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Abstract: A fresh-cut cauliflower surface defect detection and classification model based on a con-
volutional neural network with transfer learning is proposed to address the low efficiency of the
traditional manual detection of fresh-cut cauliflower surface defects. Four thousand, seven hundred
and ninety images of fresh-cut cauliflower were collected in four categories including healthy, dis-
eased, browning, and mildewed. In this study, the pre-trained MobileNet model was fine-tuned
to improve training speed and accuracy. The model optimization was achieved by selecting the
optimal combination of training hyper-parameters and adjusting the different number of frozen
layers; the parameters downloaded from ImageNet were optimally integrated with the parameters
trained on our own model. A comparison of test results was presented by combining VGG19, Incep-
tionV3, and NASNetMobile. Experimental results showed that the MobileNet model’s loss value
was 0.033, its accuracy was 99.27%, and the F1 score was 99.24% on the test set when the learning
rate was set as 0.001, dropout was set as 0.5, and the frozen layer was set as 80. This model had
better capability and stronger robustness and was more suitable for the surface defect detection of
fresh-cut cauliflower when compared with other models, and the experiment’s results demonstrated
the method’s feasibility.

Keywords: fresh-cut cauliflower; surface defect detection; convolutional neural network; transfer
learning; classification

1. Introduction

Cauliflower (Brassica oleracea L. botrytis) is a variety of Brassica wild cabbage. It has
become a popular vegetable in the world because of its rich nutritional value, high yield,
and large economic benefits.

Fresh-cut fruits and vegetables, also known as semi-processed fruits and vegetables,
refer to fresh fruits and vegetables as raw materials, after a series of processing activities
such as grading, cleaning, trimming, preserving, packaging, etc., and then after low-
temperature transportation into the freezer sales of ready-to-eat or ready-to-use fruit and
vegetable products. Fresh-cut cauliflower not only maintains the original freshness of the
cauliflower itself but processing also makes it clean and hygienic, which can meet the needs
of people’s contemporary pursuit of a natural, nutritious, fast-paced lifestyle and other
aspects. Therefore, the quality grading of fresh-cut cauliflower is an important part of
its processing. At present, the surface defect detection of fresh-cut cauliflower is largely
performed manually, which is slow and has low precision. Under such detection conditions,
it is hard to effectively guarantee the quality of fresh-cut cauliflower, which largely restricts
the scale of its production, transportation, and storage in the fresh-cut cauliflower industry.
Thus, recognizing and detecting fresh-cut cauliflower surface defects accurately is necessary
and urgent. This solution will be of significant economic benefit and have a significant
future planning meaning for the development of the fresh-cut cauliflower industry.
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2. Related Work

With the continuous innovation of modern science and technology, machine vision
technology has been extensively used for the surface defect detection of agricultural prod-
ucts. Based on computer vision technology, J. Blasco et al. adopted a region-oriented
segmentation algorithm for citrus fruits’ external defect detection and achieved a 95%
detection accuracy rate [1]. Li Jinwei et al. proposed a fast gray cut-off segmentation
method that separated suspected defects from potato surfaces and a ten-color model for
potato surface defect recognition, which enabled defect detection with 95.7% accuracy [2].
Zhao Juan et al. designed a system to capture all aspects of apple surface information and
achieved a 92.5% correct recognition rate in the identification of external apple defects [3].

With the accelerated development of artificial intelligence and the application of
state-of-the-art deep learning technology in numerous domains [4–10], traditional machine
learning methods have been gradually replaced. Traditional machine learning relies on man-
ually designed feature extractors, and it is difficult to achieve complete extraction of image
information, so it has been difficult to make a significant breakthrough. The convolutional
neural network (CNN) has shown significant advantages in the field of image recognition
due to its ability to automatically acquire the deep characteristics of the original image
and is widely used in the quality inspection of agricultural products [11,12], especially
in the disease detection [13–15], defect detection [16–18], maturity detection [19–21], and
grading [22–24] of agricultural products. Xue Zhao et al. developed a DTL-SE-ResNet50
vegetable disease recognition model based on a CNN to identify tomato powdery mildew,
leaf mold, and cucumber downy mildew in simple and complex contexts [25]. The model
was also compared with EfficientNet, AlexNet, VGG19, and InceptionV3 models, and the
recognition accuracy of DTL-SE-ResNet50 reached 97.24% under the same experimental
conditions, which outperformed the other four models. Guoyang Zhao et al. designed
and developed a deep learning-based full surface recognition sorting system for soybean
seeds with the research goal of accurately sorting high-quality soybean seeds [26]. The
sorting system collected all feature information of a seed’s surface by an alternate rotation
mechanism and accurately classified seeds by using the deep learning model, with a 98.87%
sorting accuracy rate and 222 seeds/min sorting speed. Long Jiehua et al. proposed an
improved Mask R-CNN method for segmenting tomato fruits with different ripeness levels
under a greenhouse environment [27]; the mean average precision of the improved Mask
R-CNN model was 95.45% for segmenting tomatoes at green ripe, half ripe, and ripe stages.
The improved Mask R-CNN model was also deployed to a picking robot and then tested in
the field, and the model achieved a 90% correct recognition rate. Zhiheng Lu et al. designed
a machine vision-based automatic winter jujube grading robot and proposed an image
processing method combining YOLOv3 algorithm with manual features for calculating
the ripeness of winter jujubes [28]. Through experiments, the algorithm achieved 97.28%
accuracy in grading the maturity of winter jujube, and the detection time was 1.39 s for
each date.

