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Background: Emerging data suggest that erythropoietin (EPO) promotes neural
plasticity and that iron homeostasis is needed to maintain normal physiological brain
function. Cognitive functioning could therefore be influenced by endogenous EPO levels
and disturbances in iron status.

Objective: To determine whether endogenous EPO levels and disturbances in iron
status are associated with alterations in cognitive functioning in the general population.

Materials and Methods: Community-dwelling individuals from the Prevention of Renal
and Vascular End-Stage Disease (PREVEND) study, a general population-based cohort
in Groningen, Netherlands, were surveyed between 2003 and 2006. Additionally,
endogenous EPO levels and iron status, consisting of serum iron, transferrin, ferritin,
and transferrin saturation were analyzed. Cognitive function was assessed by scores on
the Ruff Figural Fluency Test (RFFT), as a reflection of executive function, and the Visual
Association Test (VAT), as a reflection of associative memory.

Results: Among 851 participants (57% males; mean age 60 ± 13 years), higher
endogenous EPO levels were independently associated with an improved cognitive
function, reflected by RFFT scores (ß = 0.09, P = 0.008). In multivariable backward linear
regression analysis, EPO levels were among the most important modifiable determinants
of RFFT scores (ß = 0.09, P = 0.002), but not of VAT scores. Of the iron status
parameters, only serum ferritin levels were inversely associated with cognitive function,
reflected by VAT scores, in multivariable logistic regression analysis (odds ratio, 0.77;
95% confidence interval 0.63–0.95; P = 0.02 for high performance on VAT, i.e., ≥11
points). No association between iron status parameters and RFFT scores was identified.

Conclusion: The findings suggest that endogenous EPO levels and serum ferritin levels
are associated with specific cognitive functioning tests in the general population. Higher
EPO levels are associated with better RFFT scores, implying better executive function.
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Serum ferritin levels, but not other iron status parameters, were inversely associated with
high performance on the VAT score, implying a reduced ability to create new memories
and recall recent past. Further research is warranted to unravel underlying mechanisms
and possible benefits of therapeutic interventions.

Keywords: erythropoietin (EPO), iron, cognitive functioning, general population, visual association test, ruff figural
fluency test

INTRODUCTION

Erythropoietin (EPO) and iron are the primary regulators of red
blood cell production. Besides being the fuel for erythropoiesis,
EPO, and iron are known to express a myriad of non-
hematopoietic effects (Nekoui and Blaise, 2017). An important
non-hematopoietic effect concerns the maintenance of a normal
physiological brain function (Ehrenreich et al., 2004; Ji et al.,
2017). As a consequence, disturbances in EPO levels and iron
status might negatively affect cognitive functioning, which is
pivotal to focus, process information, and adapt or maintain a
healthy lifestyle (Gill et al., 2020).

EPO receptors (EPOR) are prominently expressed in the
brain in glial cells, neurons, and endothelial cells (Konishi
et al., 1993; Digicaylioglu et al., 1995; Marti et al., 1996). EPO
can pass the blood-brain barrier to exert its effect on the
EPOR in the brain (Brines et al., 2000; Ehrenreich et al., 2004;
Xenocostas et al., 2005). Moreover, in experimental models,
astrocytes have been shown to produce and secrete EPO (Masuda
et al., 1994). EPO promotes neural plasticity and has anti-
inflammatory, anti-apoptotic, anti-oxidative, angiogenic, and
stemcell-modulatory effects (Sirén et al., 2001; Gorio et al.,
2002; Springborg et al., 2002; Buemi et al., 2003; Villa et al.,
2003; Lykissas et al., 2007; Sargin et al., 2010; Girolamo et al.,
2014; Nekoui et al., 2015). Therefore, EPO appears to have
neuroprotective and neurotrophic properties, which in turn
might hypothetically affect cognitive functioning (Wakhloo et al.,
2020). Various studies focusing on different cerebral disease
models support such a hypothesis, with some authors reporting
that administration of recombinant human EPO (rhEPO) has a
positive effect on cognitive functioning (Ehrenreich et al., 2008;
Miskowiak et al., 2008, 2012, 2016; Sargin et al., 2010; Nekoui and
Blaise, 2017).

Similarly, several studies have shown a relationship between
serum iron levels and cognitive functioning (Miskowiak et al.,
2012; Ji et al., 2017). Iron is a crucial part of many proteins
including heme, iron sulfur clusters, and other functional
groups (Schiepers et al., 2010). These proteins are essential
for the formation of myelin surrounding axons and adenosine
triphosphate in mitochondria, cell signaling, host defense, and
nucleic acid replication and repair (Todorich et al., 2009;
Mills et al., 2010; Evstatiev and Gasche, 2012). Iron is also
crucially involved in the synthesis of several neurotransmitters,
including tyrosine hydroxylase (dopamine and norepinephrine)
and tryptophan (serotonin) (Moos et al., 2007; Todorich et al.,
2009). As iron homeostasis is normally tightly regulated, iron
deficiency, and overload affect enzymatic and structural proteins.
Indeed, both iron deficiency and iron overload have been

implicated in impaired cognitive functioning (Casanova and
Araque, 2003; Miskowiak et al., 2012; Ji et al., 2017).

