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While details remain unclear, initiation of woven bone
mineralization is believed to be mediated by collagen and
potentially nucleated by bone sialoprotein (BSP). Interestingly,
our recent publication showed that BSP and type XI collagen
form complexes in mineralizing osteoblastic cultures. To learn
more, we examined the protein composition of extracellular
sites of de novo hydroxyapatite deposition which were enriched
in BSP and Col11a1 containing an alternatively spliced “6b”
exonal sequence. An alternate splice variant “6a” sequence was
not similarly co-localized. BSP and Col11a1 co-purify upon
ion-exchange chromatography or immunoprecipitation. Bind-
ing of the Col11a1 “6b” exonal sequence to bone sialoprotein
was demonstrated with overlapping peptides. Peptide 3, con-
taining three unique lysine-triplet sequences, displayed the
greatest binding to osteoblastic cultures; peptides containing
fewer lysine triplet motifs or derived from the “6a” exon yiel-
ded dramatically lower binding. Similar results were obtained
with 6-carboxyfluorescein (FAM)-conjugated peptides and
western blots containing extracts from osteoblastic cultures.
Mass spectroscopic mapping demonstrated that FAM-peptide
3 bound to 90 kDa BSP and its 18 to 60 kDa fragments, as
well as to 110 kDa nucleolin. In osteoblastic cultures, FAM-
peptide 3 localized to biomineralization foci (site of BSP) and
to nucleoli (site of nucleolin). In bone sections, biotin-labeled
peptide 3 bound to sites of new bone formation which were
co-labeled with anti-BSP antibodies. These results establish the
fluorescent peptide 3 conjugate as the first nonantibody-based
method to identify BSP on western blots and in/on cells.
Further examination of the “6b” splice variant interactions will
likely reveal new insights into bone mineralization during
development.
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Bone is a unique mineralized tissue which supports the
body’s organs and muscles yet remains vital throughout an
organism’s lifetime. Osteoblasts synthesize osteoid, the extra-
cellular collagenous matrix of bone and direct the deposition
of hydroxyapatite crystals within it during bone formation.
Type I collagen is the main organic component of bone
osteoid. However, it is also enriched with phosphoproteins,
glycosaminoglycans, and presumptive nucleators of minerali-
zation (1–3). It has long been hypothesized that certain
structural interactions are required to induce bone minerali-
zation in vivo. Two basic types of bone are known, e.g., cortical
and trabecular. Each is believed to be formed by different
mechanisms referred to as collagen-mediated mineralization
(cortical bone) and vesicle-mediated mineralization (trabec-
ular) (4) although some of the same phosphoprotein nuclea-
tors have been suggested to play a role in both mechanisms.
Despite many efforts, the mechanism of bone mineralization is
still unresolved.

With respect to collagen-mediated mineralization, Glimcher
and Veis hypothesized that a phosphoprotein nucleator bound
near the gap region of fibrillar type I collagen mediates initial
nucleation and deposition of mineral crystals (5–8). While the
identity of this hypothetical phosphoprotein has never been
identified, bone sialoprotein represents a candidate based on a
large body of circumstantial evidence, e.g., its mineral nucle-
ation capacity, phosphoprotein nature, large number of cal-
cium binding sites, and its tight temporal and spatial tissue
localization to mineralizing bone during development and in
healing fractures (3, 6, 9, 10). However, no specific binding site
has yet been identified at the gap region of native fibrillar type I
collagen, a site at which initial mineral crystals were localized
in a turkey tendon model (11).

As a means to investigate vesicle-mediated mineralization,
we have studied biomineralization foci. Biomineralization foci
(BMF) is discrete spherical extracellular structure produced by
mineralizing osteoblastic cells in culture and in vivo within
which initial mineral crystals are deposited inside membrane
limited vesicles (12, 13). We have used the UMR106-01 rat
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Col11a1 NTD forms complexes with BSP and nucleolin
osteoblastic cell line because the mineralization process within
individual BMF in each culture is synchronized and occurs
rapidly within 24 h after addition of phosphate to the cells (14).
Our general hypothesis is that the protein composition of BMF
is unique and reflects its functional capacity to produce hy-
droxyapatite crystals under cellular control. To test this hy-
pothesis, we have focused our studies on defining the temporal
sequence of events which precede mineral crystal deposition
within BMF (14, 15) and on determining the protein compo-
sition of the BMF (15). For example, Raman confocal spec-
troscopic analysis of BMF at different times revealed that
hydroxyapatite formation within individual BMF complexes is
a multistep process. Specifically, changes in protein-derived
signals at 1004 and 1660 cm−1 were found to reflect events
which precede or accompany mineral crystal production
because they can be blocked by protease inhibitor 4-(2-
aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF)
(14). To test the concept that the protein composition of BMF
is uniquely evolved for a role in mineral crystal formation, we
isolated mineralized BMF with laser capture confocal micro-
scopy (15). Consistent with this hypothesis, the results showed
that the phosphoproteins bone sialoprotein and bone acidic
glycoprotein-75 are preferentially localized to these structures.
Furthermore, we showed that bone sialoprotein (BSP) is
physically enriched on or in vesicles within biomineralization
foci before mineral crystal formation (12). Interestingly,
expression of these phosphoproteins temporally precedes
mineral crystal formation and spatially demarks matrix sites
in vivo and in vitro to which mineral crystals will be subse-
quently deposited. Recently, we have also demonstrated that
BSP forms complexes with type XI collagen which can be
immunoprecipitated from extracts of UMR106-01 osteoblastic
cultures (16).

Type XI collagen is a minor fibrillar collagen widely
distributed in tissues including cartilage, bone, and muscle,
and its hereditary absence in Marshall’s syndrome (17),
Stickler’s syndrome (18), fibrochondrogenesis (19), and non-
syndromic hearing loss deafness, autosomal dominant 37 (20)
leads to facial and eye abnormalities, hearing loss, and joint
problems. Although historically identified as distinct genes and
distinct collagen types, the alpha chains of type V and XI
collagens are now recognized to form heterotrimeric type V/XI
triple helical collagen molecules (21–23). It is now appreciated
that type V/XI collagen is required to nucleate and assemble
type I and type II collagens into fibrils (23, 24). As a result,
initial, small diameter type I fibrils observable in normal and
pathologic cornea, bone, and cartilage are heterotypic struc-
tures representing hybrid structures composed of type I and
type V/XI collagens (25). Current structural models of hybrid
fibrils define a heterotypic alloyed core and a type I collagen
outer sheath (26, 27). Importantly, these models place the
retained N-terminal domain of the α1 chain of collagen type
V/XI at the gap region on the fibril surface (28, 29).

The structure of the large N-terminal domain (NTD)
domain of the Col11a1 chain is composed of a common shared
N-propeptide (Npp) domain and a variable region (VR)
domain subject to alternative exon splicing. Depending upon
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the tissue type and developmental stage, at least seven
sequence variants are expressed with different combinations of
the VR domain exons 6a, 6b, 7, and 8. It is noteworthy that
four unique triplet lysine repeat sequences comprise structural
motifs that are encoded within the “6b” exon. Because
expression of the “6b” exon is restricted to bone, we hypoth-
esized that these unique positively charged motifs present an
extracellular binding site for acidic matrix phosphoproteins
such as bone sialoprotein in bone. Thus, the goal of this
project was to determine whether bone sialoprotein and
Col11a1 interact specifically within the extracellular matrix
and in/on osteoblastic cells in culture and in developing bone.
Results

Laser capture microdissection of mineralized
biomineralization foci demonstrates selective enrichment in
bone sialoprotein and type XI collagen but not dentin matrix
protein 1

We have shown previously that biomineralization foci are
extracellular sites within osteoblastic cultures and in healing
bone fracture tissue in which initial calcium hydroxyapatite
crystals are deposited (12, 13). In a continuing effort to identify
proteins which play a role in the mineralization process, we
used laser capture microdissection to specifically isolate aliz-
arin red–stained mineralized biomineralization foci (Fig. 1, A–
C). Biomineralization foci (Fig. 1C) were preferentially sepa-
rated from the cell layer (Fig. 1B). Isolated BMF (Fig. 1C)
[(2000–3000)/preparation (�60–80 μg protein)] were then
dissociated in denaturing media and precipitated with acetone.
Resultant samples were reduced and alkylated, split into equal
parts, digested with trypsin, and double digested with trypsin/
Glu-C protease and subjected to LC-MS/MS analysis as
described in Methods.

Results of statistically significant peptide assignments based
on these mass spectroscopic analyses are listed in Table 1.
Interestingly, these assignments included bone sialoprotein, as
well as the NTD of the Col11a1 chain. The NTD is an unusual
extension preceding the collagenous, glycine-enriched, minor
helix which, in contrast to other short-lived collagen propep-
tides, is at least partially retained within tissues. The NTD is
composed of a shared Npp sequence (encoded by exons 1–5)
and a variable VR sequence (encoded by exons 6a, 6b, 7, 8, and
9) (Fig. 2) (30). The two peptide sequences identified by LC-
MS/MS are common to all seven alternatively spliced vari-
ants of Col11a1 NTD as part of the Npp region (Table 1 and
Fig. 2).

