
StackEPI: identification of cell line‑specific
enhancer–promoter interactions based
on stacking ensemble learning
Yongxian Fan* and Binchao Peng

Background
Enhancer–promoter interactions (EPIs) play a crucial role in the transcriptional regu-
lation of genes and in human disease progression and cell differentiation. A promoter
is a short DNA segment with a sequence length varying between 100 and 1000 base
pairs, located upstream of a specific gene [1, 2]. Promoters play critical regulatory roles
at different stages of gene expression and contain a wealth of information about gene
annotation. Enhancers are vital cis-regulatory elements that regulate spatiotemporal

Abstract

Background: Understanding the regulatory role of enhancer–promoter interactions
(EPIs) on specific gene expression in cells contributes to the understanding of gene
regulation, cell differentiation, etc., and its identification has been a challenging task.
On the one hand, using traditional wet experimental methods to identify EPIs often
means a lot of human labor and time costs. On the other hand, although the currently
proposed computational methods have good recognition effects, they generally
require a long training time.

Results: In this study, we studied the EPIs of six human cell lines and designed a cell
line-specific EPIs prediction method based on a stacking ensemble learning strategy,
which has better prediction performance and faster training speed, called StackEPI.
Specifically, by combining different encoding schemes and machine learning meth-
ods, our prediction method can extract the cell line-specific effective information of
enhancer and promoter gene sequences comprehensively and in many directions,
and make accurate recognition of cell line-specific EPIs. Ultimately, the source code to
implement StackEPI and experimental data involved in the experiment are available at
https:// github. com/ 20032 303092/ Stack EPI. git.

Conclusions: The comparison results show that our model can deliver better perfor-
mance on the problem of identifying cell line-specific EPIs and outperform other state-
of-the-art models. In addition, our model also has a more efficient computation speed.

Keywords: Enhancer–promoter interaction, Bioinformatics, Machine learning,
Stacking strategy, Feature extraction

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Fan and Peng BMC Bioinformatics (2022) 23:272
https://doi.org/10.1186/s12859‑022‑04821‑9

BMC Bioinformatics

*Correspondence:
yongxian.fan@gmail.com

School of Computer Science
and Information Security,
Guilin University of Electronic
Technology, Guilin 541004, China

https://github.com/20032303092/StackEPI.git
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04821-9&domain=pdf

Page 2 of 18Fan and Peng BMC Bioinformatics (2022) 23:272

gene expression and act on their target genes at a distance [3]. The enhancer sequence
is about 50–1500 base pairs, and further activates the transcription level of its target
gene through intimate contact with the promoter [4]. The interaction mechanism of
enhancer–promoter is very complex. Multiple enhancers can control a promoter, and
multiple promoters can also be regulated by a single enhancer. The interaction distances
of interacting enhancer and promoter pairs vary significantly due to the three-dimen-
sional folding of chromatin, ranging from thousands to millions of base pairs apart [5–9].

In the past, with the rapid development of high-throughput sequencing technology,
wet experimental methods based on chromosome conformation capture (3C) [10] and
its variants were mainly used to study EPIs, such as high-throughput chromosome con-
formation capture (Hi-C) [11] and chromatin interaction analysis by paired-end tag
sequencing (ChIA-PET) [1, 12]. However, these experimental methods have the charac-
teristics of severe technical difficulty, long experiment time, and high labor and material
cost. Fortunately, these wet experiments provide valuable data that makes it feasible to
study EPIs using computational methods.

In recent years, many computational methods using machine learning algorithms to
identify EPIs have been proposed. From the perspective of data usage, it can be divided
into two categories: one is the prediction method based on the gene sequence, and the
other is the prediction method based on the epigenome. For example, Whalen et al. [2]
proposed a predictive model TargetFinder in 2016, which predicted EPIs using func-
tional genomics signals of enhancers, promoters and intermediate regions, and later
used the benchmark dataset for EPIs by most researchers [13–19] are all derived from
this; in 2017, Yang et al. [14] proposed a prediction model PEP using only gene sequence
features and combined word embedding method [20]. From the perspective of compu-
tational methods, the existing prediction methods for identifying EPIs can be divided
into unsupervised and supervised learning. Unsupervised learning methods are divided
into correlation-based and decomposition-based methods and supervised learning
methods are separated into methods for training classifiers with machine learning and
regression-based methods [21]. In addition, with the rise and wide application of neu-
ral networks, many EPIs prediction methods of deep learning have been proposed. For
example, Mao et al. [13] built a model EPIANN for predicting EPIs based on attention
mechanism and position-based feature decoding; Singh et al. [15] combined convolu-
tional neural network (CNN) and long short-term memory (LSTM) in 2018, consider-
ing the long-term dependence of DNA sequence, and proposed the method SPEID. In
2019, a method called SIMCNN [16] referred to SPEID and pointed out that EPIs can
be accurately predicted with only the CNN structure. In 2020, four methods, EPIVAN
[17], EPI-DLMH [19], SEPT [22], and EPPredictor [18], were proposed successively. EPI-
VAN uses pre-trained DNA2vec vectors for sequence embedding to extract features.
EPI-DLMH makes predictions by matching heuristic method. SEPT is based on domain
adversarial networks to study EPIs across cell lines. And EPPredictor predicts EPIs using
epigenomic and sequence-based features.