Deep learning has been widely used in agricultural product quality detection, and a
CNN is a typical representative of deep learning. Various research results have shown that
a CNN not only has a strong learning ability but also can realize the automatic extraction of
image features and achieve a good recognition effect. However, reports about the detection
of fresh-cut cauliflower surface defects are rare. To achieve automatic detection of fresh-
cut cauliflower surface defects, this study combined a CNN with the transfer learning
method and established a fresh-cut cauliflower surface defect detection model. This study
has referential meaning for the detection of surface defects in fresh-cut cauliflower and
broadens the ideas for quality inspection in the field of fresh-cut fruits and vegetables.

3. Materials and Methods
3.1. Dataset Acquisition

In this experiment, “Xuebai” cauliflower was taken as the research subject. “Xuebai”
cauliflower is a variety of cauliflower in China with uniform, firm flower bulbs and good
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merchantability. The image acquisition facilities included a computer, darkroom, lifting
platform, CCD industrial camera, and LED light bars. The background of the cauliflower
image is white, which is convenient to reduce the interference of other environmental factors
in the image acquisition. The shooting angle of the camera was vertically downward, 10 cm
from the cauliflower. The image acquisition facilities are shown in Figure 1. Fresh-cut
cauliflower samples were placed by the experimenter in the center of the lifting platform in
the darkroom and then photographed by a computer-controlled CCD industrial camera.
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Figure 1. The image acquisition facilities.

Fresh-cut cauliflower samples can be classified into four categories: healthy, diseased,
browning, and mildewed. Healthy cauliflowers had full flower bulbs and snowy white
color. Diseased cauliflowers were due to bacterial infection of stems, resulting in local
blackening of stems, and had lost edible value. The specific performance of browning
cauliflowers was that the surface of the cauliflower had brown spots and rot symptoms.
Mildewed cauliflowers were infected by gray mold disease, resulting in gray–white colonies
on the surface. For data collection, 479 cauliflower samples were chosen. Image enhance-
ment techniques were used to increase the number of datasets so that the model obtained
enough information during training to improve its generalization ability [29].

The following image enhancement techniques were used: translation, inversion, ro-
tation, saturation, enhancement, and brightness adjustment. Finally, 4790 images were
acquired. The dataset descriptions of the original dataset, augmented dataset, training set,
validation set, and test set are shown in Table 1. Part of the original images is provided
in Figure 2.

Table 1. The dataset descriptions.

Classes Original
Dataset

Augmented
Dataset

Training
Set

Validation
Set

Test
Set

Healthy 150 1500 900 300 300
Diseased 103 1030 610 210 210
Browning 114 1140 700 220 220
Mildewed 112 1120 670 220 230

Total 479 4790 2880 950 960

This research used Windows 11 operating system, AMD R7-5800H, CPU@2.9GHz,
16GB RAM, 500GB Hard-Disk drive, and 8GB NVIDIA RTX 3070 GPU. The algorithm
adopted CUDA11.3.1 and CUDNN8.2.1 libraries. Python version was 3.7.3. TensorFlow
version was 2.5. All programs were run on PyCharm.
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3.2. CNN and Transfer Learning

CNN is a variety of multi-layer perceptrons, and is often applied to image classification
in the field of deep learning. The training of the CNN model usually needs tremendous
data and calculation, and it is difficult to achieve the desired effect if the dataset of training
samples is relatively small. Training from scratch can be time-consuming and has a high
demand for computer hardware. To solve these problems, we used the method of transfer
learning [30], by using the similarity between data or tasks, migration of existing trained
models to new models to help train new models, and improving the model according to
assigned tasks, such as fine-tuning strategy. The main idea was to adjust one or more layers
of the pre-training model to obtain better training results.

3.3. Model Establishment

Currently, the mainstream pre-training models are VGGxNet [31], ResNet50 [32],
Xception [33], InceptionV3 [34], and MobileNet [35]. However, some models have vast
quantities of parameters, such as VGG16, which has 138,357,544 parameters, resulting in a
model size of 528 MB. Models that are too large require high computing power and large
memory size of hardware devices for training and running, this makes it a hard issue for
the model to function properly on mobile devices as well as embedded devices. Based
on the above-mentioned issues, we need to construct a lightweight model to meet the
needs of detecting surface defects of fresh-cut cauliflower. MobileNet, proposed by the
Google team in 2017, is a lightweight CNN focused on mobile terminals and embedded
devices. Compared with traditional CNN, it greatly reduces the model parameters and
operations with a small reduction in accuracy. On ImageNet classification, MobileNet has
only 0.9% less accuracy compared to VGG16, while being 32 times smaller, the accuracy of
MobileNet is 0.8% higher than GoogleNet and is 1.6 times smaller. Through comprehensive
analysis, MobileNet, with a small size and good recognition performance, was selected for
this experiment. The architecture of MobileNet is shown in Figure 3.
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The architecture of MobileNet includes 13 depth-wise separable convolutions, and the
structure of a depth-wise separable convolution is shown in Figure 4. Each DSC contains
a DepthwiseConv2D and a PointwiseConv2D, and each Conv2D is followed by a Batch
Normalization [36] and a ReLU.
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For feature extraction of different defects on the fresh-cut cauliflower surface, we
first imported the parameters from ImageNet, then removed the fully connected layer
and SoftMax layer, and kept only the convolutional module for extracting image features,
which was used as the feature extraction module of the deep transfer learning model in
this research.