To date, the relationship between EPO levels and iron status
with cognitive functioning has only been assessed in experimental
models and relatively small sample size populations, often
involving specific patient populations, e.g., having mood
disorders (Beard et al., 1997; Milward et al., 1999; Weiskopf
et al., 2006) questioning the role of endogenous EPO levels and
iron status with cognitive functioning in the general population.
Hence, we aimed to assess in a large population-based cohort
the association between endogenous EPO levels and iron status
parameters with cognitive functioning as reflected by two
cognitive tests, i.e., the Ruff Figural Fluency Test (RFFT) and the
Visual Association Test (VAT).

MATERIALS AND METHODS

Study Design and Population
For this study, we used the PREVEND (Prevention of REnal and
Vascular ENd stage Disease) database, a general population-based
cohort study. In 1997 and 1998, all inhabitants from the city of
Groningen, between the age of 28–75 years (n = 85,421), were
sent a short questionnaire and a vial to collect a first-morning
void urine sample. 40,856 (48%) people responded. Individuals
with insulin-dependent Diabetes Mellitus and pregnant women
were excluded. Six thousand subjects with a urinary albumin
excretion ≥ 10 mg/L and 2,592 randomly selected subjects
(control group) with a urinary albumin excretion < 10 mg/L
completed the screening protocol and formed the PREVEND
cohort baseline (n = 8,592). We used the third survey of
PREVEND, which took place between 2003 and 2006. Of these
participants, multiple blood samples were collected in which,
among others, EPO levels and iron status parameters were
measured. Two tests reflecting certain cognitive domains (i.e.,
RFFT and VAT) were introduced during the same survey. For
current analysis, we included 851 patients with data available
on EPO levels, iron status, and both cognitive tests (as depicted
in Figure 1). The PREVEND study protocol was approved by
the institutional medical ethical review board of the University
Medical Center Groningen and was conducted in accordance
with the Helsinki declaration. All subjects provided written
informed consent.

Data Collection and Definitions
The procedures at each examination in the PREVEND study
have been described in detail previously (Hillege et al., 2001).
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FIGURE 1 | Flowchart of 851 PREVEND participants selected for final analysis.

In short, upon entry into the study, all participants completed
a questionnaire regarding demographics, current diagnoses,
medical history, smoking habits, alcohol consumption,
and medication use. Information on medication use was
combined with information from a pharmacy-dispensing
registry. Educational level was defined as low (primary
education or intermediate vocational education), middle
(higher secondary education), and high (higher vocational
education and university). Antihypertensives included diuretics,
β–blockers, calcium channel blockers, and renin-angiotensin
system inhibitors.

Cognitive Function Testing
Ruff Figural Fluency Test
The RFFT measures a subject’s ability to produce novel figures
utilizing five different dot configurations (Ruff et al., 1987).
Participants were instructed to produce as many unique designs
as possible using at least two of the dots in a 5-dot matrix. The
lowest score is 0 points, the highest and best score is 175 points.
The RFFT is a sensitive test for executive cognitive abilities such
as non-verbal fluency, planning strategies, task shifting, selective
attention, response evaluation, and response suppression, which
are necessary to coordinate this process (Mulder et al., 2006).
It has been shown to be sensitive to early changes in cognitive

function in young as well as middle-aged people (Foster et al.,
2005). A reduced ability to produce novel figures can indicate a
disability in executive function in general and has been linked
to processes in the frontal lobe, most prominently in the right
frontal lobe (Ruff et al., 1994; Mulder et al., 2006).

Visual Association Test
The VAT is a brief episodic memory test presenting six paired
pictures of two interacting objects where one has to name the
missing object on a cue card which has been shown before. One
point is given if the missing object is correctly identified. The
minimum score is 0 points; the maximum score is 12 points. The
test is used to detect anterograde amnesia and related syndromes,
usually associated with atrophy of the (medial-temporal areas of
the) limbic system. It is hypothesized that a low score on the VAT
is related to impaired ability in coding new information or, less
likely, in short-term memory (Lindeboom et al., 2002).

Measurements
Fresh fasting blood samples were collected in the morning
from all participants and stored at −80◦C. EPO was measured
using an immunoassay based on chemiluminescence (Immulite
EPO assay, DPC, Los Angeles, CA, United States). Serum
iron, ferritin, and transferrin were measured using colorimetrix
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assay, immunoassay, or immunoturbidimetric assay (Roche
Diagnostics, Mannheim, Germany), respectively. Transferrin
saturation (TSAT,%) was calculated as 100 × serum iron
(µmol/L)÷(25× transferrin[g/L]). A Coulter Counter STKS sum
was used to measure hemoglobin (g/dL) (Coulter Corporation,
Miami, FL, United States). Serum creatinine was measured
using an enzymatic method on a Roche Modular analyzer
(Roche Diagnostics). The Chronic Kidney Disease Epidemiology
Collaboration (CKD-EPI) formula was used to calculate the
estimated glomerular filtration rate (eGFR) (Levey et al., 2009).
Urinary albumin concentration was determined by nephelometry
(BN II, Dade Behring Diagnostica, Marburg, Germany). Urinary
albumin excretion (UAE) was calculated as the average UAE
in the two consecutive 24-h urine collections. Body mass
index (BMI) was calculated as the ratio of weight divided
by height squared (kg/m2). High-sensitivity C-reactive protein
(hs-CRP), cholesterol, high- density lipoprotein (HDL), and
low-density lipoprotein (LDL) were measured using routine
laboratory procedures.