To confirm that these proteins are localized to mineraliza-
tion foci, extracts of laser captured BMF were compared by
Western blotting with the same amount of protein/lane from
extracts of total mineralized or unmineralized osteoblastic cell
layer fractions. Under these conditions, a higher density band
in BMF samples will reflect a quantitative enrichment. The
results indicate that, on a relative basis, BSP protein is spe-
cifically enriched (�10×) in the laser captured BMF as
compared with the starting cell layer (Fig. 1D). When the type
XI NTD “6b” or “8” specific epitopes were also probed, the



Figure 1. Biomineralization foci are selectively enriched in bone sialoprotein and “6b” isoform of Col11a1 chain. A, alizarin red S stained bio-
mineralization foci (arrow) before laser capture. Microscopic view of BMF before capture. Bar, 50 microns. B, view of same microscopic field shown in A after
laser capture of two BMF. Arrow identifies position where uppermost BMF was removed. Bar, 50 microns. C, view of “cap” after laser capture of two BMF
shown in A. Arrow identifies position of uppermost BMF captured. D, western blotting on pooled laser captured BMF sample compared with total
mineralized cell layer (+CL), total unmineralized cell layer (−CL), and buffer alone (buffer). Lines between lanes represent splice junctures between different
gel lanes electrophoresed on the same gel. Molecular weight estimates refer to blue prestained globular standards co-electrophoresed on the same gel.
BMF, biomineralization foci.

Col11a1 NTD forms complexes with BSP and nucleolin
former was also found to be enriched in the BMF sample as a
60 kDa fragment band while much lower amounts were
evident in the +CL and −CL total extracts (Fig. 1D, middle
panel). In contrast, epitope “8” (referring to exon 8) was not
detectable in the BMF pool but was evident in both the +CL
Table 1
LC-MS/MS identification of peptides from two extracellular matrix prote
01 cultures

Protein (Mascot score) UniProt Acc.# Peptides (posit

Bone sialoprotein (458) P13839 AEDSEENGVFK (28-38)
KSSTVEYGEEYEQIGNEYNTAYET

SSTVEYGEEYEQIGNEYNTAYETY

SSTVEYGEEYEQIGNEYNTAYETY

LAALQLPK (131-138)

Collagen alpha1 (XI) (343) Q61245 RVSGSNEPNPVEEGFTEEYLTGED
GVDGRDSDLLVDGDLGEYDFYEY

BMF, biomineralization foci.
and −CL total extracts as a 110 kDa band. Finally, as a control,
dentin matrix 1 was also probed to determine whether all
acidic matrix phosphoproteins are localized to the laser
captured mineralized biomineralization foci. Expression of
dentin matrix protein1 is known to be increased upon
ins present in laser capture purified BMF from mineralizing UMR106-

ion)
Posttranslational
modifications Ions score/Expect Enz.

YDENNGEPR (257-289)
S4(phospho)
N8(deamidated)
N19(deamidated)
N29(deamidated)
T4(phospho)

57/1.2e-4 Tryp

DENNGEPR (258-289) N18(deamidated)
N28(deamidated)

82/4.5e-7 Tryp

DENNGEPR (258-289) N18(deamidated)
N28(deamidated)

90/6.1e-8 Tryp

T3(phospho)
(unmodified)

51/6.3e-4 TRYP/GluC

YDVQR (322-350) N6(deamidated) 107/1.5e-9 Tryp
K (362-385) Q28(deamidated)

(unmodified)
52/3.9e-4 Tryp
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Figure 2. Structural model of type XI collagen [adapted from Warner et al. (30)]. A, type XI collagen is a heterotrimer of Col11a1, Col11a2, and Col11a3
of which Col11a1 contains a long N-terminal domain with constant (Npp) and variable sequence regions (VR). B, eight potential isoforms are expressed for
the Col11a1 NTD region which depend upon alternative splicing of four different exons (6a, 6b, 7, 8). C, the 51-residue long 6b exon encodes four lysine
triplet sequences. BMP-1, bone morphogenic protein 1 cleavage site; mh, minor helix; MH, major helix; Npp, N-propeptide; NTD, N-terminal domain; tp,
telopeptide; VR, variable region.

Col11a1 NTD forms complexes with BSP and nucleolin
exposure to beta-glycerolphosphate, which is added to +CL
cultures to induce mineralization (Huffman and Gorski, un-
published result). However, it is evident that dentin matrix
protein1, while strongly expressed as a monomeric band at
75 kDa within the cell layer of mineralized osteoblastic cul-
tures, is not localized within BMF (Fig. 1D, right panel). In
view of the co-localization of BSP and the 60 kDa “6b” con-
taining NTD domain of type XI collagen within biominerali-
zation foci, we then asked whether these two proteins may
interact with each other.

Co-purification of BSP and NTD domain of Col11a1 collagen
upon ion-exchange chromatography

We have showed previously that the contents of mineralized
biomineralization foci can be selectively extracted from
UMR106-01 cultures with 50 mM EDTA, pH 7.5 (15). To
further analyze the binding capacity of BSP for the Col11a1
NTD domain, we subjected these EDTA extracts to anion-
exchange chromatography at pH 5.2. Under these conditions,
it is predicted that cationic proteins like the 60 kDa NTD
fragment would not bind to the resin and should be eluted
directly. Data representative of triplicate runs are depicted in
Figure 3A, where following sample application, proteins were
eluted with a gradient of from 0.05 to 0.6 M NaCl followed by
final step gradient with 2 M NaCl as a limit solvent. Column
flow was monitored continuously for protein absorbance (214
and 280 nm) and conductivity, and equal aliquots of individual
fractions were subjected to dot blotting with anti-BSP or
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Col11a1 NTD “6b” epitope specific antibodies (Fig. 3B). As
evidenced by the UV-absorbance tracings, the majority of
proteins in the EDTA extract eluted at about 0.2 M NaCl
during the salt gradient. A sharp peak was also observed to
elute with the 2 M NaCl step gradient (Fig. 3A). Dot immu-
noblotting of each fraction revealed several interesting points
(Fig. 3B). BSP and “6b” epitope immunoreactivity both eluted
predominantly with the 2 M NaCl step gradient. Based on
staining, >80% of the “6b” immunoreactive 60 kDa fragment
was found to co-elute with BSP in fractions #91 to 95 (compare
Fig. 3, A and B). This conclusion is confirmed by Western
blotting after fractions #91 to 95 were pooled for further
analysis. Specifically, the pooled 2M NaCl fractions contain
both full length BSP (90 kDa) and a 60 kDa Col11a1 “6b”
immunoreactive NTD fragment (Fig. 3C). Maackia amurensis
agglutinin lectin staining, which is restricted to BSP, also con-
firms its enrichment in the 2.0 M NaCl peak (Fig. 3C). Taken
together, results in Figure 3 indicate that full length BSP is able
to bind tightly to the Col11a1 NTD domain, e.g., resisting
dissociation in high salt concentrations (>0.6 M NaCl).

Comparative binding of Col11a1 NTD VR-derived “6a” or “6b”
peptides to osteoblastic cells

To quantitatively evaluate the relative sequence specificity of
the BSP/Col11a1 NTD binding interaction, we carried out
direct binding studies with a series of peptides representing
parts of the variable region of the alternatively spliced NTD
sequence. An inherent limitation associated with peptide



Figure 3. Co-purification of 60 kDa Col11a1 NTD “6b”-expressing fragment with full-length bone sialoprotein by anion-exchange chromatog-
raphy. A, tracing of anion-exchange chromatography of EDTA extract of mineralizing UMR106-01 osteoblastic cultures. Flow-thru fractions are not shown
before the start of the linear 0 to 0.6 M sodium chloride salt gradient. UV readings at 214 and 280 nm, and conductivity are plotted as a function of time and
fraction number. At the end of the salt gradient, a 2 M NaCl step gradient was applied (designated by arrow). B, individual fractions were dot-blotted
sequentially onto PVDF membrane and subjected to immunodetection with antibodies against Col11a1 chain NTD “6b” epitope or bone sialoprotein. C,
peak fractions eluting with 2 M NaCl (#91–95) were pooled and subjected to SDS-PAGE, and the gel was either stained for MAA lectin, which identified a
prominent BSP band at 90 kDa, or, the gel was western blotted with anti-BSP and anti-Col11a1 NTD “6b” epitope specific antibodies. Molecular weight
estimates refer to blue prestained globular standard proteins co-electrophoresed on the same gel. BSP, bone sialoprotein; MAA, Maackia amurensis
agglutinin; NTD, N-terminal domain; PVDF, polyvinylidene difluoride.

Table 2
List of Col11a1 chain NTD-derived peptides used in binding studies
(N terminally conjugated with FAM or biotin)

PEPTIDE 1: biotin- or FAM-N-YAPEDIIEYDYEYGETDYK (6a derived
peptide)

PEPTIDE 2: biotin- or FAM-N-EAESVTEMPTVTEETVAQTE (6a derived
peptide)

PEPTIDE 3: biotin- or FAM-N-KKKSNYTKKKRTLATNSKKKSKM (6b
derived peptide)

biotin- or FAM-N-KKKSNYTKKKRTLATNSKKK (both versions
gave similar results)

PEPTIDE 4: biotin- or FAM-N-STTPKSEKFASKKKKRNQASAKAK (6b
derived peptide)

PEPTIDE 5: biotin- or FAM-N-KKKSKMSTTPKSEKFASKKKKR (6b derived
peptide)

Col11a1 NTD forms complexes with BSP and nucleolin
studies is that they may not faithfully reproduce their native
conformations. We focused our attention on exon 6 because
the “6b” epitope was localized to BMF extracts along with BSP
(Fig. 1D) and contained four lysine triplet sequences which
appear to be a unique motif restricted to Col11a1 based on
NCBI protein BLAST searches (Gorski, data not shown). Spe-
cifically, we tested three overlapping peptides derived from the
51-residue “6b” exon sequence (peptides 3, 4, and 5) and
compared them with two “6a” exon-derived peptides which are
themselves enriched in acidic amino acid residues (peptides 1
and 2) (Fig. 2 and Table 2). “6a” and “6b” represent competing
choices during alternative splicing of the NTD domain and are
not expressed in the same NTD domain. Peptides tested were
each N-terminally conjugated with biotin to facilitate fluores-
cent detection.