For the classification of different defects on the fresh-cut cauliflower surface, the
number of output categories in the last layer of MobileNet was changed from 1000 to 4, and
a dropout layer was added after the global average pooling layer to suppress the overfitting
of the model [37]. Finally, the results were output with a softmax layer. These were used as
the classifier module of the deep transfer learning model in this research.

4. Training and Evaluation
4.1. CNN Training

This research conducted training towards the developed MobileNet network. In order
to obtain better model training performance, we utilized GPU to accelerate the training
of the model [38]. To ensure that the model learned the data features sufficiently during
training, the number of training epochs was configured as 100 in this research. For the sake
of maintaining a balance between memory capacity and memory efficiency, the batch size
for each training group was configured as 32.

4.2. Evaluation Metrics

The accuracy, precision, recall, and F1 score can be calculated from the data in the con-
fusion matrix and used as evaluation metrics to assess the performance of the deep learning
architecture [39]. The calculation formulas and short descriptions of these evaluation
metrics are shown in Table 2.

4.3. Hyper-Parameter Optimization

The learning rate is a significant hyper-parameter in the model training process, which
represents the update rate of model weights [40]. It is difficult to get the objective function
to converge to its local minimum in a reasonable amount of time when setting a learning
rate that is too large or too small [41]. In this experiment, five sets of learning rates were
designed (0.1, 0.01, 0.001, 0.0001, and 0.00001), and the best one was selected from among
them by experiment.
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Table 2. Evaluation metrics.

Evaluation Metric Calculation Formula Short Description

Accuracy Accuracy(%) = TP+TN
TP+FP+FN+TN × 100

The ratio of all predictions is correct (including
positive and negative categories) to the total
number of samples.

Precision Precision(%) = TP
TP+FP × 100

The ratio of correct predictions of positive
categories to samples predicted to be positive.

Recall Recall(%) = TP
TP+FN × 100

The ratio of correct predictions of positive
categories to all actual positive samples.

F1 score F1 − score(%)= 2 × Precision × Recall
Precision+Recall × 100 The harmonic mean of precision and recall.

Note: TP means the number of predictions of positive categories to positive categories; TN means the number
of predictions of negative categories to negative categories; FP means the number of predictions of negative
categories to positive categories; FN means the number of predictions of positive categories to negative categories.

When it comes to CNN models, the trained model is prone to overfitting if the model
has a lot of parameters and the training sample is small. Dropout could mitigate the risk of
overfitting and achieve the effect of regularization to a certain extent, and the activation
values of some neurons are allowed to be randomly set to zero during training to reduce
the dependency between some neurons, thus suppressing overfitting and improving the
model’s generalization capability [42]. The model development process of the experiment
used a combination of dropout and learning rate adjustment for the optimal selection of
hyper-parameters; four sets of dropout parameters were designed (0, 0.25, 0.5, and 0.75).

4.3.1. Influence of Dropout

The loss, accuracy, precision, recall, and F1 score values of the 20 test groups are shown
in Table 3. From Table 3, it is apparent that the combination of learning rate and dropout
had a remarkable effect on the loss, accuracy, and F1 score values.

Table 3. Results of experiments based on MobileNet.

Experiment Code Learning Rate Dropout Loss Accuracy (%) Precision (%) Recall (%) F1-Score (%)

1

0.1

0 0.2312 97.71 97.83 97.59 97.71
2 0.25 1.4238 97.92 98.01 97.76 97.89
3 0.5 1.6862 97.60 97.95 97.46 97.70
4 0.75 2.8199 95.42 96.38 95.08 95.73

5

0.01

0 0.0467 98.33 98.46 98.25 98.35
6 0.25 0.0736 98.75 98.78 98.72 98.75
7 0.5 0.0912 97.71 97.90 97.59 97.75
8 0.75 0.1913 97.40 97.83 97.22 97.52

9

0.001

0 0.0402 98.54 98.62 98.46 98.54
10 0.25 0.0469 98.33 98.47 98.19 98.33
11 0.5 0.0410 98.85 98.90 98.83 98.87
12 0.75 0.0785 97.50 97.85 97.33 97.59

13

0.0001

0 0.0579 98.44 98.50 98.36 98.43
14 0.25 0.0582 98.65 98.81 98.64 98.72
15 0.5 0.0760 98.02 98.24 97.94 98.09
16 0.75 0.1156 98.02 98.19 97.93 98.06

17

0.00001

0 0.2466 95.52 95.87 95.43 95.65
18 0.25 0.2647 94.90 95.44 94.68 95.06
19 0.5 0.2925 94.38 94.72 94.13 94.42
20 0.75 0.3947 90.42 91.43 90.22 90.82

In the test set, when the learning rate was 0.1, 0.01, 0.0001, and 0.00001, the loss value
gradually increased with the increase in dropout. When the learning rate was 0.1, 0.01,
0.001, and 0.0001, and dropout was 0, the model did not obtain the highest accuracy rate,
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which indicates that configuring an appropriate dropout value can effectively suppress
the overfitting of the model. When the learning rate was 0.00001, the test set’s accuracy
and F1 score value decreased as the dropout rate increased, while the loss value gradually
increased, indicating that the model did not produce overfitting.