Different from the above methods, we review, analyze and compare 6 different fea-
ture coding methods and 7 commonly used machine learning algorithms, in which
Multi-Layer Perceptron (MLP) and Logistic Regression (LR) algorithms are only used as
meta-classifiers. Then we propose a novel stacking ensemble framework to identify cell

Page 3 of 18Fan and Peng BMC Bioinformatics (2022) 23:272

line-specific EPIs named StackEPI. Figure 1 contains the workflow of StackEPI method-
ology. We find that by using only DNA sequence data and a two-layer stacking strategy
to integrate traditional machine learning methods, compared with the most advanced
existing methods, our method not only has the advantage of shorter training time in
model training speed but also further improves the effect of identifying cell line-specific
EPIs.

Results and discussion
Pairwise evaluation of 6 feature encodings for 5 machine learning algorithms

We performed pairwise combination of 6 feature encodings (CKSNAP, Kmer, DPCP,
TPCP, EIIP [23], PseKNC [24, 25]) and 5 machine learning algorithms (Deep Forest
(DF) [26], Support Vector Machine (SVM), Random Forest (RF) [27], LightGBM [28],
XGBoost [29]). Experiments and evaluations were carried out on 6 cell lines (GM12878,
HeLa-S3, HUVEC, IMR90, K562, NHEK). Finally, as shown in Figs. 2, 3 and 4, we
obtained the experimental results of each cell line in terms of area under receiver operat-
ing characteristic curve (AUROC) [30], area under precision-recall curve (AUPR) [31],
and F1-score.

First, from the point of view of feature coding, the prediction performance
obtained by using the encoding method DPCP is inferior to the other five encod-
ing schemes. Compared with DPCP, TPCP with trinucleotide composition as the
main body has a better performance. The three feature encodings of EIIP, Kmer and
PseKNC also obtained satisfactory performance depending on different informa-
tion extraction methods, which indicated that EIIP, Kmer, and PseKNC extracted
effective sequence information from the gene sequences of enhancers and promot-
ers. Second, we explored the performance of different machine learning algorithms
in terms of AUROC (in Fig. 2). Under the premise of controlling for variables, it
is found that LightGBM and XGBoost outperformed the other 3 machine learning

A. Data Preprocessing C. Integrated Framework

B. Feature Extraction

Sequence-based
information

Physicochemical
properties

PseKNCCKSNAP

Kmer TPCP

DPCP

EIIP

Original data

Obtain sequence data of six cell
lines

Unbalanced training
set (90%)

Balanced
training set

Data augmentation

Unbalanced
test set (10%)

DF

For each model (MX), predicted probability of EPIs was
integrated. In total, 30-D feature vector generated

EPI/non-EPI

SVMLight-
GBM RF XGBoost

M13...M18M1...M6 M7...M12 M19...M24 M25...M30

MLP

... ...

E1 E2 E3 E4 E5 E6

Fig. 1 StackEPI overview. It includes a data preprocessing, b feature extraction, and c integrated framework

Page 4 of 18Fan and Peng BMC Bioinformatics (2022) 23:272

algorithms. These two algorithms have good EPI recognition performance in almost
all cases, and they are also very efficient to train. Finally, by comparing the cell
line-specific prediction results, the baseline models have the best effect on NHEK,

Fig. 2 AUROC of the baseline models combined with 6 feature encodings and 5 machine learning
algorithms on 6 cell lines

Fig. 3 AUPR of the baseline models combined with 6 feature encodings and 5 machine learning algorithms
on 6 cell lines

Fig. 4 F1-score of the baseline models combined with 6 feature encodings and 5 machine learning
algorithms on 6 cell lines

Page 5 of 18Fan and Peng BMC Bioinformatics (2022) 23:272

with AUROC, AUPR, and F1-score reaching 0.990 (EIIP + LightGBM), 0.920
(Kmer + DF), and 0.859 (PseKNC + XGBoost), respectively. To sum up, all baseline
models effectively extract the feature information of gene sequences for EPI recog-
nition, and the performance of these models in each specific cell line is not con-
sistent, which provides multi-level characteristic information for the training of
meta-models.