UMR106-01 osteoblastic cells were grown to confluence
under serum depleted conditions in multiwell plates under
mineralizing (with β-glycerolphosphate [BGP]) or non-
mineralizing conditions (without BGP) and binding studies
carried out withmonolayer cultures fixed at different times after
addition of mineralization inducer BGP. Prior publications with
the UMR106-01 model show cells within each culture become
temporally synchronized and progressively differentiate starting
at 64 h after plating (when BGP is added) up to 82 h when cal-
cium hydroxyapatite crystals start forming within biominerali-
zation foci (14, 15, 31). Peptide binding was carried out in
serum-free medium containing 10 μg/ml peptides #1 to #5,
and bound peptides were detected with rhodamine-conjugated
streptavidin using a fluorescence plate reader.

As shown in Figure 4, only peptide 3, which represents a part of
the “6b” exon containing three lysine triplet sequences, consis-
tently displayed robust binding to the cell layer at all times and
conditions. Peptide 3 binding to cells was greater than any of the
J. Biol. Chem. (2021) 296 100436 5



Figure 4. Binding of “6a-“ and “6b”exon-derived peptides to mineral-
izing osteoblastic cells depends upon the number of lysine triplet
motifs. Box scatter plot depicting binding of peptides where the di-
mensions of the boxes represent the first and third quartiles and the lines
through the boxes the median. UMR106-01 osteoblastic cells were plated,
grown, and differentiated as described in Methods, and stopped with 70%
ethanol at 64, 70, and 77 h after plating. Cultures were then rehydrated with
0.05 M Hepes buffer (pH 7.5), containing 0.15 M sodium chloride, and the
endogenous biotin content of cultures was blocked with streptavidin/biotin
solutions (Vector, Inc). N-terminal biotin-labeled Col11a1 chain NTD pep-
tides (#1–5) (10 μg/ml) were dissolved in 0.05 M Hepes buffer (pH 7.5),
containing 0.15 M sodium chloride and 1 mg/ml casein and incubated with
the fixed cells overnight. Free peptide was removed by multiple washing
steps, and bound peptides were detected by incubation for 1 h with
rhodamine-labeled streptavidin. Following multiple washes, the cells were
scraped off the culture wells into a small volume of buffer, and the sus-
pension was transferred to a 96-well white microtiter plate. Bound rhoda-
mine was quantitated in a fluorescence plate reader. Peptide binding
studies were carried out in quadruplicate and values analyzed statistically as
described. Error bars = STD and asterisks refer to significant comparisons
with the no peptide control or with the 64 h time point as noted. *p < 0.01;
**p < 0.001. BGP, β-glycerolphosphate; NTD, N-terminal domain.

Col11a1 NTD forms complexes with BSP and nucleolin
other peptides at any culture time (p < 0.001). Interestingly,
binding for peptide 3 increased only about 1.4× from 64 h to
77 h +BGP (p < 0.001), which is consistent with cDNA array
analyses which show that BSP mRNA levels remain relatively
constant over this time period (Chittur and Gorski, unpublished
result) (Fig. 4). In contrast, binding of peptides 1 and 2, which
represent parts of the “6a” exon, to cells was generally indistin-
guishable from that for the no peptide control. However, peptides
4 and 5, which represent parts of the “6b” exon containing 1 and 2
triplet lysine sequences, respectively, did exhibit quantitatively
higher, but not significantly different, binding than the no peptide
control at the 77 h +BGP timepoint (Fig. 4). Taken together, these
results suggest that biomineralization foci within osteoblastic cell
layers display a distinct preference for binding peptide 3 which
contains three lysine triplet sequences as opposed to peptides 4
and 5 which contain fewer such motifs (Figs. 2 and 4).

COL11a1 NTD “6b” exon-derived N-labeled
6-carboxyfluorescein-peptide 3 binds specifically to BSP and
nucleolin in extracts from mineralizing osteoblastic cultures

In view of the strong preference of peptide 3 binding to
UMR106-01 cells, we next addressed the identity of the protein
ligand or ligands to which it was binding. Briefly, we carried out
6 J. Biol. Chem. (2021) 296 100436
binding studies in which N-6-carboxyfluorescein (FAM)–
labeled peptides representing sequences #2, 3, 4 or 5 sequence
(Table 2) were incubated individually with polyvinylidene
difluoride (PVDF) membrane blots containing proteins
extracted from UMR106-01 osteoblast-like cells. Blots were
made with up to three different cell fractions representing in
total the entire culture, e.g., media, EDTA extracts of BMF, and
8M urea extracts of the cell layer. Each cell fraction was itself
derived from four different culture conditions
(+BGP; +BGP +AEBSF; −BGP; −BGP +AEBSF) where each was
electrophoresed side by side and incubated with peptide (Fig. 5).
Blots were then washed extensively with buffer to remove free
peptide before scanning with a fluorescence imager. Similar to
binding results with fixed UMR106-01 cultures above, positive
binding was observed primarily with peptide 3 (Fig. 5A),
although similar weaker results were also noted with peptide 5
albeit with less uniformity. No bands were detected with pep-
tides 1 (Huffman and Gorski, data not shown), 2, or 4 in any
experiments. For simplicity, we only show the results with
EDTA extracts for these latter peptides (Fig. 5A).

The pattern of peptide 3 binding was largely the same for all
urea extracts which comprise predominantly intracellular and
membrane proteins. Specifically, threemajor protein bands were
detected at 110 kDa, 35 kDa, and 18 kDa. For EDTA extracts,
which contain proteins largely derived from biomineralization
foci (15), binding results were dramatically different depending
upon culture conditions (Fig. 5A).Undermineralizing conditions
(+BGP), two bands predominated at 110 kDa and at 90 kDa,
while these bands were missing when the cultures were also
treated withmineralization inhibitor AEBSF (+BGP +AEBSF). In
the absence of BGP, the larger bandswere absent, but instead two
additional bands were observed at 35 kDa and at 18 kDa (−BGP).
Finally, the media fraction was largely devoid of proteins binding
peptide 3 except for cultures not treated with either BGP or
AEBSF where a band at 90 kDa was evident (−BGP, Fig. 5A).

In an effort to identify the proteins binding to peptide 3, the
EDTA extract from mineralizing cultures (+BGP) was electro-
phoresed, and after staining with Coomassie blue dye, bands at
110 kDa and 90 kDa were excised (Fig. 5B). These bands along
with control slices were subjected tomass spectroscopic peptide
mapping. Results permitted the following two assignments:
nucleolin as the 110 kDa band (based on two peptides: GYA-
FIEFASFEDAKand FGVFESAEDLEK) and bone sialoprotein or
heat shock proteinHSP-90 as the 90 kDa band (based on peptide
HAYFYPPLK or HFSVEGQLEFR, respectively). In addition to
mass spectroscopic peptide mapping, a Coomassie Blue stained
band at 18 kDa was excised and subjected to micro-Edman
protein sequencing (Fig. 5B). The resultant partial sequence,
N-FSMKNFHRRIKA, was identical to the N-terminal sequence
for rat bone sialoprotein (32).

Western blotting of UMR106-01 cell fractions confirmed
the presence of nucleolin (Fig. 5C). Briefly, nucleolin was
predominantly localized to urea extracts which are enriched
with intracellular proteins and cell membranes (15). Anti-
nucleolin antibodies recognized the full-length 110 kDa iso-
form in all urea extracts from all four culture conditions, as
well as in the EDTA extract of +BGP cultures enriched in the



Figure 5. Col11a1 peptide 3 binding to osteoblastic cell fractions identifies two protein ligands: bone sialoprotein and nucleolin. A, western blots
identify bone sialoprotein and nucleolin. “12 pattern” SDS PAGE gel was run as noted previously (15, 31), subjected to Western blotting, and blots incubated
with FAM-labeled peptide 3. Lanes represent four different cell culture conditions [mineralizing (+BGP) and nonmineralizing (−BGP, +BGP + AEBSF protease
inhibitor, −BGP + AEBSF)], three different cell fractions from each condition [(cell media, EDTA extract enriched in biomineralization foci), and urea extract
(cell membrane and contents)]. Line on figure indicates position of splice junction between gel lanes electrophoresed on the same gel. Molecular weight
estimates are based on blue prestained globular protein standards co-electrophoresed on the same gel. B, gel lanes after electrophoresis of EDTA extract
provides material for LC-MS/MS peptide mapping and Edman sequencing. EDTA extract from mineralizing UMR106-01 cultures electrophoresed on SDS-
PAGE gel and stained with Coomassie brilliant blue dye. Bands at 110 kDa and 90 kDa were excised (arrows) and subjected to mass spectroscopic peptide
mapping. A band at 18 kDa (arrow) was also cut out and the contents subjected to micro-Edman sequencing. Standard lane (Std): 250 kDa, 150 kDa,
100 kDa, 75 kDa, 50 kDa, 37 kDa, 25 kDa, 20 kDa, and 15 kDa. See Methods for more details. C, western blot incubated with anti-nucleolin antibodies. Urea
and EDTA extracts from mineralizing UMR106-01 cultures were electrophoresed on SDS-PAGE gel and blotted onto PVDF membrane. Lanes represent four
different cell culture conditions [mineralizing (+BGP) and nonmineralizing (−BGP, +BGP + DEC protease inhibitor, −BGP + DEC inhibitor)]. Molecular weight
estimates are based on blue stained globular protein standards co-electrophoresed on the same gel. D, purified full length calvarial bone sialoprotein binds
Col11a1 NTD derived peptide 3 robustly. Bone sialoprotein was purified from calvarial bone, subjected to SDS-PAGE over a range of 1 to 10 μg protein/lane,
and blotted onto PVDF membrane as described in Methods. Blots were blocked with casein and then incubated with FAM-labeled Col11a1 NTD derived
peptide 3. After excess peptide was removed by washing, blots were imaged with a Fuji LS 4000 fluorescent imager. +B, plus BGP; +B + DEC, plus BGF and
decanoyl-RRLL-chloromethylketone; +DEC, without BGP and with decanoyl-RRLL-chloromethylketone; and, blank, without BGP and without decanoyl-RRLL-
chloromethylketone; AEBSF, 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride; BGP, β-glycerolphosphate; BSP, bone sialoprotein; FAM, 6-
carboxyfluorescein; NTD, N-terminal domain; PVDF, polyvinylidene difluoride.