Statistical Analysis
Data were analyzed using IBM SPSS, version 23.0 (SPSS, Chicago,
IL, United States) and R version 4.0.2 (Vienna, Austria). Baseline
characteristics were described as means with standard deviation
when normally distributed and medians with interquartile range
when distributions were skewed. Categorical variables were
reported using numbers (percentage). We described baseline
characteristics both for the total population and across quartiles
of EPO and ferritin levels. Differences between the quartiles
were calculated using analysis of variance (ANOVA), Kruskal-
Wallis test or χ2-test, as appropriate. In regression analysis,
we determined if serum EPO levels and iron status parameters
can be regarded as important determinants of cognitive capacity
domains measured by the RFFT and VAT. Univariable linear
regression analysis was performed of all included factors with
RFFT as the dependent variable. Subsequently, we performed
multivariable-adjusted models and multivariable backward linear
regression analysis (entry and exit level set at P < 0.2 and
P < 0.1, respectively). In all regression analyses, skewed
variables were naturally log-transformed. In the multivariable
model, we adjusted for age, sex, education, BMI, eGFR,
and urinary albumin excretion (model 1); for systolic blood
pressure, alcohol use, smoking, hemoglobin, hs-CRP, serum
HDL, and serum LDL levels (model 2); and for history of
a myocardial or cerebrovascular event, diabetes mellitus, and
the use of antihypertensives, and lipid lowering drugs (model
3). Due to the skewed distribution, the VAT scores were
dichotomized and divided at the median into high performance
(≥11 points) and low performance (≤10 points), in line with
previous investigations of the VAT score (Joosten et al., 2014).
The association of EPO levels and iron status parameters
were evaluated by logistic regression analysis in a similar
way. In multiple regression analyses, iron status parameters
were assessed separately due to multi-collinearity between the
iron status parameters. The contribution of EPO levels was
reported with ferritin levels as only iron status parameter in all
models. Statistical significance was considered as a two-tailed
p-value of <0.05.

RESULTS

Study Population
We included 851 participants (57% males) with a mean
age of 60.3 ± 13.0 years. Participants had a mean BMI of
27.1 ± 3.9 kg/m2 and an eGFR of 85.5 ± 19.5 ml/min/1.73m2.
A majority of the participants [412 (48%)] registered a low
educational level, whereas 226 (27%) and 213 (25%) had a middle
and high educational level, respectively. The median EPO level
in the total population was 7.8 (5.9–10.1) IU/L; median ferritin
concentration was 117 (58–197) µg/L; mean iron level was
16.3 ± 5.2 µmol/L; mean transferrin level was 2.5 ± 0.4 g/L; and
mean TSAT was 26.4 ± 9.2%. Further baseline demographics,
clinical characteristics, and laboratory parameters according to
quartiles of EPO and ferritin levels in the total population are
depicted in Tables 1, 2, respectively.

Ruff Figural Fluency Test and Visual
Association Test Scores in the Total
Population
Participant scored an average of 62 ± 25 points on the RFFT.
If compared to the norm score, 672 (79%) scored average on
the RFFT, 85 (10%) above average, 68 (8%) below average, and
26 (31%) participants had a deviant. Participants obtained a
median VAT score of 10 points (IQR = 8–11). Considering the
norm, 684 (80%) participants scored average on the VAT, 107
(12.6%) above average, 42 (5%) below average, and 18 (2%)
people had a deviant.

Erythropoietin, Iron Status, and Ruff
Figural Fluency Test Score
Across quartiles of serum EPO levels, we noticed a significant
inverse association with RFFT score. Individuals in the lowest
quartile of EPO levels had 63.9 ± 26.2 points, whereas
participants in the upper quartile of EPO scored 61.9 ± 25.7
points on the RFFT (P < 0.001). Similarly, we identified a
significant inverse association, even more pronounced, across
quartiles of ferritin levels. Participants within the lowest quartile
of ferritin obtained 67.5 ± 26.2 points, whereas participants in
the highest quartile of ferritin obtained 57.3± 23.2 points on the
RFFT (P < 0.001).

In multivariable linear regression analysis, EPO levels
were significantly associated with RFFT scores independent
of potential confounders (fully adjusted ß = 0.09, P = 0.008
as depicted in model 3; Table 3). None of the iron status
parameters, including serum ferritin, were significantly
associated with RFFT scores.

In multivariable linear backward regression analysis, EPO
levels were among the main determinants of RFFT (β = 0.09,
P = 0.002). In contrast, none of the iron status parameters was
significantly associated with RFFT (Table 4).

Erythropoietin, Iron Status, and Visual
Association Test
Across quartiles of EPO, we identified no significant
differences in VAT score (P = 0.79). In contrast, we
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TABLE 1 | Baseline characteristics of 851 community-dwelling subjects according to quartiles of EPO levels.