Ensemble results of candidate meta‑classifiers

To determine the most suitable machine learning algorithm as a meta-classifier, we
added two classical classifier algorithms, MLP, and LR, in addition to the five algorithms
used in the base classifiers. The reason for considering adding these two algorithms as
one of the candidate meta-classifiers is that choosing simple computational methods as
meta-classifiers in ensemble learning often yields excellent results. Table 1 records the
detailed experimental results of 7 different meta-classifiers in 6 cell lines. Notably, we
found that an ensemble model with MLP as a meta-classifier, named StackEPI, achieved
the best predictions on multiple cell lines given the same feature vector input. StackEPI
uses 6 kinds of feature encodings and 5 kinds of calculation methods to form 30 base
classifiers, and the obtained predicted probability value is used as the input of the meta-
classifier. Especially in the performance of AUROC, StackEPI achieved the best results in
5 (GM12878, HeLa-S3, HUVEC, K562, NHEK) of the 6 cell lines, while the AUROC on
IMR90 (93.3%) was 0.7% worse than the best AUROC (94%). In addition, in the compari-
son of AUPR, StackEPI has achieved performance advantages in 4 cell lines (GM12878,
HeLa-S3, HUVEC, K562), which are 0.6%, 0.6%, 1%, 0.6% higher than the second place,
respectively. Compared with the optimal AUPR on the other two cell lines (IMR90 and
NHEK), the difference was 0.1% and 0.1%, respectively. Finally, the results in Table 1 also
show that the ensemble model using LR as the meta-classifier achieves similar results
to StackEPI, and slightly outperforms StackEPI on IMR90. In general, StackEPI adopts
the stacking ensemble learning method and has a more powerful EPI recognition ability
than a single baseline model by integrating feature information from 30 baseline models.

StackEPI‑faster: faster and stronger predictor of EPIs

In the first two sections, we assessed the performance of 30 baseline models and 7 dif-
ferent meta-models for each cell line, respectively. Combined with the fast and accu-
rate characteristics of the two algorithms, LightGBM and XGBoost, we explored a
novel stacking ensemble model, StackEPI-faster, which is expected to achieve faster
training speed and higher performance. StackEPI-faster selected four feature encod-
ings (CKSNAP, EIIP, Kmer, and PseKNC) and two statistical methods (LightGBM and
XGBoost) to construct 8 base classifiers and selected MLP and LR as the candidate algo-
rithms for the meta-classifier. We first input the enhancer and promoter gene sequences
into the 8 baseline models and get 8 predicted probability values. Then we feed these
predicted probability values as new features to the MLP classifier or LR classifier. Finally,
we get a trained ensemble model and test our model in an independent test set. The
final prediction effect of the integrative model on each cell line is shown in Table 2. We
can see that the LR classifier is more suitable for StackEPI-faster’s meta-classifier than
the MLP classifier, and only the experimental results obtained on HUVEC are slightly

Page 6 of 18Fan and Peng BMC Bioinformatics (2022) 23:272

inferior to MLP. The training time of StackEPI-faster is astonishingly shortened by hun-
dreds of times compared to other prediction methods, which will be described in the
training time comparison section.

Table 1 Detailed performance evaluation of StackEPI’s candidate meta-classifiers in 6 cell lines