Col11a1 NTD forms complexes with BSP and nucleolin
contents of biomineralization foci. However, repeated at-
tempts to detect smaller nucleolin fragments within UMR106-
01 cell fractions were largely unsuccessful (Fig. 5C).

Because results presented in Figure 5, A and B identified
BSP as the 90 kDa protein which binds peptide 3, we asked
whether purified bone sialoprotein purified from rat calvarial
bone would also bind Col11a1 chain NTD-derived N-FAM-
labeled peptide 3. After electrophoresis and blotting, strong
positive binding was detected with from 1 to 10 μg of full
length bone sialoprotein (Fig. 5D). By comparison, 10 μg of a
related SIBLING rat phosphoprotein, osteopontin, was unde-
tectable (Gorski, data not shown).
Confocal imaging of N-FAM–labeled peptide 3 binding to
osteoblast-like cells

In view of the preference of Col11a1 NTD peptide 3 for
binding to bone sialoprotein and to nucleolin, we next carried
out confocal microscopic imaging to determine the distribu-
tion of binding sites within UMR106-01 osteoblastic cells.
Monolayer cultures were prepared as described above and
briefly fixed with ethanol before the time at which biomin-
eralization foci become mineralized. Imaging of Col11a1
chain NTD binding sites was achieved by addition of N-
terminally labeled FAM-labeled peptide 3. Confocal micro-
scopic images of several views of the resultant labeled
J. Biol. Chem. (2021) 296 100436 7



Col11a1 NTD forms complexes with BSP and nucleolin
monolayers are shown in Figure 6. In a condensed z-stack
rotated view, one or more brightly stained spherical nucleoli
(white arrows) are clearly evident internally within each cell
(Fig. 6A). Less distinct, but also brightly stained, are multi-
lobulated biomineralization foci which are marked with yel-
low arrows. The fact that biomineralization foci project out
and away from the surface of the cell monolayer (12, 13) is
demonstrated in a condensed z-stack side view (Fig. 6B).
Closer analysis of individual slices within the z-stack reflect-
ing the plane of individual BMF reveals that the fluorescent
signal within each is organized into smaller spherical struc-
tures (yellow arrows) about 5 microns in diameter (for
Figure 6. FAM-labeled peptide 3 binding identifies nucleoli and apparen
cultures. UMR106-01 osteoblastic cells were plated and grown and differentiate
by addition of BGP and cultures were stopped by mild fixation with 70% et
monolayers overnight and then, after extensive washing, visualized by confoc
rotated view of cell monolayer showing labeled nucleoli (white arrows). B, co
labeled spherical biomineralization foci (yellow arrows) above the plane of the
FAM-labeled peptide 3 binding to 1 to 2 nucleoli within each nuclei (white
containing multiple biomineralization foci above the cells (see B above) which
within them (yellow arrows). Note that views C and D are taken from the same
microns. BGP, β-glycerolphosphate; FAM, 6-carboxyfluorescein.
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example, slice 9, Fig. 5D). These spherical structures appear
similar in size and shape to confocal Raman spectroscopic
images of the first mineral crystal deposits within biominer-
alization foci in synchronized UMR106-01 cultures (14). In-
dividual nucleoli (white arrows) are also clearly visible when
the plane of section selected is lowered (slice 25, Fig. 5C).
Based on the documented enrichment of nucleolin within
nucleoli and the prior TEM immunogold localization of BSP
to large vesicles within BMF (13), we conclude that visuali-
zation of nucleoli and biomineralization foci with FAM-
labeled Col11a1 NTD “6b-derived” peptide 3 is due directly
to binding to these two proteins, respectively.
t vesicular binding sites within biomineralization foci in osteoblastic
d as described in Methods. At 64 h after plating, mineralization was induced
hanol at 77 h. FAM-labeled peptide 3 (10 μg/ml) was incubated with cell
al microscopy with a 40× oil immersion lens. A, compressed z-stack partially
mpressed z-stack side view of cell monolayer illustrating the projection of
cells. C, selected en face view showing plane containing cell monolayer with
arrows). Scale bar = 200 microns. D, selected en face view showing plane
demonstrates FAM-labeled peptide 3 binding to apparent spherical vesicles
z-stack and each align/overlap starting from the left edge. Scale bar = 200



Col11a1 NTD forms complexes with BSP and nucleolin
Peptide 3 binds specifically to three skeletal sites known to be
enriched in bone sialoprotein

We then asked whether peptide 3 would bind specifically to
bone sialoprotein within its native bony environment. Briefly,
N-terminal biotin labeled peptide 3 was incubated overnight
with sections of paraffin-embedded decalcified bone tissue,
and then, bound peptide was visualized with rhodamine-
conjugated streptavidin (Fig. 7). To investigate peptide 3
binding in a variety of skeletal sites, we looked at a fracture
healing model and the tibia in rats. As illustrated in Figure 7A,
peptide 3 bound specifically to sites of very new bone forma-
tion at day 4 in the marrow ablation fracture healing model.
Specifically, peptide 3 bound to thin condensed matrix regions
that form de novo within the fibrin clot that fills the tibial
marrow space at day 4 after ablation (Fig. 7A, arrows). These
staining patterns resemble in size and shape “mineralization
centers” which represent the first step of intramembranous
bone formation. Controls with biotin-labeled peptide 1 yielded
Figure 7. Peptide 3 binds specifically to three skeletal sites known to be
binding to sections of decalcified bone tissue (see Methods) by detection with
and below the limits of detection in all cases (not shown). A, fluorescent and b
bone. At day 4 in fracture healing tibial marrow ablation model in young rats
fibrin clot (arrows). Each of these condensed regions stains strongly with pep
deposited within the ablated region peaks at day 6 to 7 within similar regions o
periosteum and bony cortex. Densely staining osteoblastic cells visible in the b
bone sialoprotein (13), bind peptide 3 robustly (arrows). Many osteocytes withi
border of the basal periosteum and mineralized cortical bone. C, fluorescent, o
binds primarily to cells within or closely associated with condensed osteoid reg
their respective images.
negative results (Gorski, data not shown). Similar to other sites
of intramembranous bone formation, e.g., embryonic
calvarium, bone sialoprotein is known to be one of the first
noncollagenous matrix proteins localized to these thin slivers
of forming bone (33, 34). When the tibial boney collar was also
examined, biotin-labeled peptide 3 bound specifically to
densely appearing osteoblastic and preosteocytic cells within
the basal region of the periosteum (Fig. 7B, arrows). We have
shown previously that bone sialoprotein is expressed strongly
in similar cells at this same site (13). Secondarily, weaker
peptide 3 binding to embedded osteocytes was also observed
within the bony cortex (Fig. 7B). However, controls with
peptide 1 gave results which were all below the level of fluo-
rescent detection. As shown in Figure 7C, peptide 3 also bound
specifically to cells either within or closely associated with the
tibial secondary spongiosa. For ease of comparison, the image
of fluorescent peptide 3 binding is overlaid upon the bright-
field image of the secondary spongiosa (Fig. 7C). Consistent
enriched in bone sialoprotein. Biotin-labeled peptide 3 was imaged after
rhodamine-conjugated streptavidin; controls with peptide 1 were negative
rightfield images of decalcified section of very early new intramembranous
, small semicircular dense areas of new osteoid form within the preexisting
tide 3 (arrows). For reference, we have shown previously the first mineral
f condensed osteoid (40). B, fluorescent and brightfield images of young rat
rightfield image of the basal periosteal layer (arrows), which strongly express
n the cortex also bind peptide 3 weakly. Black line demarks the approximate
verlay, and brightfield images of young rat secondary spongiosa. Peptide 3
ions of the secondary spongiosa (arrows). Individual scale bars are shown on
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Col11a1 NTD forms complexes with BSP and nucleolin
with this binding, bone sialoprotein has been reported to be
enriched at this skeletal site (35). In contrast, at all of the above
skeletal sites, peptide 3 binding to cells and matrix within
adjacent muscle and connective tissue was negligible.

