz (central region) sites. The N2 was defined as the minimum voltage 
in the time-window between 200 and 400 ms after stimulus onset, and P3 was defined as the maximum voltage 
in the time-window between 300 and 500 ms after stimulus onset. These sites and time windows were chosen in 
agreement with the previous literature32,51,52.

Data Analysis. All statistical analyses were conducted using SPSS software (version 19.0). Descriptive statis-
tics were gathered from the questionnaire scores and behavioral data, including the reaction time (RT) in correct 
trials, the rate of omission errors for the Go trials, and the commission error (CE) for the NoGo trials in each 
of all three valence picture conditions. Repeated measures analysis of variance (ANOVA) was carried out on 
behavioral performance and latency/amplitude at the three measurement sites (FZ, FCz, and Cz) under each of 
the three valence conditions (negative, neutral and positive). The Greenhouse–Geisser correction for degrees of 
freedom was applied when the sphericity assumption was violated. For cases where repeated measures ANOVA 
procedures revealed a significant main effect, post hoc analyses of least square difference were used to examine 
the specific effects and significant levels. To explore if there were relationships between behavior performance and 
electrophysiological index of response inhibition, the Person correlation coefficiency was calculated between N2/
P3 amplitude and CE/RT.

Multivariate regression analyses were conducted to examine the associations between the six symptom clus-
ters and indices of emotional response inhibition (behavioral performance and ERP components to NoGo condi-
tion). Amplitudes/latencies for the NoGo-N2 and NoGo-P3 components extracted at FCz site under each of the 
three valences (positive, neutral, and negative) were treated as dependent variables in regression analysis, as the 
amplitudes for both N2 and P3 were largest at this site. The symptom scores were treated as predictors, and demo-
graphic variables (age, gender, education level) and clinical variables (trauma exposure and depression) were 
entered as covariates in the regression analyses. The same method was also used to test the relationship between 
total PTSD severity and emotional response inhibition. All p values below 0.05 were considered statistically sig-
nificant, and the tests were two-tailed.

Ethics. All the participants gave written informed consent and were paid for their participation. The experi-
ment was approved by the Ethics Committee of Human Experimentation at the Institute of Psychology, Chinese 
Academy of Sciences. The experiment was conducted in accordance with relevant guidelines and regulations.
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Data Availability
The anonymous behavioral and EEG data will be made available for research purposes upon requests.
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