EPO quartiles

Overall Q1 Q2 Q3 Q4 p-value

N = 851 213 213 214 211

(range) (1.6–5.9) (5.9–7.8) (7.8–10.1) (10.2–99.4)

Cognitive tests

VAT 10 (8–11) 10 (8–11) 10 (8–11) 10 (8–11) 10 (8–11) 0.79

High performance on VAT (n,%) 297 (35%) 82 (38%) 69 (32%) 75 (35%) 71 (34%) 0.58

RFFT 62 ± 25 63.9 ± 26.2 61.7 ± 24.3 62.1 ± 25.5 61.9 ± 25.7 <0.001

Age 60.3 ± 13 57.5 ± 12.6 59.7 ± 12.9 60.7 ± 12.8 63.2 ± 13.1 <0.001

Male sex (n,%) 485 (57%) 112 (53%) 118 (55%) 132 (62%) 123 (58%) 0.26

Education 0.71

Low (n,%) 412 (48%) 103 (48%) 104 (49%) 105 (49%) 100 (47%)

Middle (n,%) 226 (27%) 50 (23%) 54 (25%) 63 (29%) 59 (28%)

High (n,%) 213 (25%) 60 (28%) 55 (26%) 46 (21%) 52 (25%)

Medication use

Antihypertensives (n,%) 254 (31%) 47 (22%) 57 (28%) 67 (32%) 83 (40%) 0.001

Lipid lowering (n,%) 141 (17%) 19 (9%) 37 (18%) 37 (18%) 48 (23%) 0.002

Iron suppletion (n,%) 2 (<1%) 0 (0%) 2 (1%) 0 (0%) 0 (0%) 0.11

Health behavior and medical history

BMI (kg/m2) 27.2 ± 3.7 26.3 ± 3.5 26.9 ± 3.8 27.1 ± 4.1 28 ± 4.1 <0.001

Systolic blood pressure (mmHg) 130 ± 19 125 ± 17 129 ± 18 130 ± 17 135 ± 21 <0.001

Alcohol use (n,%) 641 (76%) 175 (83%) 170 (81%) 152 (72%) 144 (68%) 0.001

Smoking (n,%) 164 (19%) 55 (26%) 39 (18%) 36 (17%) 34 (16%) 0.04

Cardiac eventa (n.%) 24 (3%) 4 (2%) 5 (2%) 6 (3%) 9 (4%) 0.48

Cerebrovascular eventb (n,%) 15 (2%) 2 (1%) 7 (3%) 3 (1%) 3 (1%) 0.26

Diabetes Mellitusc (n,%) 82 (10%) 18 (9%) 19 (9%) 16 (8%) 29 (14%) 0.13

Laboratory measurements

EPO (IU/L) 7.8 (5.9–10.1) 4.8 (4.1–5.4) 6.9 (6.4–7.3) 8.9 (8.3–9.3) 12.9 (11.4–15.7) –

Iron status

Ferritin (µg/L) 117 (58–197) 125 (77–213) 117 (70–197) 119.5 (58–204) 93 (32–178) 0.001

Iron (µmol/L) 16.3 ± 5.2 17.4 ± 4.9 16.9 ± 5.2 16.2 ± 4.8 14.7 ± 5.5 <0.001

Transferrin (g/L) 2.5 ± 0.4 2.5 ± 0.3 2.5 ± 0.4 2.5 ± 0.4 2.6 ± 0.5 0.05

Transferrin saturation (%) 26 ± 9 28 ± 9 28 ± 9 26 ± 8 23 ± 10 <0.001

Hemoglobin (g/dL) 13.9 ± 1.1 14.0 ± 1.1 14.0 ± 1.1 13.9 ± 1.1 13.4 ± 1.3 <0.001

MCV (fL) 90.1 ± 4.2 89.4 ± 3.8 90.2 ± 3.6 90.1 ± 4 90.7 ± 5.2 0.02

eGFR (ml/min/1.73m2) 86 ± 20 89 ± 19 87 ± 19 86 ± 19 81 ± 21 <0.001

Urinary albumin excretion (mg/24 h) 9.5 (6.6–20.8) 9.1 (6.6–15.2) 9.4 (6.5–17.8) 9.2 (6.4–23.3) 11 (7.1–28.3) 0.008

hs-CRP (mg/L) 1.3 (0.6–2.4) 1.2 (0.6–2.1) 1.2 (0.6–2.2) 1.2 (0.6–2.1) 1.5 (0.7–3.7) 0.001

Cholesterol (mmol/L) 5.4 ± 1.1 5.6 ± 1 5.4 ± 1.1 5.4 ± 1 5.2 ± 1.1 0.003

HDL (mmol/L) 1.4 ± 0.4 1.4 ± 0.4 1.4 ± 0.4 1.4 ± 0.4 1.4 ± 0.4 0.70

LDL (mmol/L) 1.1 ± 0.4 1.1 ± 0.4 1.1 ± 0.4 1 ± 0.3 1 ± 0.4 0.04

Triglycerides (mmol/L) 1.2 (0.9–1.7) 1.3 (1–1.8) 1.2 (0.9–1.7) 1.3 (0.9–1.6) 1.2 (0.9–1.7) 0.19

Data are expressed as mean ± standard deviation, median (interquartile range), or proportion n (%). Abbreviations: BMI, body mass index; eGFR, estimated
glomerular filtration rate; EPO, erythropoietin; hs-CRP, high-sensitivity C-reactive protein; HDL, high-density lipoproteins; LDL, low-density lipoproteins; MCV, mean
corpuscular volume; RFFT, Ruff Figural Fluency Test; VAT, Visual Association Test. aCardiac event included a history of myocardial infarction and ischemic heart disease,
bcerebrovascular event included a history of subarachnoid hemorrhage, intra-cerebral hemorrhage, other and unspecified intracranial hemorrhage, and occlusion and
stenosis of pre-cerebral or cerebral arteries, cnot-insulin dependent diabetes mellitus.

identified that the prevalence of high performance
scores (i.e., ≥11 points) was significantly different across
quartiles of ferritin levels. Of the participants within the
lowest quartile of ferritin, 46% had a high performance
score, whereas only 25% of the participants within the

upper quartile of ferritin had a high performance score
(P < 0.001).