Anti-BSP antibodies and N-biotinylated-peptide 3 both
co-localize to extracellular matrix and cells within
newly forming bone

In view of the apparent robust staining observed for
biotinylated-peptide 3 in bone tissue (Fig. 7), we sought to
confirm the specificity of binding by carrying out double la-
beling with antibone sialoprotein antibody and biotinylated-
peptide 3 simultaneously. To relate the double labeling to
prior results in Figure 7, we used adjacent consecutive sections
of day 4 marrow ablated whole rat tibias used previously.
Concurrent indirect immunolabeling using anti-BSP anti-
bodies and Alexa 488–conjugated secondary antibodies
(green) was carried out along with incubation with biotinylated
peptide 3 and Alexa 594 conjugated Streptavidin. Strong
staining was achieved with both labeling methods (Fig. 8, A
and B). Importantly, antibone sialoprotein primary antibodies
and biotinylated peptide 3 were both found to co-localize
closely to extracellular matrix and cells within newly forming
bone. Specifically, in Figure 8A, green antibone sialoprotein
immunostaining was observed to form an evenly labeled ma-
trix layer defining a roughly spherical shape with a hollow
center. Remarkably, the width of the wall of the spherical
structure was relatively constant throughout its length. At the
Figure 8. Both anti-BSP antibodies and N-biotinylated-peptide 3 co-localiz
bone. A and B, co-labeling of bone sialoprotein with biotinylated peptide 3 and
green channel, and overlay views are shown). New healing bone was prepared u
after surgery, fixed, decalcified, embedded in paraffin, and sectioned length
followed an indirect detection method using Alexa 488 conjugated goat secon
594-conjugated streptavidin as described in Methods. Images were obtained us
to both A and B. BSP, BSP, bone sialoprotein
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same time, biotinylated-peptide 3 patterned the outlines of this
antibody staining closely while appearing to label regions of
the spherical structure more strongly than others (Fig. 8A). A
second representative field is depicted in Figure 8B, where two
connected spherical structures label strongly with both anti-
BSP antibodies and peptide 3. Again, green antibone sialo-
protein labeling was found to rather uniformly stain an outer
layer of matrix while a central hole or cavity was left unlabeled.
Biotinylated peptide 3 labeling closely follows that for the
outlines of anti-BSP immunostaining. However, as observed in
Figure 8A, peptide 3 labeling is not as uniform as that with
antibody. Rather, peptide 3 seems to display both strong
punctate (cellular) staining as well as weaker more homoge-
neous matrix staining. At this resolution, it is not possible to
determine whether peptide 3 is binding to the surface of
osteoblastic cells or at internal sites. Based on these results, we
conclude that biotinylated peptide 3 labeling of tibial bone
tissue and healing new bone co-localizes closely with bone
sialoprotein on/in osteoblastic cells and matrix as defined with
monospecific antibodies.

Discussion

The data presented here identify for the first time a specific
binding interaction between bone sialoprotein and a unique
lysine-triplet–enriched “6b” alternatively spliced exonal
sequence of the NTD of Col11a1. Several key experimental
results support this conclusion. First, comparative Western
blotting of osteoblastic culture fractions demonstrates that
e to the same extracellular matrix sites and cells within newly forming
monospecific antibone sialoprotein antibodies (representative red channel,
sing a rat tibial marrow ablation model (40), and tibias were removed 4 days
wise before analysis. Anti-BSP antibody staining (green) of bone sections
dary antibodies, and biotinylated peptide 3 (red) was visualized with Alexa
ing confocal microscopy with a 20× objective. Scale bar, 50 microns, applies



Col11a1 NTD forms complexes with BSP and nucleolin
biomineralization foci, the contents of which are preferentially
extracted by 50 mM EDTA, are enriched in 110 kDa and
60 kDa N-terminal fragments of Col11a1 containing this
lysine-triplet enriched sequence. Polypeptides containing a
different alternatively spliced variant “6a” exonal sequence
were not similarly co-localized. We have defined biomineral-
ization foci as supramolecular extracellular matrix structures
which are the sites of initial hydroxyapatite crystal deposition
in UMR106 to 01 osteoblastic cultures (13) and in forming
intramembranous bone (12) where these sites are also termed
“mineralization centers”. Second, when extracted from osteo-
blastic cultures with 8 M urea and 0.05 M EDTA, bone sia-
loprotein was found to co-purify during anion exchange
chromatography with a 60 kDa N-terminal fragment of
Col11a1 containing the “6b” sequence. Dissociation of the two
proteins required exposure to 2 M NaCl. Under these condi-
tions, the basic charge of the 60 kDa Col11a1 NTD fragment
should have precluded its binding to the anionic resin at pH
5.2, let alone necessitating 2.0 M salt for elution. Importantly,
these results confirm our prior immunoprecipitation results
which showed that full length 90 kDa BSP co-purified with a
60 kDa cationic protein that cross-reacted with “6b” antibodies
(36). Third, specific binding of the Col11a1 NTD 51-residue
long “6b” exonal sequence to bone sialoprotein was demon-
strated indirectly with overlapping shorter peptides. Specif-
ically, peptide 3, which contains three lysine triplet sequences,
showed the greatest quantitative binding while comparable
peptides enriched in lysine residues and containing less than
three lysine triplets or derived from the Col11a1 NTD “6a”
exonal sequence gave largely background binding. Fourth, a
similar binding site was separately identified for nucleolin
which is known to bind a lysine-enriched nucleolar localiza-
tion signal sequence (37). Fifth, the specificity of peptide 3
binding was further illustrated upon addition of FAM-labeled
Col11a1 NTD-derived peptide 3 to fixed monolayers of oste-
oblastic cells because only biomineralization foci (enriched in
bone sialoprotein) and nucleoli (enriched in nucleolin) were
visualized. Finally, when added to sections of rat bone, bio-
tinylated peptide 3 was found to bind only to skeletal sites
which are known to be enriched in bone sialoprotein, e.g.,
osteoblastic cells in the basal periosteal layer, forming intra-
membranous bone, and the tibial secondary spongiosa (12, 13,
33, 35). In contrast, peptide 1 representing the “6a” exonal
sequence gave only background binding to bone. Taken
together, these results identify for the first time a strong,
specific binding interaction between bone sialoprotein and a
lysine triplet enriched “6b” alternatively spliced exonal
sequence of Col11a1 NTD. We propose that N-biotinylated
peptide 3 provides an alternative to antibody-based methods to
identify bone sialoprotein protein in western blots and in/on
cells in culture and bone tissue in vivo. We also speculate that
this binding interaction could play a functional role during
embryonic new bone formation because other work has shown
that type XI collagen can form heterotypic fibrils with type I or
type II collagens in which the Col11a1 chain NTD domain and
specifically the “6b” sequence is exposed on resultant fibril
surfaces at the gap region (38, 39). This newly demonstrated
affinity of BSP for the “6b” exonal sequence provides a novel
hypothetical mechanism to localize a phosphoprotein miner-
alization nucleator to collagen fibrillar surfaces of forming
bone. However, further work is necessary to confirm this latter
hypothesis.

Double labeling studies clearly show that biotinylated pep-
tide 3, a peptide representing a portion of the 6b exon of the
Col11a1 NTD containing three lysine triplets, specifically
binds to bone sialoprotein within intramembranous new bone.
Staining for biotinylated-peptide 3 co-localizes closely with
that for monospecific antibone sialoprotein antibodies when
both are added to sections of forming intramembranous bone.
On day 4 after medullary ablation, a fracture healing model,
the intramedullary cavity of tibias is comprised of a rather
homogeneous fibrin clot (40). However, at discrete locations,
semicircular or spherical thin layers of condensed matrix can
be visualized against this background in brightfield. Impor-
tantly, both anti-BSP antibodies and biotinylated peptide 3
bind to these condensed matrices and adjacent associated
mesenchymal/preosteoblastic/osteoblastic cells. These struc-
tures appear to define “mineralized centers” which represent
one of the earliest morphological hallmarks of intra-
membranous bone formation shortly before the first mineral
crystals are deposited therein (12, 41). Our results provide
biochemical definition for these so-called mineralization cen-
ters that has not been previously presented. Specifically, at
these sites, we showed here that BSP is contained within thin-
walled, closed, extracellular matrix structures with hollow
centers where the thickness of the walls are remarkably con-
stant (5–15 microns). Taken together, our histological labeling
studies with biotinylated peptide 3 demonstrate that this
approach represents a straightforward alternative to antibody-
dependent methods to localize bone sialoprotein in western
blots, cultured cells, and musculoskeletal tissues.

Because of its extended polyacidic amino acid sequences
and its phosphoprotein and sulfoprotein nature, bone sialo-
protein has long been viewed as a presumptive nucleator of
bone mineralization. BSP can bind many calcium ions (2) and
through its strong affinity for hydroxyapatite can modify its
crystal growth properties (42). Direct in vitro nucleation assays
have provided clear evidence of a robust nucleation capacity
(3, 43). Also, BSP has been localized to sites of initial mineral
crystal deposition termed biomineralization foci in osteoblastic
UMR106-01 cells (13), as well in new intramembranous bone
formed in the marrow ablation bone fracture model (12).
Interestingly, a skeletal phenotype for IBSP null mice is evident
in embryos and in young mice but not in adults. At birth, IBSP
null mice are smaller (44). At 3 weeks of age, the growth plate
proliferative zone is thinner, and the hypertrophic zone is
thicker in null mice (45), although the width of the entire
growth plate was not different than wildtype (46). This sug-
gests a regulatory difference in chondrocyte proliferation and
apoptosis as well as an alteration in the developmental tran-
sition from cartilage to bone (46). At 4 months of age, null
mice display thinner cortical bones than WT but exhibit
greater trabecular bone volume with a diminished bone for-
mation rate and bone resorption rate. Null mice also exhibit a
J. Biol. Chem. (2021) 296 100436 11



Figure 9. Hypothetical model: BSP binding to Col11a1 NTD domain
containing 6b exonal sequence exposed on surface of heterotypic type
I/XI collagen fibrils. A, structural model adapted from that published by
Eyre et al. (39). Type XI collagen (gold coloring) is localized at the core of
small heterotypic type I collagen fibrils. The Col11a1 chain NTD domain with
“6b” sequence (gold coloring) projects outward from the surface of the
hybrid type I collagen fibrils (depicted as long rods with alternating light and
dark blue coloring). B, based on evidence presented here that bone sialo-
protein specifically recognizes the Col11a1 NTD “6b” exonal sequence, we
hypothesize that this binding site will localize bone sialoprotein to the
surface of type I collagen fibrils at sites of developmental bone formation.
BSP, bone sialoprotein; NTD, N-terminal domain.