4.3.2. Influence of Learning Rate

The curves of validation accuracy and validation loss during the training process are
shown in Figures 5–8. By comparing the curves corresponding to the learning rates of the
five sets, it can be seen that the rate of curve convergence to smoothness increased with the
learning rate. The loss values were close to 0 when the learning rate was 0.001 and 0.0001.
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When the learning rate was 0.1, the validation accuracy and validation loss value
fluctuated significantly. The validation accuracy curve was more undulating, the validation
loss value curve lacked a clear convergence trend, and large loss values occurred at times.
When the learning rate was 0.01, the validation loss value curve had a clear convergence
trend and was more stable, and the fluctuation of the validation accuracy curve was smaller,
but there were still significant fluctuations that required model parameter optimization.
When the learning rate was 0.001, the convergence speed of validation accuracy and
validation loss was the fastest, the curve of validation accuracy was relatively smooth, the
curve of the validation loss value was the smoothest, and the loss value was closest to 0,
which indicates that the model has a strong fitting ability. When the learning rate was set to
0.0001, the validation accuracy and validation loss value curves converged steadily, though
the convergence speed was relatively slow and the loss value was slightly higher. When the
learning rate was 0.00001, the convergence of the validation accuracy and validation loss
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value curves was the slowest, and neither completely converged, proving that the learning
rate was set too small, and it would take a long time to search the optimal parameters.
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Combined with Table 3, comparing 20 experimental hyper-parameter combinations,
the highest test accuracy rate of 98.85%, F1 score value of 98.87%, and the minimum loss
value of 0.033 were achieved when the learning rate was 0.001 and dropout was 0.5. It was
the best-performing hyper-parameter combination compared to other combinations.

4.4. Frozen Layer Optimization

Transfer learning is a method that aims at applying knowledge learned in one domain
to a similar domain [43–45]. Through transfer learning, untrained models can acquire the
parameters of trained models, thus improving learning efficiency and achieving better
accuracy [46].

In this experiment, the training parameters of MobileNet were downloaded from
ImageNet for the detection of surface defects in fresh-cut cauliflower. The first few layers of
the deep learning model learn the most common patterns of the image, which are relatively
easy to migrate. As the convolutional layers in the CNN become deeper and deeper, the
content learned becomes more and more specific, the learned parameters may not be fully
applicable to the detection of fresh-cut cauliflower surface defects, and negative migration
may even occur. Therefore checking if there is negative migration and how to avoid it is
the problem to be solved.

To transfer the pre-trained MobileNet model to the task of fresh-cut cauliflower surface
defect detection and classification, the pre-trained MobileNet model was reconstructed
in the structure of a “feature extraction module + classifier module”, as shown in Table 4.
From layer 1 to 86, the feature extraction module was used for feature extraction such
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as color and texture. From layers 87 to 89, the classifier module was used for feature
dimensionality reduction and outputting category labels.

Table 4. Structure of the MobileNet model.

Module Layer Name Output Shape

Feature Extraction

1 Input Layer (None, 224, 224, 3)
2 Convolution (None, 112, 112, 32)
3 Batch Normalization (None, 112, 112, 32)
4 ReLU (None, 112, 112, 32)

5~10 Depth-wise Separable
Convolution_1 (None, 112, 112, 64)

11 ZeroPadding2D (None, 113, 113, 64)

12~17 Depth-wise Separable
Convolution_2 (None, 56, 56, 128)

18~23 Depth-wise Separable
Convolution_3 (None, 56, 56, 128)

24 ZeroPadding2D (None, 57, 57, 128)

25~30 Depth-wise Separable
Convolution_4 (None, 28, 28, 256)

31~36 Depth-wise Separable
Convolution_5 (None, 28, 28, 256)

37 ZeroPadding2D (None, 29, 29, 256)

38~43 Depth-wise Separable
Convolution_6 (None, 14, 14, 512)

44~49 Depth-wise Separable
Convolution_7 (None, 14, 14, 512)

50~55 Depth-wise Separable
Convolution_8 (None, 14, 14, 512)

56~61 Depth-wise Separable
Convolution_9 (None, 14, 14, 512)

62~67 Depth-wise Separable
Convolution_10 (None, 14, 14, 512)

68~73 Depth-wise Separable
Convolution_11 (None, 14, 14, 512)

74 ZeroPadding2D (None, 15, 15, 512)

75~80 Depth-wise Separable
Convolution_12 (None, 7, 7, 1024)

81~86 Depth-wise Separable
Convolution_13 (None, 7, 7, 1024)

Classifier
87 GlobalAveragePooling2D (None, 1024)
88 Fully Connected Layer (None, 1, 1, 1024)
89 Softmax (None, 4)

To select the optimal frozen layer, different numbers of depth-wise separable con-
volution modules were frozen sequentially according to the structure of MobileNet, i.e.,
different numbers of layers were selected to be frozen. For example, when FL = 10, only
1~10 layers were frozen, and when the frozen layer = 86, the whole feature extraction
module was frozen. The model evaluation metrics are shown in Table 5.