Cell lines Meta‑models AUROC AUPR F1‑score

GM12878 DF 0.925 0.760 0.585

LightGBM 0.929 0.716 0.672

RF 0.865 0.708 0.701

SVM 0.936 0.773 0.705

XGBoost 0.915 0.722 0.439

LR 0.932 0.772 0.722
MLP 0.939 0.779 0.715

HeLa-S3 DF 0.948 0.810 0.665

LightGBM 0.945 0.783 0.719

RF 0.898 0.759 0.736

SVM 0.948 0.816 0.730

XGBoost 0.893 0.697 0.380

LR 0.949 0.815 0.746

MLP 0.957 0.822 0.753
HUVEC DF 0.902 0.632 0.426

LightGBM 0.892 0.587 0.382

RF 0.822 0.544 0.518

SVM 0.838 0.616 0.614
XGBoost 0.854 0.567 0.577

LR 0.909 0.641 0.574

MLP 0.910 0.651 0.601

IMR90 DF 0.931 0.717 0.568

LightGBM 0.860 0.625 0.620

RF 0.849 0.665 0.624

SVM 0.922 0.629 0.449

XGBoost 0.882 0.696 0.281

LR 0.940 0.739 0.686

MLP 0.933 0.738 0.692
K562 DF 0.924 0.735 0.560

LightGBM 0.929 0.688 0.449

RF 0.859 0.677 0.655

SVM 0.928 0.745 0.662

XGBoost 0.900 0.697 0.655

LR 0.927 0.745 0.680

MLP 0.930 0.748 0.717
NHEK DF 0.980 0.904 0.780

LightGBM 0.984 0.892 0.688

RF 0.953 0.871 0.841

SVM 0.984 0.913 0.849
XGBoost 0.966 0.915 0.681

LR 0.985 0.913 0.849
MLP 0.985 0.914 0.844

Page 7 of 18Fan and Peng BMC Bioinformatics (2022) 23:272

Compared with public methods

To verify the effectiveness and superiority of our prediction method, we compare our
method with two state-of-the-art methods, namely EPIVAN and EPI-DLMH. To be fair,
first we chose the same benchmark dataset of 6 cell lines and used the identical train-
ing set and independent test set. Second, each comparison method follows the basic
training procedure referred to in the literature for model training. Finally, all our experi-
ments are conducted on the same machine (Ubuntu 20.04.4 LTS, 3070 GPU). We give
the prediction tables of AUROC, AUPR, and F1-score in Tables 3, 4 and 5. Overall, we
outperformed EPIVAN and EPI-DLMH in AUROC, outperformed EPIVAN and slightly
inferior to EPI-DLMH in AUPR and F1-score as a whole. However, the training time of
EPI-DLMH is very expensive, which takes more than ten hours, and our method can
control the training time within 5 min (in the Faster training speed section).

Table 3 shows the performance comparison of our model and comparative models on
the AUROC metric. The AUROC performance of StackEPI-faster outperformed other
methods (EPIVAN, EPI-DLMH) on all cell lines. Specifically, StackEPI-faster has 2.6%,
0.8%, 0.4%, 5.9%, 0.7% and 0.4% higher AUROC on each cell line compared to EPIVAN;

Table 2 Detailed performance evaluation of StackEPI-faster’s candidate meta-classifiers in 6 cell
lines

Cell lines Meta‑models AUROC AUPR F1‑score

GM12878 LR 0.945 0.777 0.725
MLP 0.945 0.775 0.713

HeLa-S3 LR 0.962 0.808 0.737
MLP 0.961 0.810 0.733

HUVEC LR 0.935 0.642 0.578

MLP 0.937 0.644 0.601
IMR90 LR 0.946 0.737 0.691

MLP 0.944 0.734 0.686

K562 LR 0.944 0.760 0.684

MLP 0.944 0.758 0.701
NHEK LR 0.990 0.913 0.836

MLP 0.989 0.912 0.830

Table 3 AUROC of EPIVAN, EPI-DLMH, StackEPI(-faster) in 6 cell lines

Methods GM12878 HeLa‑S3 HUVEC IMR90 K562 NHEK

EPIVAN 0.919 0.954 0.933 0.887 0.937 0.986

EPI-DLMH 0.929 0.962 0.936 0.893 0.939 0.987

StackEPI 0.939 0.957 0.910 0.933 0.930 0.985

StackEPI-faster 0.945 0.962 0.937 0.946 0.944 0.990

Table 4 AUPR of EPIVAN, EPI-DLMH, StackEPI(-faster) in 6 cell lines

Methods GM12878 HeLa‑S3 HUVEC IMR90 K562 NHEK

EPIVAN 0.756 0.819 0.640 0.688 0.752 0.910

EPI-DLMH 0.789 0.863 0.709 0.712 0.767 0.911

StackEPI 0.779 0.822 0.651 0.738 0.748 0.914

StackEPI-faster 0.777 0.810 0.644 0.737 0.760 0.913

Page 8 of 18Fan and Peng BMC Bioinformatics (2022) 23:272

compared to EPI-DLMH, the AUROC of our model is 1.6%, 0.1%, 5.3%, 0.5%, and 0.3%
higher on the five cell lines GM12878, HUVEC, IMR90, K562, and NHEK, respectively,
and remains the same on HeLa-S3. Tables 4 and 5 compare our model with other state-
of-the-art models on AUPR and F1-score, respectively. In AUPR comparison, StackEPI-
faster surpasses EPIVAN in GM12878, HUVEC, IMR90, K562, and NHEK, by 2.1%,
0.4%, 4.9%, 0.8%, and 0.3%, respectively. On F1-score, StackEPI-faster outperforms EPI-
VAN by 2.5%, 2%, 1.1%, 6.3%, and 2.3% in GM12878, HeLa-S3, HUVEC, IMR90, and
K562, respectively. In summary, our model has different aspects and degrees of superi-
ority over state-of-the-art models on each cell line and outright superiority in terms of
AUROC.