In multivariable logistic regression analysis, EPO levels were
not significantly associated with a high performance on the
VAT. Of the iron status parameters, only serum ferritin was
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TABLE 2 | Baseline characteristics of 851 community-dwelling subjects according to quartiles of ferritin levels.

Ferritin quartiles

Overall Q1 Q2 Q3 Q4 P-value

N = 851 214 214 213 210

(range) (4.0–58.0) (59.0–117.0) (118.0–197.0) (198.0–1309.0)

Cognitive tests

VAT 10 (8–11) 10 (9.0–11) 10 (8–11) 10 (8–11) 9 (7–10) <0.001

High performance on VAT (n,%) 297 (35%) 99 (46%) 74 (35%) 72 (34%) 52 (25%) <0.001

RFFT 62 ± 25 67.5 ± 26.2 66.4 ± 25.2 58.4 ± 25.4 57.3 ± 23.2 <0.001

Age 60.3 ± 13 55.4 ± 13.3 59.4 ± 12.4 63.2 ± 12.3 63.2 ± 12.4 <0.001

Male sex (n,%) 485 (57%) 75 (35%) 118 (55%) 131 (62%) 131 (62%) <0.001

Education 0.21

Low (n,%) 412 (48%) 94 (44%) 103 (48%) 111 (52%) 104 (50%)

Middle (n,%) 226 (27%) 58 (27%) 54 (25%) 63 (30%) 51 (24%)

High (n,%) 213 (25%) 62 (29%) 57 (27%) 39 (18%) 55 (26%)

Medication use

Antihypertensives (n,%) 254 (31%) 39 (19%) 51 (25%) 76 (36%) 88 (43%) <0.001

Lipid lowering (n,%) 141 (17%) 15 (7%) 35 (17%) 43 (20%) 48 (24%) <0.001

Iron suppletion (n,%) 2 (<1%) 1 (<1%) 0 (0%) 1 (<1%) 0 (0%) 0.57

Health behavior and medical history

BMI (kg/m2) 27.1 ± 3.9 26.2 ± 4 26.6 ± 3.7 27.2 ± 3.7 28.5 ± 3.8 <0.001

Systolic blood pressure (mmHg) 130 ± 19 125 ± 18 127 ± 17 132 ± 20 135 ± 18 <0.001

Alcohol use (n,%) 641 (76%) 143 (67%) 170 (80%) 160 (76%) 168 (81%) 0.002

Smoking (n,%) 164 (19%) 50 (23%) 54 (25%) 35 (17%) 25 (12%) 0.001

Cardiac eventa (n.%) 24 (3%) 5 (2%) 8 (4%) 4 (2%) 7 (3%) 0.63

Cerebrovascular eventb (n,%) 15 (2%) 2 (1%) 3 (1%) 5 (2%) 5 (2%) 0.60

Diabetes Mellitusc (n,%) 82 (10%) 15 (7%) 12 (6%) 20 (10%) 35 (17%) <0.001

Laboratory measurements

EPO (IU/L) 7.8 (5.9–10.1) 8.6 (6.4–12.3) 7.4 (5.8–9.6) 7.5 (5.7–9.7) 7.7 (5.7–9.7) <0.001

Iron status

Ferritin (µg/L) 117 (58–197) 32.5 (22–45) 88 (75–101) 150 (131–173) 273 (230–355) –

Iron (µmol/L) 16.3 ± 5.2 14.9 ± 5.9 16.1 ± 4.5 16.6 ± 4.9 17.8 ± 5.1 <0.001

Transferrin (g/L) 2.5 ± 0.4 2.8 ± 0.4 2.5 ± 0.3 2.4 ± 0.3 2.4 ± 0.3 <0.001

Transferrin saturation (%) 26 ± 9 22 ± 9 26 ± 8 28 ± 9 30 ± 10 <0.001

Hemoglobin (g/dL) 13.9 ± 1.1 13.2 ± 1.1 13.9 ± 1.1 13.9 ± 1.1 14.2 ± 1.1 <0.001

MCV (fL) 90.1 ± 4.2 89.3 ± 4.4 90.4 ± 4.0 90.0 ± 4.1 90.8 ± 4.2 0.003

eGFR (ml/min/1.73m2) 86 ± 20 90 ± 19 86 ± 20 82 ± 19 83 ± 20 <0.001

Urinary albumin excretion (mg/24 h) 9.5 (6.6–20.8) 8.8 (6.2–17.6) 8.7 (6.6–15.2) 9.5 (6.5–20.6) 12.2 (7.4–28.3) <0.001

hs-CRP (mg/L) 1.3 (0.6–2.4) 1.2 (0.6–2.6) 1.2 (0.6–2.3) 1.25 (0.61–2.12) 1.4 (0.7–3.2) 0.17