According to Table 5, the best performance of the model was achieved when the
frozen layer = 80. The results indicate that the original parameters directly migrated
from the MobileNet model cannot be directly used for the detection and recognition of
fresh-cut cauliflower surface defects, and the existing fresh-cut cauliflower image samples
must be used to further adjust the original parameters of MobileNet to obtain the best
recognition results.
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Table 5. Test results correspond to different frozen layers.

Frozen Layer Training Parameters Time (secs) Loss Accuracy (%) Precision (%) Recall (%) F1 Score (%)

0 3,211,076 1,689 0.1239 98.44 98.39 98.28 98.34
4 3,210,148 1,632 0.0411 98.96 98.93 98.81 98.87

10 3,207,620 1,381 0.0869 98.44 98.34 98.38 98.36
17 3,198,468 1,224 0.0597 98.85 98.83 98.70 98.76
23 3,180,420 1,000 0.0306 98.75 98.63 98.66 98.65
29 3,145,732 1,021 0.0619 98.54 98.56 98.48 98.52
36 3,076,868 979 0.0394 98.65 98.62 98.61 98.62
43 2,941,956 930 0.0252 99.06 99.06 99.05 99.06
49 2,673,156 909 0.0514 99.06 99.00 99.01 99.00
55 2,404,356 954 0.0491 98.96 98.93 98.82 98.88
61 2,135,556 894 0.0849 97.60 97.84 97.37 97.60
67 1,866,756 896 0.0976 98.54 98.62 98.38 98.51
73 1,597,956 849 0.0592 99.17 99.28 99.11 99.20
80 1,065,988 885 0.0330 99.27 99.26 99.21 99.24
86 4,100 806 0.0465 98.33 98.49 98.27 98.38

In this experiment, a CNN combined with transfer learning was used to detect surface
defects of fresh-cut cauliflower, and MobileNet was used for training 20 combinations of
the hyper-parameter to acquire the best training results, and the best number of the frozen
layer was determined by freezing different layers of convolutional layers in the model. In
this experiment, the model obtained the best results when the dropout was 0.5, the learning
rate was 0.001, and the frozen layer was 80.

4.5. Comparative Analysis of Models

To attest to the prominent performance of MobileNet, after optimizations, we ap-
plied MobileNet and the other three models (VGG19, InceptionV3, and NASNetMobile) in
fresh-cut cauliflower surface defect detection. These three models have successfully demon-
strated their excellent performance through competition and application by researchers, so
they were used as comparison experiments in this research. Comparison results are shown
in Table 6. MobileNet had a significant advantage in test set loss, accuracy, and F1 score
values. We can notice from the comparison that MobileNet was more appropriate for the
detection of fresh-cut cauliflower surface defects.

Table 6. Performance comparison of different classification models.

Model Memory (MB) Loss Accuracy (%) Precision (%) Recall (%) F1 Score (%)

VGG19 549 0.2056 93.54 93.65 93.25 93.45
InceptionV3 92 0.2393 92.29 92.18 92.17 92.17

NASNetMobile 23 0.2060 94.48 94.88 94.34 94.61
MobileNet 16 0.0330 99.27 99.26 99.21 99.24

A confusion matrix is a visualization tool that shows the results of its predictions for
a classification task, especially for supervised learning, and in unsupervised learning is
generally called a matching matrix. It uses percentages to summarize the ratio of correct and
incorrect predictions and breaks them down by each category. The confusion matrix shows
which part of the classification model makes errors when making predictions, allowing
us to know not only the errors made by the classification model but, more importantly,
the type of errors that occurred. The confusion matrices of the four models are shown
in Figure 9.

It can be seen from Figure 9 that diseased cauliflower was the most susceptible to
error and was misclassified as other categories in VGG19, InceptionV3, and NASNetMobile.
Because the color characteristics are not obvious in some samples of diseased cauliflower,
they caused misidentification. The improved MobileNet model achieved great classification
performance in this experiment, as well as good feature extraction capability.



Foods 2022, 11, 2915 11 of 15

Foods 2022, 11, 2915 12 of 17 
 

 

Table 6. Performance comparison of different classification models. 

Model Memory (MB)  Loss Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

VGG19 549 0.2056 93.54 93.65 93.25 93.45 
InceptionV3 92 0.2393 92.29 92.18 92.17 92.17 

NASNetMobile 23 0.2060 94.48 94.88 94.34 94.61 
MobileNet 16 0.0330 99.27 99.26 99.21 99.24 

A confusion matrix is a visualization tool that shows the results of its predictions for 
a classification task, especially for supervised learning, and in unsupervised learning is 
generally called a matching matrix. It uses percentages to summarize the ratio of correct 
and incorrect predictions and breaks them down by each category. The confusion matrix 
shows which part of the classification model makes errors when making predictions, 
allowing us to know not only the errors made by the classification model but, more 
importantly, the type of errors that occurred. The confusion matrices of the four models 
are shown in Figure 9. 