Faster training speed

In addition, in terms of model training time, we further compared the training time of
the existing model with that of our proposed method. We found that our approach has
unparalleled advantages over other methods. In our experiments, we use the laptop’s
3070 GPU to train all models. Table 6 details the training time of EPIVAN, EPI-DLMH,
StackEPI, and StackEPI-faster in each cell line. Specifically, EPI-DLMH takes the long-
est training time, and StackEPI-faster has the shortest training time and a considerable
improvement, shortening the time up to hundreds of times. The results demonstrate
that our model is more efficient than state-of-the-art models.

Conclusions
In this study, we propose a method called StackEPI, which combines multiple feature
encodings and machine learning algorithms, adopts a stacking ensemble strategy and
performs EPI prediction only through enhancer and promoter gene sequences. First,
we use 6 feature encodings and 5 machine learning algorithms to construct 30 baseline
models based on the benchmark dataset and then obtain a 30-dimensional feature vec-
tor generated from all baseline models and composed of predicted probability values.
The new vector is input to the meta-classifier to get the final prediction as the ultimate

Table 5 F1-score of EPIVAN, EPI-DLMH, StackEPI(-faster) in 6 cell lines

Methods GM12878 HeLa‑S3 HUVEC IMR90 K562 NHEK

EPIVAN 0.700 0.717 0.590 0.628 0.678 0.852

EPI-DLMH 0.751 0.809 0.619 0.692 0.712 0.860

StackEPI 0.715 0.753 0.601 0.692 0.717 0.844

StackEPI-faster 0.725 0.737 0.601 0.691 0.701 0.836

Table 6 Training duration (h) of EPIVAN, EPI-DLMH, StackEPI(-faster) in 6 cell lines

Methods GM12878 HeLa‑S3 HUVEC IMR90 K562 NHEK

EPIVAN 1.870 1.299 1.460 1.063 1.664 1.079

EPI-DLMH 16.891 12.304 14.105 10.174 16.041 10.431

StackEPI 1.135 0.807 0.694 0.498 0.983 0.515

StackEPI-faster 0.088 0.046 0.043 0.031 0.060 0.036

Page 9 of 18Fan and Peng BMC Bioinformatics (2022) 23:272

result. In an ensemble manner, our ensemble model synthesizes the advantages of base-
line models, which is shown in that our ensemble model has better scores on AUROC,
AUPR, and F1-score than the single baseline model. Compared with the most advanced
prediction methods, our method has breakneck training speed and better AUROC per-
formance. And theoretically, the input of our approach does not have strict requirements
on the length of enhancer and promoter gene sequences. Therefore, it may become a
useful tool for fast and accurate prediction of cell line-specific EPIs.

Methods
The benchmark dataset

Our experimental data came from TargetFinder and used the same EPI benchmark data-
set as EPIVAN. The dataset was provided initially by SPEID, and the complete data can
be downloaded from http:// genome. compb io. cs. cmu. edu/ ~sss1/ SP- EID/ all_ seque nce_
data. h5. The details of the dataset are given in Table 7. The benchmark dataset contains
six human cell lines of varying sample sizes: GM12878, HUVEC, HeLa-S3, IMR90, K562,
and NHEK. From Table 7, it can be noted that the ratio of positive to negative samples
for each cell line is highly imbalanced, with a positive to negative ratio of about 1:20. To
address the negative impact of the imbalance between positive and negative samples on
model training, we followed the same data processing method as in EPIVAN. To bal-
ance the data, they expanded the number of positive samples per cell line to 20 times the
original number. While the data were augmented, they also fixed the sequence lengths
of enhancers and promoters using 3kbp and 2kbp windows, respectively, to extract more
information around the sequences.

Feature encodings

We tried 6 feature encodings commonly used in biological research and analyzed their
ability to identify EPIs under different classifiers. The pros and cons of feature encod-
ing schemes are generally positively correlated with model performance [32–34]. The six
encoding schemes are (a) sequence-based features, CKSNAP, Kmer; (b) physicochemical
properties-based features, DPCP, TPCP, EIIP, and PseKNC.