Col11a1 NTD forms complexes with BSP and nucleolin
delay in intramembranous bone formation with a wider cranial
suture (45). Thus, while the skeletal phenotype of BSP null
mice is complex, it is consistent with an active role for BSP in
intramembranous bone formation as well as stimulating
chondrocyte proliferation and differentiation of chondrocytes
into preosteoblasts (47) during endochondral bone formation.
A role for BSP in collagen-mediated nucleation of calcium
hydroxyapatite crystals was suggested by an enhancement of
BSP nucleating capacity in the presence of type I collagen (48,
49). The binding site was defined as residues 19 to 42 of the
Col1a1 chain which contains a conserved sequence with a mix
of acidic and basic amino acids (49). However, a collagen
binding site has yet to be identified on native type I collagen
because BSP has little effect on type I collagen fibrillogenesis
in vitro (50).

Type V/XI are minor fibril-forming collagens. Owing to their
homologous sequences and their ability to interchangeably form
heterotypic trimeric collagen structures, typeV andXI collagens
are considered a single collagen type (22). In Figure 2, type XI
collagen is shown as a heterotrimer of Col11a1, Col11a2, and
Col11a3 chains. The pro-Col11a1 chain has a large NTD
domain which is partially retained after secretion and is subject
to alternative splicing. Six prominent alternative splice variants
are known to display dramatically different protein sequences.
When included, “6b” exon contains a unique motif, e.g., a
sequence with four lysine triplets. Also, expression of the “6b”
containing NTD isoform is the most tissue-restricted of all
possible alternatively spliced isoforms of the type Col11a1 chain
(51). Developmentally, it is first localized in embryonic long
bones where mineralized tissue initially forms and is later
restricted to perichondral regions of cartilage that will subse-
quently be converted into bone (38, 52).

Studies of fibrillogenesis have shown that type V/XI collagen
can facilitate the nucleation and assembly of type I and type II
collagen fibrils (23). In this process, type XI collagen and type I
or II collagen initially co-assemble to form heterotypic fibrils.
Importantly, the NTD domain of Col11a1 is at least partially
retained after secretion and proteolytic removal of N-pro-
peptides from the Col11a2 and a3 chains (53, 54). Exposed on
the surface of resultant type I and II collagen fibrils at the gap
region (39), the NTD domain of the Col11a1 chain is theo-
retically available to interact with other collagen fibrils as well
as bone noncollagenous proteins and proteoglycans (38, 53)
(Fig. 9).

Cho/chomice, which are missing the Col11a1 chain, develop
chondrodysplasia in cartilage with sparse, abnormally thick
fibrils, despite production of type II collagen normally (55).
Histologically, cho/cho mice also demonstrate a dramatic in-
crease in trabecular bone within the metaphyseal region at day
E18 during development (56, 57). It is noteworthy that a
general feature of Col11a1 chain NTD “6b” exon expression
during development is its localization as a tight thin layer
immediately below the perichondrium. Developmentally, both
cartilage and the perichondrium follow programs of coordi-
nated differentiation that originates at the midpoint of the
diaphysis, spreading progressively distally from there in both
directions. Morris et al. (38) have speculated that subsequent
12 J. Biol. Chem. (2021) 296 100436
events in cartilage development (vascular invasion, endo-
chondral ossification, etc.) may depend upon crosstalk of sig-
nals between the perichondrium and associated chondrocytes.
Interestingly, “6b” and “6a” expressing Col11a1 NTD frag-
ments (15–60 kDa) have been shown to be present within
developing cartilaginous tissues (52); however, only “6b”
expressing peptides were shown to negatively influence the
expression of differentiation marker alkaline phosphatase by
osteoblastic cells (58, 59). When combined with an activating
effect of “6b” morpholino-based inhibition of alkaline phos-
phatase expression (59), these results suggest that proteolytic
production of “6b” expressing peptide fragments (52) may play
a role in feed forward or feedback regulation of initial steps in
perichondrial bone formation.

Peptide binding to western blots containing osteoblastic cell
extracts revealed that Col11a1NTD “6b” exon derived peptide 3
specifically bound to a 110 kDa nucleolin band. This assignment
was confirmed by mass spectroscopic peptide mapping. Inter-
estingly, thisfinding is also supported by prior proteomic studies
using affinity chromatography with Col11a1 full length NTD
fragments to isolate binding partners from cartilage extracts



Col11a1 NTD forms complexes with BSP and nucleolin
(60). Nucleolin is located at several sites within cells, e.g., in the
nucleolus, in the cytoplasm, and on the cell surface where it
forms complexes with growth factors and viral particles (61).
Nucleolin displayed a similar specificity toward Col11a1 NTD-
derived peptides #1 to 5 as did bone sialoprotein wherein both
proteins clearly preferred peptide 3 which contained three
triplet lysine sequences. Interestingly, binding of nucleolin to
various ligands at the cell surface including HIV particles can be
blocked by pseudopeptide HB-19 (62). The structure of HB-19
is composed of a core peptide [KKKGPLEKAhxCONH2] which
is coupled via five of its free amino groups to the pseudopeptide
Ksr(CH2N)PR. In this way, Col11a1 NTD “6b” exon derived
peptide 3 appears analogous to HB-19 in that both peptides
contain either multiple consecutive lysine residues or lysines in
close proximity three dimensionally. Taken together, this prior
work validates our current findings with peptide 3 although it
does not immediately suggest a physiological role for nucleolin
binding to the Col11a1NTD “6b” exon sequence. Rather in view
of the secreted nature of type XI collagen, we presume that
under normal conditions nucleolin and Col11a1 expressed
protein would not co-exist within the same intracellular loca-
tion, e.g., cytosol or nucleolus. However, we can envision a sit-
uationwhere cell surface nucleolin could hypothetically interact
with the extracellular Col11a1 NTD “6b” exon sequence.

Data presented here reveal a specific binding interaction
between bone sialoprotein and bone restricted alternatively
spliced 6b exon of Col11a1 NTD. The individual properties of
these two macromolecules and their co-localization to sites of
new bone formation provide the basis for us to speculate that
complexes of type V/XI collagen, and bone sialoprotein plays a
functional role during perichondral and intramembranous de
novo bone mineralization. In contrast to lamellar bone growth
and remodeling which deposits new mineralized matrix onto a
mineralized bone/cartilage surface, perichondral bone and
membranous bone formation are developmental processes
where new bone is formed de novo in the absence of a
mineralized substrate. Much of our current information de-
rives from a detailed analysis by Bianco et al. (33) who have
termed the process “vis-à-vis” bone formation. In particular,
periochondrial bone formation starts with secretion of a ma-
trix between cells organized into rows where chondrocytes
with osteoblastic traits comprise one of the two rows of cells.
Importantly, IBSP expression coincides both temporally and
morphologically with the appearance of the first spherical
mineralization centers at the interface between these cartilage
and osteogenic matrices (33). Since bone sialoprotein can
function as a mineralization nucleator, its presence at this
transition between cartilage and bone could hypothetically
ensure a seamless mineral phase bridging this transition zone.
Interestingly, these authors have also shown that IBSP
expression within these opposing cell populations peaks at the
time of mineralization of the interfacial region and then drops
off dramatically (33). Although the mechanism for localization
of BSP at this site is unknown, we hypothesize the ability of
type V/XI collagen to initiate formation of both type I and type
II collagen fibrils and to form heterotypic fibrillar assemblies
(23, 26, 27) is key because these hybrid fibrils could bridge this
interface between cartilage and new bone. Specifically, the
lysine triplet enriched “6b” exonal NTD sequence has been
shown to be exposed at gap regions and on the surface of type I
(and type II) collagen fibrils (Fig. 9) (29, 39). The newly
demonstrated strong affinity of BSP for the “6b” exonal
sequence provides a novel hypothetical mechanism to localize
a phosphoprotein mineralization nucleator to collagen fibrillar
surfaces of forming bone. Further support for this hypothesis
comes from Oxford et al. (38) who clearly showed that type XI
collagen NTD “6b”-expressing protein is restricted to a thin
osteogenic layer immediately underlying the perichondrial
layer in day E16-E18 embryonic diaphyseal bone—the same
region shown by Riminucci et al. (33) to express BSP and
initiate mineralization. However, further work is necessary to
confirm this latter hypothesis.