  

(a) (b) 

  

(c) (d) 

Figure 9. Confusion matrices of four models: (a) VGG19; (b) InceptionV3; (c) NASNetMobile; (d) 
MobileNet. Correct classification is represented by the saturated cells on the diagonal. Off-diagonal 
cells indicate incorrect classification. Each cell displays the percentage of total classifications. 

Figure 9. Confusion matrices of four models: (a) VGG19; (b) InceptionV3; (c) NASNetMobile;
(d) MobileNet. Correct classification is represented by the saturated cells on the diagonal. Off-
diagonal cells indicate incorrect classification. Each cell displays the percentage of total classifications.

4.6. Visualization of CNN

Deep learning is often referred to as a “black box”, where the inner algorithm cannot be
observed, but the representation learned by the CNN can be visualized [47]. Convolutional
layer feature visualization can help explain how the CNN transforms the input and shows
the features learned by the convolutional layers to provide more insight into the process of
the CNN analysis of fresh-cut cauliflower surface defect features. During the training stage,
we presented some visualization results to obtain a better explanation of how the model
works. Feature maps of fresh-cut cauliflower are shown in Figure 10.

In Figure 10, we show the feature maps of eight different depths of the CNN. In
Figure 10a, the feature map is closer to the input image, and as the number of layers
increases, the feature map is closer to the output of the model, which becomes more and
more abstract and not humanly interpretable.

Deep neural networks can effectively act as an information distillation pipeline (IDP),
inputting the original data and repeatedly transforming it to filter out irrelevant information
and amplifying and refining the useful information. From the above results, it can be
seen that as the layers of the convolutional neural network deepen, the characteristics
extracted by the convolutional layer become more and more abstract, with less and less
visual information about the original fresh-cut cauliflower images and more and more
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information about the target category. Therefore, the proposed method in this paper can
effectively obtain the surface information of fresh-cut cauliflower.
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5. Discussion

In this experiment, the CNN combined with transfer learning was used for detecting
surface defects of fresh-cut cauliflower. Twenty combinations of hyper-parameters were
used to determine the best hyper-parameters for model training, and then different layers
of the CNN were frozen to determine the best number of frozen layers with the help of
the transfer learning method. The experimental results showed that the model achieved
the best results in the test when the learning rate was 0.001, the dropout was 0.5, and the
number of frozen layers was 80.

In the MobileNet network applied to the quality detection of agricultural products,
Ashwinkumar S et al. proposed a model for the identification of plant leaf diseases named
OMNCNN. This model operated in different stages, where the MobileNet model was
used as the base model in the feature extraction stage. Experimental results showed that
OMNCNN achieved excellent performance, with the F1 score reaching 0.985 [48]. To
implement plant disease leaf detection on cell phones, Liu Yang et al. performed transfer
learning on two lightweight CNNs, MobileNet and InceptionV3, to obtain two crop disease
classification models, and ported them to Android cell phones, respectively. Although
the overall recognition accuracy of InceptionV3 was slightly higher on the test set, the
recognition balance and model size of MobileNet was more advantageous. When both
models were ported to the mobile phone side, MobileNet occupied less memory and
recognized images faster, indicating that MobileNet is more suitable for plant disease
recognition applications on the cell phone side [49]. Aditya Rajbongshi et al. proposed
a method for detecting rose diseases with MobileNet. They performed a comparative
analysis by using transfer learning and not using transfer learning. By comparison, the
MobileNetV1 model with transfer learning achieved better experimental results, reaching a
95.63% accuracy rate [50].
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The results of the above research show that it is feasible to use MobileNet for fresh-cut
cauliflower surface defect detection. A CNN has the advantage of a strong self-learning
capability in image processing; in this respect, it is fundamentally different from traditional
machine learning. A CNN obtains hierarchical feature representation by abstracting and
analyzing the original input data and automatically learning layer-by-layer transformation,
and finally obtains quantities of data features, and this method is more conducive to
classification as well as feature visualization. For the future commercialization and market
development of fresh-cut cauliflower, combining CNN with transfer learning may be a
solution for the automatic detection and classification of fresh-cut cauliflower surface
defects, which can improve detection efficiency and reduce production costs.

6. Conclusions

This research proposed a fresh-cut cauliflower surface defect recognition model to
achieve the automatic recognition of fresh-cut cauliflower in quality inspection work.
Model building was based on a CNN and transfer learning, and the model optimization
was achieved by selecting the optimal combination of training hyper-parameters, and by
adjusting the different number of frozen layers; the parameters downloaded from ImageNet
were optimally integrated with the parameters trained by our experiment. Finally, we
compared the improved MobileNet with VGG19, InceptionV3, and NASNetMobile, and
the conclusions we have drawn are:

1. By comparing 20 combinations of dropout and learning rates, we found that using a
suitable combination of hyper-parameters can improve the model’s generalization
performance and accuracy while ensuring training stability. Therefore, the optimal
combination of hyper-parameters (dropout = 0.5, learning rate = 0.001) could obtain
the highest test accuracy of 98.85% and F1 score of 98.87%.

2. The MobileNet model used the transfer learning method by freezing the different
numbers of CNN layers, and when the number of frozen layers was 80, the accuracy
improved by 0.42%, the F1 score improved by 0.37%, and the model loss value reduced
by 0.008.