At present, the physicochemical properties of k-tuple nucleotides are also commonly
used in computational prediction of bioinformatics, such as type III secreted effectors
[35], type VI secreted effectors [36], enhancers [37], IL-6 inducing peptides [38], and

Table 7 Number of positive and negative samples for 6 cell lines in the original dataset

The six human cell lines, GM12878, HeLa‑S3, HUVEC, IMR90, K562 and NHEK, represent lymphoblastoid cells, umbilical vein
endothelial cells, ectoderm‑lineage cells from a patient with cervical cancer, fetal lung fibroblasts, mesoderm‑lineage cells
from a patient with leukemia, and epidermal keratinocytes, respectively. Total represents the sum of six cell lines

Cell lines Positive samples Negative samples

GM12878 2113 42,200

HeLa-S3 1740 34,800

HUVEC 1524 30,400

IMR90 1254 25,000

K562 1977 39,500

NHEK 1291 25,600

Total 9899 197,500

http://genome.compbio.cs.cmu.edu/~sss1/SP-EID/all_sequence_data.h5
http://genome.compbio.cs.cmu.edu/~sss1/SP-EID/all_sequence_data.h5

Page 10 of 18Fan and Peng BMC Bioinformatics (2022) 23:272

replication origin sites [39]. Recently, Zhang et al. [40] sorted out 182 physicochemical
properties from the existing physicochemical properties database and published sci-
entific literature, which are stored in the web-based KNIndex database, which can be
obtained on https:// knind ex. pufen gdu. org. In this study, we used the standardized phys-
icochemical properties of k-tuple nucleotides provided by Zhang. In brief, each feature
encoding is described as follows.
CKSNAP is the composition of K-spaced nucleic acid pairs and is widely used in vari-

ous studies in the bioinformatics field [37, 41, 42]. The feature encoding method cal-
culates the occurrence frequency of nucleotide pairs spaced by arbitrary k nucleotides
in a gene sequence, that is, the occurrence frequency of nucleotide pairs composed of
two nucleotides at subscript i and subscript i + k + 1 , respectively. Its calculation can be
defined as follows:

where the symbol ∗ represents the k nucleotides S(S ∈ {A,T ,G,C}) spaced between
nucleotide pairs XY , NTotal and NX∗Y represent the total composition number of k
-spaced nucleotide pairs in the gene sequence and the number of k-spaced nucleotide
pairs XY , respectively. For example, with k = 0 , we can obtain a 16-dimensional digital
vector consisting of the occurrence frequency of 16 classes of nucleotide pairs (AA, AC,
AG, AT, …, TA, TC, TG, TT) with a spacing of 0:

in which

In this study, we first set K = 0, 1, 2, 3, 4, and 5 , then concatenate these obtained vectors
horizontally, and finally get a 96-dimensional feature vector. It is worth noting that some
sequences in the dataset contain the unknown base ’N’. We excluded the calculation part
containing the base ’N’ in the process of feature extraction. Extra feature encodings also
follow this processing rule and will not be repeated here.
Kmer describes the occurrence frequency of k neighboring nucleotides in the gene

sequence. We set the step size of traversing the gene sequence to 1, and concatenate the
feature vectors generated by nucleotide acid composition (NAC), dinucleotide composi-
tion (DNC), trinucleotide composition (TNC), and tetranucleotide composition (TeNC).
Their calculations are as follows:

(1)
NA∗A

NTotal
,
NA∗C

NTotal
,
NA∗G

NTotal
,
NA∗T

NTotal
, . . . ,

NT∗A

NTotal
,
NT∗C

NTotal
,
NT∗G

NTotal
,
NT∗T

NTotal K=k

(2)
(

NAA

NTotal
,
NAC

NTotal
,
NAG

NTotal
,
NAT

NTotal
, . . . ,

NTA

NTotal
,
NTC

NTotal
,
NTG

NTotal
,
NTT

NTotal

)

K=0

(3)NTotal = NAA + NAC + ...+ NTG + NTT

(4)NAC =

(

NA

Ntotal
,
NC

Ntotal
,
NG

Ntotal
,
NT

Ntotal

)

k=1

(5)DNC =

(

NAA

Ntotal
,
NAC

Ntotal
, . . . ,

NTG

Ntotal
,
NTT

Ntotal

)

k=2

https://knindex.pufengdu.org

Page 11 of 18Fan and Peng BMC Bioinformatics (2022) 23:272

where NKmer donates the number of a certain nucleotide composition Kmer , and k is the
sequence length of nucleotide composition. That is, when k = 1 , Kmer only contains one
base p ; when k = 2 , Kmer consists of dinucleotide pairs p , q constitutes; and so on, we
set 1 ≤ k ≤ 4 here. Ntotal represents the sum of k-tuple nucleotide composition from the
given sequence. NAC, DNC, TNC, and TeNC will produce 4-, 16-, 64- and 256-dimen-
sional feature vectors. After splicing, the gene sequence will be encoded into 340-dimen-
sional feature vectors.
DPCP We used the following 21 dinucleotide physicochemical properties for the compu-