Cholesterol (mmol/L) 5.4 ± 1.1 5.4 ± 1.2 5.5 ± 1.1 5.4 ± 1.0 5.4 ± 1.0 0.68

HDL (mmol/L) 1.4 ± 0.4 1.5 ± 0.4 1.5 ± 0.4 1.3 ± 0.3 1.3 ± 0.3 <0.001

LDL (mmol/L) 1.1 ± 0.4 1.0 ± 0.4 1.1 ± 0.4 1.1 ± 0.4 1.1 ± 0.4 <0.001

Triglycerides (mmol/L) 1.2 (0.9–1.7) 1.1 (0.8–1.5) 1.2 (0.9–1.5) 1.3 (1.0–1.7) 1.4 (1.1–1.9) <0.001

Data are expressed as mean ± standard deviation, median (interquartile range) or proportion n (%). Abbreviations: BMI, body mass index; eGFR, estimated glomerular
filtration rate; EPO, erythropoietin; hs-CRP, high-sensitivity C-reactive protein; HDL, high-density lipoproteins; LDL, low-density lipoproteins; MCV, mean corpuscular
volume; RFFT, Ruff Figural Fluency Test; VAT, Visual Association Test. aCardiac event included a history of myocardial infarction and ischemic heart disease,
bcerebrovascular event included a history of subarachnoid hemorrhage, intra-cerebral hemorrhage, other and unspecified intracranial hemorrhage, and occlusion and
stenosis of pre-cerebral or cerebral arteries, cnot-insulin dependent diabetes mellitus.

significantly inversely associated with a high performance on the
VAT (fully adjusted OR, 0.77; 95% CI 0.63 – 0.95; P = 0.02 as
depicted in model 3, Table 5). In contrast, serum iron, transferrin,
and TSAT were not associated with a high performance on the
VAT score (Table 5).

DISCUSSION

In this study, we show that in the general population higher
endogenous EPO levels are associated with better executive
function, reflected by RFFT scores, whereas higher ferritin levels,
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TABLE 3 | Univariate and backward linear regression analyses of potential
determinants of RFFT scores.

Univariate analysis Backward analysis

Std. β P-value Std. β P-value

Age −0.54 <0.001 −0.44 <0.001

Male sex 0.02 0.54

Education

Low −0.35 <0.001 Ref.

Middle 0.08 0.02 0.14 <0.001

High 0.32 <0.001 0.26 <0.001

Medication use

Antihypertensives −0.30 <0.001 −0.05 0.13

Lipid lowering −0.15 <0.001

Iron suppletion −0.24 0.49

Health behavior and medical history

BMI (kg/m2) −0.24 <0.001 −0.05 0.09

Systolic blood pressure (mmHg) −0.28 <0.001

Alcohol use (n,%) 0.25 <0.001 0.11 <0.001

Smoking (n,%) −0.03 0.42

Cardiac event (n,%) −0.11 0.001

Cerebrovascular event (n,%) −0.05 0.12

Diabetes Mellitus (n,%) −0.19 <0.001

Laboratory measurements

EPO (IU/L)a −0.03 0.45 0.09 0.002

Iron status

Ferritin (µg/L) −0.18 <0.001

Iron (µmol/L) −0.01 0.67

Transferrin (g/L) 0.07 0.05

Transferrin saturation (%) −0.04 0.30

Hemoglobin (mmol/L) −0.008 0.81

MCV (fL) −0.006 0.86

eGFR (ml/min/1.73m2) 0.41 <0.001

Urinary albumin excretion
(mg/24 h)

−0.22 <0.001

hs-CRP (mg/L) −0.23 <0.001 −0.05 0.15

Cholesterol (mmol/L) 0.05 0.18 0.05 0.09

HDL (mmol/L) 0.15 <0.001 0.05 0.11

LDL (mmol/L) −0.09 0.01

Triglycerides (mmol/L) −0.02 0.67

Abbreviations: BMI, body mass index; eGFR, estimated glomerular filtration rate;
EPO, erythropoietin; hs-CRP, high-sensitivity C-reactive protein; HDL, high-density
lipoproteins; LDL, low-density lipoproteins; MCV, mean corpuscular volume; Std.
β, Standardized beta; RFFT, Ruff Figural Fluency Test; Ref., reference category.
aAdjusted for only ferritin as iron status parameter.

but not other iron status parameters, are associated with a lower
VAT score, reflecting associative memory. To the best of our
knowledge, this is the first study to show associations between
serum EPO and ferritin levels and specific domains of cognitive
functioning in the general population.

It has been suggested that EPO exerts a protective effect
on cognitive functioning due to its neuroprotective and
neurotrophic potential (Sirén et al., 2001; Gorio et al., 2002;
Springborg et al., 2002; Buemi et al., 2003; Villa et al., 2003;
Lykissas et al., 2007; Sargin et al., 2010; Girolamo et al., 2014;
Nekoui et al., 2015). The latter has mainly been concluded

based on studies in which exogenous EPO was administered
(Ehrenreich et al., 2008; Nekoui and Blaise, 2017). Specifically,
these studies showed an increase in cognitive function test scores.
Here, we demonstrate that higher endogenous EPO levels are
associated with better RFFT scores, reflecting improved executive
function with improved capabilities such as non-verbal fluency,
planning strategies, task shifting, selective attention, response
evaluation, and response suppression, which are necessary to
coordinate this process (Mulder et al., 2006). This is in line
with the hypothesis based on earlier findings of EPO and EPOR
expression in (mammalian) brain areas related to executive
functioning, and with studies by Ehrenreich et al. and Miskowiak
et al. in which exogenous EPO increased several of these (or
related) executive functions (Digicaylioglu et al., 1995; Marti
et al., 1996; Ehrenreich et al., 2007a,b; Miskowiak et al., 2008,
2014; Nowrangi et al., 2014). Importantly, the effect of high
endogenous EPO levels on RFFT scores seems to be independent
of the effect of EPO on hematopoiesis, as adjustment for
hemoglobin levels did not alter the association. The latter
suggests a direct neurobiological effect of EPO on cognition, most
likely because of its neuroprotective and neurotrophic potential
as an underlying mechanism, which is in line with the long-term
impact of EPO on cognition in several other studies (Ehrenreich
et al., 2007a,b; Miskowiak et al., 2014).