3. The improved MobileNet model was compared with VGG19, InceptionV3, and NAS-
NetMobile on the fresh-cut cauliflower test set. By comparing the test results, the
improved MobileNet model has the best performance. Therefore, MobileNet was
more suitable for fresh-cut cauliflower surface defect detection.

For this research, we improved the accuracy and F1 score of the model by adjusting
only the training hyper-parameters and combining ImageNet with our trained parameters,
but the variety of datasets tested was small, so limitations still exist. In future research,
we have a schedule to develop a more comprehensive dataset of fresh-cut cauliflower
surface defects and build a more streamlined model by minimizing the network parameters
while maintaining a high accuracy rate. In addition, we plan to deploy the model to
mobile devices while maintaining its stability and accuracy, allowing this model to be more
widely used so that it is more conducive to the industrialization and commercialization of
fresh-cut cauliflower.

Author Contributions: Conceptualization, Y.L.; methodology, Y.L.; data curation, Y.L. and M.Z.;
writing—original draft preparation, Y.L.; writing—review and editing, Y.L. and K.W.; supervision,
J.X. and Z.L.; project administration, J.X. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, Grant/Award
Number: 31801632.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.



Foods 2022, 11, 2915 14 of 15

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Blasco, J.; Aleixos, N.; Moltó, E. Computer Vision Detection of Peel Defects in Citrus by Means of a Region Oriented Segmentation

Algorithm. J. Food Eng. 2007, 81, 535–543. [CrossRef]
2. Li, J.; Liao, G.; Jin, J.; Yu, X. Method of potato external defects detection based on fast gray intercept threshold segmentation

algorithm and ten-color model. Trans. Chin. Soc. Agric. Eng. 2010, 26, 236–242. [CrossRef]
3. Zhao, J.; Peng, Y.; Sagar, D.; Zhang, L. On-line Detection of Apple Surface Defect Based on Image Processing Method. Trans. Chin.

Soc. Agric. Mach. 2013, 44, 260–263. [CrossRef]
4. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef]
5. Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
6. Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep Learning for Computer Vision: A Brief Review. Comput.

Intell. Neurosci. 2018, 2018. [CrossRef]
7. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, L.; Wang, G.; et al. Recent Advances in

Convolutional Neural Networks. Pattern Recognit. 2018, 77, 354–377. [CrossRef]
8. Deng, L. Deep Learning: Methods and Applications. Found. Trends®Signal Process. 2014, 7, 197–387. [CrossRef]
9. Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote

Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [CrossRef]
10. Wason, R. Deep Learning: Evolution and Expansion. Cogn. Syst. Res. 2018, 52, 701–708. [CrossRef]
11. Naik, S.; Patel, B. Machine Vision Based Fruit Classification and Grading—A Review. Int. J. Comput. Appl. 2017, 170, 22–34. [CrossRef]
12. Hossain, M.S.; Al-Hammadi, M.; Muhammad, G. Automatic Fruit Classification Using Deep Learning for Industrial Applications.

IEEE Trans. Ind. Inform. 2019, 15, 1027–1034. [CrossRef]
13. Edna, C.T.; Li, Y.; Sam, N.; Liu, Y. A Comparative Study of Fine-Tuning Deep Learning Models for Plant Disease Identification.

Comput. Electron. Agric. 2019, 161, 272–279. [CrossRef]
14. Lu, J.; Tan, L.; Jiang, H. Review on Convolutional Neural Network (CNN) Applied to Plant Leaf Disease Classification. Agriculture

2021, 11, 707. [CrossRef]
15. Chen, J.; Chen, J.; Zhang, D.; Sun, Y.; Nanehkaran, Y.A. Using Deep Transfer Learning for Image-Based Plant Disease Identification.

Comput. Electron. Agric. 2020, 173, 105393. [CrossRef]
16. Da Costa, A.Z.; Figueroa, H.E.H.; Fracarolli, J.A. Computer Vision Based Detection of External Defects on Tomatoes Using Deep

Learning. Biosyst. Eng. 2020, 190, 131–144. [CrossRef]
17. Du, Z.; Zeng, X.; Li, X.; Ding, X.; Cao, J.; Jiang, W. Recent Advances in Imaging Techniques for Bruise Detection in Fruits and

Vegetables. Trends Food Sci. Technol. 2020, 99, 133–141. [CrossRef]
18. Fan, S.; Li, J.; Zhang, Y.; Tian, X.; Wang, Q.; He, X.; Zhang, C.; Huang, W. On Line Detection of Defective Apples Using Computer

Vision System Combined with Deep Learning Methods. J. Food Eng. 2020, 286, 110102. [CrossRef]
19. Pacheco, W.D.N.; Lopez, F.R.J. Tomato Classification According to Organoleptic Maturity (Coloration) Using Machine Learning

Algorithms K-NN, MLP, and K-Means Clustering. In Proceedings of the 2019 XXII Symposium on Image, Signal Processing and
Artificial Vision (STSIVA), Bucaramanga, Colombia, 24–26 April 2019.