tation of feature encoding DPCP, including Base stacking, Protein induced deformability,
B-DNA twist; A-philicity, Propeller twist, Duplex stability (free energy), Duplex stabil-
ity (disrupt energy), DNA denaturation, Bending stiffness, Protein DNA twist, Stabilizing
energy of Z-DNA, Aida_BA_transition, Breslauer_dG, Breslauer_dH, Breslauer_dS, Elec-
tron_interaction, Hartman_trans_free_energy, Helix-Coil_transition, Ivanov_BA_transi-
tion, Lisser_BZ_transition and Polar_interaction. The calculation of this feature vector can
be expressed as:

where XY denotes dinucleotides, and pcn(XY) is the value of the dinucleotide XY corre-
sponding to the physicochemical property of the nth dinucleotide. fXY is the ratio of the
number of dinucleotides XY , namely NXY , to the total number of dinucleotides, namely
Ntotal . After DPCP encoding, we finally get a dimension feature vector of 336 (16× 21).
TPCP In this study, we considered 10 trinucleotide physicochemical properties: Benda-

bility-DNAse, Bendability-consensus, Trinucleotide GC Content, Nucleosome positioning,
Consensus_roll, Dnase I, Dnase I-Rigid, MW-Daltons, Nucleosome and Nucleosome-Rigid.
The calculation method of TPCP is similar to DPCP, and its feature vector representation is
as follows:

where XYZ refers to trinucleotides, NXYZ refers to the number of trinucleotides XYZ ,
and Ntotal is the sum of the numbers of all trinucleotides. pcn(XYZ) is the value of ter-
nary nucleotide XYZ corresponding to the physicochemical properties of the n th tri-
nucleotide. fXYZ represents the frequency of occurrence of trinucleotide XYZ in a given

(6)TNC =

(

NAAA

Ntotal
,
NAAC

Ntotal
, . . . ,

NTTG

Ntotal
,
NTTT

Ntotal

)

k=3

(7)TeNC =

(

NAAAA

Ntotal
,
NAAAC

Ntotal
, . . . ,

NTTTG

Ntotal
,
NTTTT

Ntotal

)

k=4

(8)DDPCP = [pc1(AA) ∗ fAA, . . . , pc1(TT) ∗ fTT , . . . , pcn(TT) ∗ fTT]
T

(9)fXY =
NXY

Ntotal

(10)DTPCP = [pc1(AAA) ∗ fAAA, . . . , pc1(TTT) ∗ fTTT , . . . , pcn(TTT) ∗ fTTT]
T

(11)fXYZ =
NXYZ

Ntotal

Page 12 of 18Fan and Peng BMC Bioinformatics (2022) 23:272

gene sequence, that is, the proportion of the total number of trinucleotides. Finally,
TPCP is encoded as a dimensional feature vector of 640 (64 × 10).
EIIP Nair et al. calculated the energy of delocalized electrons in nucleotides as elec-

tron–ion interaction pseudopotential, namely EIIP. The EIIP values corresponding to
the four bases are {A: 0.1260, C: 0.1340, G: 0.0806, T: 0.1335}, respectively. We con-
sidered the EIIP encoding of trinucleotides, calculated as follows:

where EIIPXYZ = EIIPX + EIIPY + EIIPZ , XYZ represents the trinucleotide, and the
EIIP value of the trinucleotide XYZ is the sum of the EIIP values of the nucleotides X , Y ,
and Z . fXYZ has the same meaning as in TPCP, indicating the frequency of occurrence of
trinucleotide XYZ . The final EIIP provides a 64-dimensional feature vector.
PseKNC is the pseudo k-tuple nucleotide composition widely adopted in research-

ers’ methods due to its powerful information extraction ability for DNA and RNA
sequences, such as iTerm-PseKNC [43]. PseKNC knows how to utilize multiple phys-
icochemical properties to cover a large amount of local and global sequence order
information in feature vectors. Meanwhile, it possesses two variants: type I PseKNC
and type II PseKNC. Here we use type II PseKNC, which is defined as follows:

where L is the length of a given gene sequence, and K represents a K-tuple nucleotide
composition. � is the number of physicochemical properties. � reflects the rank or level
of correlation along the DNA sequence, and � is an integer less than L− k . ω is a weight
factor. f K−tuple

u is the normalized occurrence frequency of the µ th K-tuple nucleotide in
the DNA sequence. τj is the j-tier correlation factor, which is defined as follows:

in which

(12)DEIIP = [EIIPAAA ∗ fAAA,EIIPAAC ∗ fAAC , . . . ,EIIPTTT ∗ fTTT]
T

(13)DII
PseKNC =

[

d1, . . . , d4K , d4K+1, . . . , d4K+�, d4K+�+1, . . . , d4K+��

]T

(14)du =











f
K−tuple
u

�4K

i=1 f
K−tuple
i +ω

�

��
j=1 τj

�

1 ≤ µ ≤ 4K
�

ωτ
µ−4K

�4K

i=1 f
K−tuple
i +ω

�

��
j=1 τj

�

4K+1 ≤ µ ≤ 4K + ��
�

(15)



















































































τ1 =
1

L−K−1

L−K−1
�

i=1

J1i,i+1

τ2 =
1

L−K−1

L−K−1
�

i=1

J2i,i+1

.