The exact biological relevance of our endogenous serum
EPO levels is difficult to interpret in the absence of a direct
measurement of EPO in the brain. EPO is known to cross
the blood-brain barrier by active translocation, most likely via
EPOR expressed in the brain vasculature pattern (Brines et al.,
2000). The studies who investigated the neuroprotective and
neurotrophic potential of exogenous EPO administered high-
dose EPO to induce significant elevations in cerebrospinal fluid
and brain EPO levels to improve cognitive function. However,
the importance of endogenous circulating EPO levels has also
previously been shown in children with malaria where high EPO
levels were associated with a reduced risk of neurological sequelae
(Casals-Pascual et al., 2008). Similarly, in a recent study, Shim
et al. (2021) showed the relationship between circulating EPO
levels and attention deficit hyperactivity disorder (ADHD) rating
scale in children with ADHD and healthy controls.

We did not find an association between endogenous
EPO levels and performance on the VAT, suggesting that
endogenous EPO levels did not affect the ability to create
new memories and to recall the recent past. Aside from a
few exceptions, this runs counter to reports that exogenous
EPO improves certain memory-related abilities, as can be
seen through upregulation of activity during memory tasks
(Ehrenreich et al., 2007b; Miskowiak et al., 2008, 2009, 2014)
and upregulation of memory-related brain areas during a
memory task (Miskowiak et al., 2007, 2016). With evidence
of EPO and EPOR being present in brain areas related to
memory, e.g., the hippocampus and areas within the temporal
lobe, we expected a positive association of endogenous EPO
levels on the VAT score (Digicaylioglu et al., 1995; Marti
et al., 1996; Rombouts et al., 1997). The discrepancy between
our currently identified results and those from other studies
might be related to the use of different populations in
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TABLE 4 | Multivariate linear regression analyses of the association of individual iron status parameters and erythropoietin with RFFT score.

Model 1a Model 2b Model 3c

Std. β P-value Std. β P-value Std. β P-value

EPO (IU/L)d 0.07 0.03 0.09 0.005 0.09 0.008

Ferritin (ug/L) 0.004 0.90 −0.01 0.66 −0.02 0.48

Iron (umol/L) −0.01 0.71 −0.02 0.50 −0.03 0.38

Transferrin (g/L) −0.007 0.79 −0.004 0.88 0.005 0.87

TSAT (%) −0.01 0.67 −0.02 0.49 −0.04 0.26

Abbreviations: BMI, body mass index; CI, confidence interval; eGFR, estimated glomerular filtration rate; EPO, erythropoietin; hs-CRP, high-sensitivity C-reactive protein;
HDL, high-density lipoproteins; LDL, low-density lipoproteins; RFFT, Ruff figural fluency test; Std. β, standardized beta; TSAT, transferrin saturation.
aModel 1: adjusted for age, sex, education, BMI, eGFR, and urinary albumin excretion.
bModel 2: Model 1 + adjustment for systolic blood pressure, alcohol use, smoking, hemoglobin, hs-CRP, serum HDL, serum LDL.
cModel 3: Model 2 + adjustment for history of cerebrovascular event, diabetes mellitus, and use of antihypertensives, and lipid-lowering drugs.
dAdjusted for only ferritin as iron status parameter.

TABLE 5 | Binomial logistic regression analyses of the association of individual iron status parameters and erythropoietin with a high performance on the VAT score.

Model 1a Model 2b Model 3c

OR 95% CI P-value OR 95% CI P-value OR 95% CI P-value

EPO (IU/L)d 0.92 0.65–1.31 0.65 1.05 0.71–1.54 0.81 1.01 0.68–1.51 0.95

Ferritin (ug/L) 0.79 0.65–0.95 0.01 0.78 0.63–0.95 0.01 0.77 0.63–0.95 0.02

Iron (umol/L) 0.99 0.96–1.02 0.37 0.99 0.96–1.02 0.37 0.98 0.95–1.02 0.27

Transferrin (g/L) 1.15 0.77–1.72 0.50 1.04 0.68–1.59 0.86 1.02 0.66–1.58 0.91

TSAT (%) 0.99 0.97–1.01 0.32 0.99 0.98–1.01 0.46 0.99 0.97–1.01 0.33

Abbreviations: BMI, body mass index; CI, confidence interval; eGFR, estimated glomerular filtration rate; EPO, erythropoietin; hs-CRP, high-sensitivity C-reactive protein;
HDL, high-density lipoproteins; LDL, low-density lipoproteins; OR, odds ratio; TSAT, transferrin saturation; VAT, Visual association test.
aModel 1: adjusted for age, sex, education, BMI, eGFR, and urinary albumin excretion.
bModel 2: Model 1 adjustment for systolic blood pressure, alcohol use, smoking, hemoglobin, hs-CRP, serum HDL, and serum LDL.
cModel 3: Model 2 adjustment for history of cerebrovascular event, diabetes mellitus, and use of antihypertensives, and lipid-lowering drugs.
dAdjusted for only ferritin as iron status parameter.

earlier studies, which focused on subjects with depression
or schizophrenia.