In summary, the data presented here focus attention on the
unique structure and potential functionality of the lysine
triplet enriched Col11a1 NTD “6b” exonal sequence. Our
findings demonstrate that Col11a1 NTD derived peptide 3
forms complexes with bone sialoprotein that are resistant to
high salt. In this way, when coupled with fluorescent detection,
biotinylated peptide 3 represents the first nonantibody-based
method to specifically identify bone sialoprotein protein on
western blots and in/on cells in culture and in skeletal tissues.
In addition to its ability to form complexes with bone sialo-
protein, several other properties of the lysine triplet enriched
Col11a1 NTD “6b” exonal sequence suggest this complex
could play a role in initiation of perichondral bone formation.
1) It is localized on the surface of type I and type II collagen
fibrils (39) and 2) it’s expression is restricted to the osteogenic
layer underlying the perichondrium of developing bone(29).
Consistent with a shared role for BSP and Col11a1 complexes
in embryonic bone development, IBSP null and COL11a1 null
mice both display a similar bone phenotype: an unusually large
diaphyseal trabecular bone volume and a very thin cortical
bony collar (44, 56, 57). In contrast, expression of the alter-
native spliced Col11a1 chain NTD “6a” exonal sequence lacks
this distinct localization within developing bone. While it re-
mains to be established in vivo what the direct functional
consequences of this binding interaction are, it is reasonable
based on the recent example of asfotase to propose that its
existence could have an immediate impact on efforts to treat
musculoskeletal disease. Asfotase alpha is a recombinant,
catalytically active, duplex form of alkaline phosphatase which
contains a polyaspartic acid extension at its two Ctermini (63).
The poly-Asp10 acid extension facilitates binding of the re-
combinant protein to exposed hydroxyapatite surfaces on bone
tissues. In this way, injected asfotase localizes to bone and
provides an effective therapeutic solution to the hypo-
phosphatasia which is the primary cause of hypomineralization
in perinatal and infantile hypophosphatasia (64, 65). We
believe that the specific binding interaction identified here
between the lysine triplet motif of Col11a1 and bone sialo-
protein could be more effective than poly-Asp10 in targeting
materials to bone. Specifically, in contrast to poly-Asp10,
peptide 3 was shown here to localize to both osteoblastic cells
as well as to extracellular matrix sites in forming new bone
J. Biol. Chem. (2021) 296 100436 13
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expressing bone sialoprotein. In this way, peptide 3 or an
optimized analog could be used to target agents (toxins, drugs)
to inhibit the growth of or kill bone tumor (osteosarcoma)
cells. In addition, because localization of peptide 3 or an
optimized analog to bone does not rely upon binding to cal-
cium hydroxyapatite, this sequence could be used to target
inhibitory agents to immature, poorly mineralized bone prev-
alent in diseases such as Paget’s. Finally, because bone sialo-
protein represents a differentiation marker for osteoblastic
cells, we believe peptide 3 or an optimized analog could be
used to target growth factors to increase the growth of bone in
older individuals who express fewer osteogenic stem cells.

Experimental procedures

Materials

FAM-N-terminally labeled peptides and N-terminally bio-
tinylated peptides were synthesized by Invitrogen Inc.
UMR106-01 osteoblastic cells were a gift from Dr Ron J.
Midura, Cleveland Clinic and Fdn. Antibodies against bone
sialoprotein (LF-83) were a gift from Dr Larry W. Fisher, NIH-
NIDCR. Anti-nucleolin antibodies were obtained from Abcam,
Inc. Antibodies against the N-terminal domain of type XI
collagen A1 chain (anti-6b exon epitope, anti-8 exon epitope,
anti-Npp epitope) were supplied by Dr Julia Oxford.
Digoxygenin-labeled Maackia amurensis agglutinin lectin and
horseradish peroxidase conjugated goat anti-digoxygenin an-
tibodies were purchased from Sigma Chemical Co.

Supplies, peptides, and reagents were provided as follows:
AEBSF [(4-(2-aminoethyl)-benzenesulfonylfluoride HCl)]
(EMDBiosciences Inc); growthmedia (Eagle’sminimal essential
media supplemented with Earle’s salts, 1% nonessential amino
acids [Sigma-Aldrich]), 10 mM Hepes (pH 7.2), and 10% fetal
bovine serum (Hyclone); growth medium containing 0.5%
bovine serum albumin (Sigma-Aldrich); mineralization media
(growth medium containing either 0.1% bovine serum albumin
or 10% fetal bovine serum and 7 mM BGP); dec-RRLL-
chloromethylketone (Bachem); Alizarin Red S dye (ICN Bio-
medicals Inc); 4 to 20% linear gradient gels (ISC BioExpress);
PVDF membranes (Millipore Corp); Amersham ECL Plus
western blotting detection System (GEHealthcare); SuperSignal
West Dura extended duration substrate (ThermoFisher Scien-
tific); calcium reagents I & II (Pointe Scientific Inc).

Methods

Isolation of bone matrix proteins

Rat bone sialoprotein and osteopontin were isolated from
rat calvarial bone as previously described (2).

Growth and mineralization of osteoblastic cells in culture and
extraction of proteins and SDS PAGE

UMR106-01 osteoblastic cells were cultured using an
identical lot of fetal bovine serum and mineralized according
to a strict standardized protocol (13, 14, 31). To ensure con-
sistency, passage number was restricted to a value previously
shown to maintain a series of phenotypic characteristics, e.g.,
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expression of BSP and bone acidic glycoprotein-75, deposition
of mineral crystals within spherical biomineralization foci
within an 88 h time period, and quantitative deposition of
hydroxyapatite crystals within an expected range. When
necessary, frozen aliquots of cells were thawed from defined
stocks and grown up following a set protocol. Cells were
allowed to acclimate through three to four passages after
thawing and only used for experiments after phenotypic
characteristics were reconfirmed.

In some cultures, mineralization was prevented by treat-
ment with 0.1 mM AEBSF or 40 μM dec-RRLL-
chloromethylketone or by withholding β-glycerolphosphate.
UMR106-01 cultures were processed using a two-step protein
extraction procedure (15). After the media was removed by
aspiration and stored, the cell layer was incubated with 0.05 M
EDTA for 2 h at 4 �C to remove materials which appear to be
largely associated with biomineralization foci, sites of initial
mineralization. The EDTA extract was immediately boiled for
5 to 10 min to inactivate proteases and was then dialyzed
against 5% acetic acid at 4 �C before lyophilization to dryness.
EDTA extracts were rehydrated with SDS sample buffer and
20 mM DTT and were then subjected to SDS-PAGE on 4 to
20% linear gradient gels (66). Subsequently, the remaining cell
layer was extracted with 8 M urea and (3-((3-cholamidopropyl)
dimethylammonio)-1-propanesulfonate) (CHAPS) detergent
in buffer. Urea extracts were clarified by centrifugation for 1 h
at 105,000g, and then, the supernatant fractions were pro-
cessed directly for gel electrophoresis, e g., heating and
reduction. Coomassie blue prestained globular protein mo-
lecular weight standards (BioRad, Inc) were co-
electrophoresed with unknowns for estimation of protein
mass. After gel electrophoresis, gels were either processed for
Western blotting, incubated with Col11a1 NTD-derived pep-
tides, stained for protein with Coomassie Brilliant blue dye or
stains All dye, submitted to N-terminal microEdman protein
sequencing, or subjected to mass spectroscopic peptide
mapping.

Direct fluorescent detection of peptide binding to electroblotted
protein blots

Purified rat calvarial bone BSP and osteopontin, along with
commercially purified bovine serum albumin, were used in
binding studies with Col11a1 NTD peptides. Alternatively,
other experiments included cell layer extracts (15) which were
electrophoresed on 4 to 20% linear gradient gels. Electro-
blotting transfer was onto PVDF membrane for 2 h at 100 V.
The transfer buffer used was a 10 mM N-cyclohexyl-3-
aminopropanesulfonic acid buffer (pH 11.0) containing 10%
methanol (15). Blots were washed in Tris-buffered saline
containing Tween-20 (TBST), blocked in 5% fat-free milk
powder/TBST for 1 h, rinsed with 1× Tris-buffered saline
twice, and then blocked with streptavidin and with biotin for
10 min each (Biotin blocking solutions, Vector Labs, Inc).
After rinsing the blots with 1× Tris-buffered saline twice, blots
were then incubated overnight at 4 �C with blocking solution
containing 5 μg/ml of N-terminal biotin-labeled Col11a1 chain
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NTD peptides #1-#5. After washing multiple times, blots were
then incubated for 2 h in the dark with rhodamine red–
conjugated streptavidin (3 μg/ml) in blocking solution. Each
blot was routinely incubated in 10 ml of streptavidin solution.
After multiple washing steps with TBST, blots were imaged in
a Fuji LAS 4000 ImageQuant using blue LED illumination with
a Y515 filter.

Western blotting using chemiluminescence detection

For Western blots, initial processing of PVDF membranes
followed a similar protocol as that described above for detec-
tion of bound fluorescent peptides to PVDF protein blots.
However, after blocking with casein/TBST (ThermoFisher,
Inc) for 4 h, PVDF membranes were incubated overnight at
4 �C with primary antibody diluted in 1× casein/TBST
(ThermoFisher, Inc). Primary antibody was removed with
multiple washings, and blots were then incubated with
horseradish peroxidase–conjugated secondary antibody
diluted in 1× casein/TBST for 2 h at 4 �C. Blots were finally
washed multiple times to remove free secondary antibody and
then incubated with ThermoFisher SuperSignal West Dura
extended duration substrate and then imaged in a Fuji
ImageQuant LAS 4000 Imager.

Micro-Edman N-terminal protein sequencing

Proteins were purified by SDS PAGE as described above and
then submitted as gels slices to the Macromolecular Structure,
Synthesis, and Sequencing Facility, Department of Biochem-
istry, Michigan State University, East Lansing, MI, on a fee for
service basis.

Peptide mapping on gel slices using mass spectrometry (Eyre lab)

Protein bands were cut from SDS PAGE gels and subjected
to in-gel trypsin digestion (39, 67). Electrospray MS was per-
formed on the tryptic peptides using an LCQ Deca XP ion-trap
mass spectrometer equipped with in-line liquid chromatog-
raphy (Thermo Finnigan LLC) using a C8 capillary column
(300 μm × 150 mm; Grace Vydac 208MS5.315) eluted at
4.5 μl/min. Seaquest search software (Thermo Finnigan LLC)
was used for peptide identification using the NCBI protein
database.