20. Wang, T.; Zhao, Y.; Sun, Y.; Yang, R.; Han, Z.; Li, J. Recognition Approach Based on Data-balanced Faster R-CNN for Winter
Jujube with Different Levels of Maturity. Trans. Chin. Soc. Agric. Mach. 2020, 51, 457–463+492. [CrossRef]

21. Behera, S.K.; Rath, A.K.; Sethy, P.K. Maturity Status Classification of Papaya Fruits Based on Machine Learning and Transfer
Learning Approach. Inf. Process. Agric. 2021, 8, 244–250. [CrossRef]

22. Geng, L.; Xu, W.; Zhang, F.; Xiao, Z.; Liu, Y. Dried Jujube Classification Based on a Double Branch Deep Fusion Convolution
Neural Network. Food Sci. Technol. Res. 2018, 24, 1007–1015. [CrossRef]

23. Cao, J.; Sun, T.; Zhang, W.; Zhong, M.; Huang, B.; Zhou, G.; Chai, X. An Automated Zizania Quality Grading Method Based on
Deep Classification Model. Comput. Electron. Agric. 2021, 183, 106004. [CrossRef]

24. Bhargava, A.; Bansal, A. Classification and Grading of Multiple Varieties of Apple Fruit. Food Anal. Methods 2021, 14, 1359–1368. [CrossRef]
25. Zhao, X.; Li, K.; Li, Y.; Ma, J.; Zhang, L. Identification Method of Vegetable Diseases Based on Transfer Learning and Attention

Mechanism. Comput. Electron. Agric. 2022, 193, 106703. [CrossRef]
26. Zhao, G.; Quan, L.; Li, H.; Feng, H.; Li, S.; Zhang, S.; Liu, R. Real-Time Recognition System of Soybean Seed Full-Surface Defects

Based on Deep Learning. Comput. Electron. Agric. 2021, 187, 106230. [CrossRef]
27. Long, J.; Zhao, C.; Lin, S.; Guo, W.; Wen, C.; Zhang, Y. Segmentation method of the tomato fruits with different maturities under

greenhouse environment based on improved Mask R-CNN. Trans. Chin. Soc. Agric. Eng. 2021, 37, 100–108. [CrossRef]
28. Lu, Z.; Zhao, M.; Luo, J.; Wang, G.; Wang, D. Design of a Winter-Jujube Grading Robot Based on Machine Vision. Comput. Electron.

Agric. 2021, 186, 106170. [CrossRef]
29. Ying, X. An Overview of Overfitting and Its Solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [CrossRef]
30. Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A Survey of Transfer Learning. J. Big Data 2016, 3, 9. [CrossRef]
31. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale. In Proceedings of the Image Recognition, IEEE

Conference on Learning Representations, San Diego, CA, USA, 10 April 2015.

http://doi.org/10.1016/j.jfoodeng.2006.12.007
http://doi.org/10.3969/j.issn.1002-6819.2010.10.040
http://doi.org/10.6041/j.issn.1000-1298.2013.S1.046
http://doi.org/10.1038/nature14539
http://doi.org/10.1016/j.neunet.2014.09.003
http://doi.org/10.1155/2018/7068349
http://doi.org/10.1016/j.patcog.2017.10.013
http://doi.org/10.1561/2000000039
http://doi.org/10.1109/LGRS.2017.2681128
http://doi.org/10.1016/j.cogsys.2018.08.023
http://doi.org/10.5120/ijca2017914937
http://doi.org/10.1109/TII.2018.2875149
http://doi.org/10.1016/j.compag.2018.03.032
http://doi.org/10.3390/agriculture11080707
http://doi.org/10.1016/j.compag.2020.105393
http://doi.org/10.1016/j.biosystemseng.2019.12.003
http://doi.org/10.1016/j.tifs.2020.02.024
http://doi.org/10.1016/j.jfoodeng.2020.110102
http://doi.org/10.6041/j.issn.1000-1298.2020.S1.054
http://doi.org/10.1016/j.inpa.2020.05.003
http://doi.org/10.3136/fstr.24.1007
http://doi.org/10.1016/j.compag.2021.106004
http://doi.org/10.1007/s12161-021-01970-0
http://doi.org/10.1016/j.compag.2022.106703
http://doi.org/10.1016/j.compag.2021.106230
http://doi.org/10.11975/j.issn.1002-6819.2021.18.012
http://doi.org/10.1016/j.compag.2021.106170
http://doi.org/10.1088/1742-6596/1168/2/022022
http://doi.org/10.1186/s40537-016-0043-6


Foods 2022, 11, 2915 15 of 15

32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016.

33. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

34. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1
July 2016.

35. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

36. Santurkar, S.; Tsipras, D.; Ilyas, A.; Ma, A. How Does Batch Normalization Help Optimization? arXiv 2018, arXiv:1805.11604.
37. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks

from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
38. Gao, Z.; Luo, Z.; Zhang, W.; Lv, Z.; Xu, Y. Deep Learning Application in Plant Stress Imaging: A Review. AgriEngineering 2020,

2, 29. [CrossRef]
39. Hossin, M.; Sulaiman, M.N. A Review on Evaluation Metrics for Data Classification Evaluations. Int. J. Data Min. Knowl. Manag.

Process 2015, 5, 1–11. [CrossRef]
40. Young, S.R.; Rose, D.C.; Karnowski, T.P.; Lim, S.-H.; Patton, R.M. Optimizing Deep Learning Hyper-Parameters through an

Evolutionary Algorithm. In Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments,
Austin, TX, USA, 15 November 2015.
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