Moreover, and more likely, the VAT is designed to detect
anterograde amnesia and related syndromes. It is a relatively
simple task with a small range in scores compared to the RFFT
and less suitable to detect subtle differences in memory ability.

Regarding iron status, we did not identify a U-shaped
association between iron status and cognitive function, as might
have been expected, since previous studies related both a low and
high serum iron to a decline in certain cognitive abilities (Lam
et al., 2008; Schiepers et al., 2010; Ji et al., 2017). However, we
did find that higher ferritin levels increased the risk of a low
performance on the VAT. This suggests that increased ferritin
levels in the general population are associated with a diminished
ability to create new memories and recall the recent past. Since
serum ferritin is not related to the iron content in brain regions
involved in memory abilities, like the hippocampus and temporal
cortex (Gao et al., 2017), the underlying mechanism is not clear.
Our finding is contrary to the few previous studies on serum
ferritin levels and cognition. Schiepers et al. (2010) found that
higher serum ferritin was associated with decreased speed of
cognitive functioning, but did not find serum ferritin to be related
to memory processes. Milward et al. (2010) found that abnormal
levels of ferritin were not associated with global cognitive

performance or executive function. When considering serum
ferritin as a proxy for body iron stores, our findings are in line
with research by Lam et al. (2008), in which very high serum iron
concentrations were associated with poorer outcomes on tests
measuring short and long-term memory processes. However,
caution is warranted to consider serum ferritin solely as surrogate
for body iron stores. Serum ferritin is also an acute-phase
reactant, which is upregulated by inflammation, excessive use
of alcohol, metabolic syndrome, and tissue damage or turnover
(e.g., hepatic or malignancy) (Cullis et al., 2018). Previous studies
suggest an association with cognitive decline and (biomarkers of)
inflammation (Yaffe et al., 2003; Schram et al., 2007; Sartori et al.,
2012). Similar associations are seen with direct or indirect effects
of alcohol use, metabolic syndrome, tissue damage, -turnover, or
a combination (Brust, 2010; Yates et al., 2012; Janelsins et al.,
2014; Nardelli et al., 2019). Notably, the association between
serum ferritin and VAT remained independent of adjustment
for alcohol use, BMI, hemoglobin, and hs-CRP. Although we
tried to fully adjust for these potential confounders, we cannot
exclude that these mechanisms, at least in part, might have
contributed to the identified association between higher ferritin
and lower performance on the VAT score. In the patient setting of
neurodegenerative diseases, strong associations of cerebrospinal
fluid ferritin have been identified with worse cognitive function
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in patients with Alzheimer’s disease, patients with Parkinson’s
disease, and patients with dementia with Lewy bodies (Ayton
et al., 2022). In fact, cerebrospinal fluid ferritin levels even
predicted outcomes in patients with Alzheimer’s disease (Ayton
et al., 2015, 2017), and could be used as a readout for the
inflammatory response during the neurodegenerative phase of
Alzheimer’s disease (Brosseron et al., 2021).

Our study has several strengths and limitations. We
used a well-phenotyped large cohort of community-dwelling
individuals, reflecting a large proportion of the general Dutch
population. Moreover, we tried to account as fully as possible
for confounders as cognitive functioning is known to be
influenced by multiple factors. Limitations of the current study
are that cognitive functioning was measured only with two
tests, which cover a diverse set of cognitive capabilities but
do not reflect performance on all cognitive domains. Although
the RFFT is a more sensitive and reliable test for detecting
subtle changes in cognitive functioning in both young and old
people when compared to tests like the Mini Mental State
Examination (MMSE), Trail-Making Test (TMT) or Modified
Telephone Interview for Cognitive Status (TICS-M) (Foster
et al., 2005; Izaks et al., 2011; Joosten et al., 2014), we are
not able to extend our findings to cognitive functioning as a
whole. Other tests, e.g., the Rey Auditory Verbal Learning Test
(RAVLT) and the Massachusetts General Hospital Cognitive and
Physical Functioning Questionnaire (CPFQ) would have given
important additional information on cognitive functioning. Ano-
ther limitation is that we did not have data available on a broader
range of iron status parameters, such as hepcidin and soluble
transferrin receptor. Finally, a limitation of our study is that we
did not identify with biomarkers participants with underlying
Alzheimer’s disease and that we did not have availability of a
direct measurement of EPO or ferritin in the brain.

In conclusion, this study demonstrates a relatively strong
association between higher endogenous EPO levels and better
performance on several executive cognitive abilities, as reflected
by the RFFT, in the general population. Furthermore, we found
that ferritin levels, but not other iron status parameters, were
inversely associated with a high performance on VAT scores,

reflecting associative memory. Future research should focus on a
more comprehensive examination of cognitive functioning, time-
dependent relationships, underlying mechanisms, use of brain
imaging, identification of patients with Alzheimer’s disease, and
opportunities and obstacles for therapeutic interventions.
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