LC-MS/MS identification of peptides/proteins (Keightley lab)

Acetone precipitated BMF samples isolated by laser capture
microscopy were reduced and alkylated, sequentially, and split
into different digests: trypsin or dual digestion with trypsin
plus Glu-C. The digests were purified by SPE (ZipTip, Milli-
pore), and extracted peptides were analyzed by capillary LC-
tandem MS on a 10 cm capillary column (50 μm ID) packed
with Phenomenex Jupiter C18 reversed phase matrix, resolved
with a linear gradient of acetonitrile with a flow rate of 250 nl/
min. The mass spectrometer (Thermo Finnigan LTQ MS
system) was operated in data-dependent mode, with eight
dependent scans per survey scan. LTQ.RAW data files were
subjected to peak picking with Proteo Wizard 3.0 using generic
defaults, with output passed to Mascot via Mascot Daemon.
Protein identifications were made using Mascot Server 2.6
(Matrix Science) searching against a custom database con-
taining common contaminants (246 proteins), and nine pro-
teins previously found in BMF, with decoy db (reverse)
enabled. Mass tolerances for database searches were 1.9 Da for
peptide mass and 1.0 Da for fragment peaks. Up to two missed
cleavages were allowed. Mascot scores (protein) and individual
PSM Ions Scores are reported, with expect values (all meeting
at least p < 0.05). Individual peptide spectral matches were
inspected manually for adherence to expected fragmentation,
and neutral loss peaks for phosphorylated peptides (which
were also assigned by Mascot).

N-biotinylated collagen peptide binding to UMR106-01 cell
cultures

Col11a1 NTD derived peptides #1 to 5 were first screened
for binding to UMR106-01 cells grown on glass Fisher Super
plus microscope slides. Cells were plated onto fibronectin
coated slides and grown as described previously (14) [Please
also note general comments above about the routine proced-
ures taken to ensure consistency in the growth and minerali-
zation of UMR106-01 cells in culture.]. Cultures were stopped
at 70 h by fixation in 70% ethanol for 2 h at 4 �C and then
rehydrated in phosphate buffered saline. Cells were removed
from three lines dividing each slide into three sections; liquid
wax was applied so as to separate each cell section. Endoge-
nous biotinylated sites were blocked by incubation with
streptavidin blocking solution for 15 min (Vector Labs), rinsed
with 0.05 Hepes buffer (pH 7.5) containing 0.15 M NaCl,
incubated with biotin blocking solution (Vector Labs, Inc) for
15 min and then rinsed again with 0.05 M Hepes buffer (pH
7.5) containing 0.15 M NaCl. Biotinylated peptides #1 to #5
(0.5 μg/ml) in phosphate buffered saline were then added to
blocked slides in a humidified chamber for 4 h at room tem-
perature. Excess peptide was removed, and cells were washed
thoroughly before addition of 3 μg/ml rhodamine-conjugated
streptavidin (Jackson Immunoresearch Inc) in Hepes buffer.
After 30 min, slides were thoroughly washed with Hepes buffer
(pH 7.5) in Coplin jars, slides were drained dry, cover slipped
with mounting media, and then observed with a fluorescence
microscope. Peptide #3 was the only peptide which showed
detectable binding to cultures.

Peptide binding to UMR106-01 cells was quantitated using
monolayers grown in 12-well (3.5 cm2 surface area) culture plates
under standard conditions as described previously (13, 14, 31).
Each condition was carried out in quadruplicate (e.g., time after
plating, with or without beta-glycerolphosphate). Cultures were
stopped at 64 h, 70 h, and 77 h (prior to deposition of mineral
crystals) by removal of the media fraction and mild fixation in
70% cold ethanol. (In parallel, separate cultureswere processed at
88 h for calcium analysis to confirm their mineralization
capacity.) The ethanol was then removed, and dishes were rinsed
carefully with 0.05 M Hepes buffer (pH 7.5) containing 0.15 M
NaCl. Cell layers were then blocked sequentially for 15 min each
with streptavidin blocking solution and thenwith biotin blocking
solution (Vector Labs, Inc). Blocked wells were incubated
overnight with gentle rocking at 4 �C with 10 μg/ml of
J. Biol. Chem. (2021) 296 100436 15
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biotinylated peptides #1 to #5 inHepes buffer. Upon completion,
wells were rinsed 3× with Hepes buffer, and cell layers were then
incubated for 4 h with rhodamine-conjugated streptavidin
(Jackson Immunoresearch) (3μg/ml) inHepes buffer.Wellswere
then rinsed 3× with Hepes buffer, wells drained, and cells dis-
lodged and scraped into 0.05MHepes buffer (pH 7.5) containing
0.15 M NaCl and 0.5% Tween 20. Cell suspensions were trans-
ferred to white fluorescent 96-well microtiter plates, and fluo-
rescence readings were then obtained with a plate reader.
Replicate readings were averaged, and statistical analyses per-
formed as described below.

Ion-exchange chromatography on BioCad system

UMR106-01 cells were plated in four 150 mm T-flasks. At
64 h later, the media was changed for serum-free mineraliza-
tion media containing 1 mg/ml bovine serum albumin and
7 mM BGP (14). At 88 h, the media was removed, and then,
the cell layer from each flask was extracted with 50 mM EDTA
as described above, pooled, heated to 95 �C, and then in-
hibitors added to a final concentration of 0.1 mM AEBSF,
10 μg/ml soybean trypsin inhibitor, and 0.5 μg/ml E-64. The
pooled extract was dialyzed at 4 �C against 0.05 M sodium
acetate buffer (pH 5.2) containing 8 M urea and 0.02% sodium
azide (column buffer). EDTA extract was applied to a 10 ml
column of strong anion exchange resin (POROS 20 HQ) and
washed through with column buffer containing 0.1% CHAPS.
The column effluent was continuously monitored at 214 and
280 nm as well as via conductivity. A linear gradient of from
0 to 0.6 M NaCl in column buffer containing 0.1% CHAPS was
then applied. Finally, a step gradient column buffer containing
2 M NaCl and 0.1% CHAPS was used to elute tightly bound
proteins. Aliquots of each fraction were removed for screening
by dot-blot analysis, SDS PAGE, and Western blotting.

Five microliters of each fraction were applied to activated
PVDF membranes using a Bio-Rad dot blot apparatus (Bio-
Rad, Inc). Membranes were processed for chemiluminescence
detection as described for Western blotting above with
monospecific antibodies for bone sialoprotein and for Col11a1
NTD “6b” epitope. Blots were photographed using a Fuji
ImageQuant LAS4000 charge-coupled device camera.

Immunostaining of bone sialoprotein in musculoskeletal tissues

Young male rats were subjected to tibial marrow ablation
surgery according to a UMKC ALACC committee approved
protocol #1103 (JPG) as described previously (40). On day 4
after ablation, animals were sacrificed and tibias were harvested
for histological analysis. Following fixation and decalcification,
tibias were embedded in paraffin and then cut longitudinally
into 5 micron sections. Sections were deparaffinized in xylenes,
rehydrated in a graded alcohol series, blocked with 5 mg/ml
normal goat IgG for 2 h, and then treated consecutively with
streptavidin/biotin blocking solutions (Vector Labs, Inc). Im-
munostaining was carried out overnight with rabbit anti-bone
sialoprotein antiserum (LF-83) (generous gift of Dr Larry
Fisher, NIDCR, NIH). Bound antibody was detected with goat
anti-rabbit IgG (H and L) antibody conjugated with Alexa 488.
16 J. Biol. Chem. (2021) 296 100436
Concurrently, sections were also treated with (50 μg/ml) N-
biotinylated peptide 3 or control peptide 1 which was detected
with Alexa 594-conjugated streptavidin. Alternatively, in some
cases, primary antibody was omitted from control sections.
Sections were imaged with a Keyence fluorescence microscope
and/or a Leica TCS SP5 II Laser Scanning confocal microscope
in resonant scanner mode (Leica Microsystems) with line
averaging set to 96. Confocal images and z-stacks were
captured using a Leica 20× plan apo objective (N.A. 0.7) and a
Leica 40× immersion oil objective (N.A. 1.25). For imaging
Alexa 488, 488 nm laser excitation was used with an emission
collection window of 495 to 560 nm acquired together with a
brightfield image. For imaging Alexa 594, laser excitation was
594 nm with a collection window of 610 to 695. For presen-
tation, images were uniformly optimized for size, brightness,
and contrast with Photoshop 2020.

Statistical analysis

Means, standard deviations, median, interquartile ranges
(25th to the 75th percentile), minimums, and maximums were
calculated for the amount of bound fluorescent peptide for
each peptide type and time period combination. Associations
between peptide type and the outcome variable within each
time period were evaluated using either a 1-way ANOVA or
Welch’s ANOVA (if equal variance assumption was violated)
with Dunnett’s posthoc tests to compare all peptide types to
the buffer alone group. The same statistical tests were used to
determine associations between time periods and the amount
of bound fluorescent peptide within each peptide type (Dun-
nett’s posthoc test compared all time periods to the 64 h time
point period). All analyses were performed in SPSS v26.0.
Depending upon the particular comparison, the significance
level is listed as either p < 0.05 or p < 0.005.

All other experiments were qualitative, and experimental
results presented are representative of at least three individual
replicates.

Data availability

Mass spectral data files and searches referenced in Table 1
and in Figure 5B are available on request from the corre-
sponding author. The LTQ data from UMKC have also been
submitted to the ProteomeXchange database [submission
reference #1.20210108-73706]. Data supporting Edman pro-
tein sequencing assignments referenced in Figure 5B are
available on request from the corresponding author. Experi-
mental results referred to as “not shown” or “unpublished
results” are available from the corresponding author. All other
data are presented within the manuscript.
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