τ� = 1
L−K−1

L−K−1
�

i=1

J�i,i+1 � < (L− k)

.

τ��−1 =
1

L−K−�

L−K−�
�

i=1

J�−1
i,i+�

τ�� = 1
L−K−�

L−K−�
�

i=1

J�i,i+�

Page 13 of 18Fan and Peng BMC Bioinformatics (2022) 23:272

where Hξ (RiRi+1 . . .Ri+K−1) and Hξ (Ri+mRi+m+1 . . .Ri+m+K−1) is the normalized
value of the ξ th physicochemical property of K-tuple nucleotides RiRi+1 . . .Ri+K−1 and
Ri+mRi+m+1 . . .Ri+m+K−1 in the DNA sequence.

Type II PseKNC encoding finally produces a (4K + ��) dimension feature vector.
Here, we first tried different K , �, n,ω as well as PseDNC (pseudo dinucleotide com-
position) and PseTNC (pseudo trinucleotide composition) in the cell line GM12878,
and tested the effect using LightGBM for a suitable set of hyperparameters. Then,
we set K , �, n,ω to 4, 5, 2, 0.1, respectively, and used 6 physicochemical properties of
dinucleotide (Twist, Tilt, Roll, Shift, Slide, Rise). Finally, the procedure was produced
a feature vector of 286 (44 + 5× 6) dimension.

Conventional classifiers

DF was originally proposed by Zhihua Zhou et al. in 2017, which is an ensemble
method of decision trees. Compared with deep learning networks, it has the advan-
tages of fewer hyperparameter settings and automatic determination of model
complexity dependent on data. The core of DF is the multi-grained cascade forest
(gcForest) method, which includes two important parts: cascade forest structure and
multi-grained scanning. The model structure is presented in Fig. 5. We obtained the
package deep-forest following the instructions at https:// github. com/ LAMDA- NJU/
Deep- Forest and used the CascadeForestClassifier classifier for it this study.
SVM is a traditional supervised machine learning method based on the structural

risk minimization (SRM) [44] framework introduced in the late 1990s. The basic
principle of SVM is to map the initial feature vector to a higher-dimensional Hilbert
space and find an optimal separation hyperplane in the feature space to maximize the
interval between positive and negative samples. SVM also uses kernel functions to
deal with nonlinear classification problems [45]. Commonly used kernel functions are
linear, polynomial, and Gaussian radial basis (RBF). We find that the Gaussian RBF
kernel is the most suitable for this problem. In this study, to improve the training effi-
ciency, we adopt the python package thundersvm [46] that can run on GPU, available
from https:// github. com/ Xtra- Compu ting/ thund ersvm.
LightGBM is another efficient implementation of gradient boosting decision tree

(GBDT) [47] algorithm besides XGBoost and pGBRT [48]. LightGBM holds the char-
acteristics of higher efficiency, faster training speed, and lower memory consumption,
and LightGBM can support distributed and rapid processing of large amounts of data.
Two different technologies are mainly adopted in LightGBM: gradient-based one-
side sampling (GOSS) and exclusive feature bundling (EFB). LightGBM uses GOSS to
exclude data instances with small gradients and retain only those data instances with
larger gradients that play a more significant role in calculating information gain while
exploiting EFB to bundle mutually exclusive to reduce the number of features. We
used the LightGBM package that obtained the python version provided by Microsoft
from https:// github. com/ micro soft/ Light- GBM/ tree/ master/ python- packa ge.

(16)
{

J
ξ
i,i+m = Hξ (RiRi+1 . . .Ri+K−1) ·Hξ (Ri+mRi+m+1 . . .Ri+m+K−1)

ξ = 1, 2, . . . ,�; m = 1, 2, . . . , �; i = 1, 2, . . . , L− K − �

https://github.com/LAMDA-NJU/Deep-Forest
https://github.com/LAMDA-NJU/Deep-Forest
https://github.com/Xtra-Computing/thundersvm
https://github.com/microsoft/Light-GBM/tree/master/python-package

Page 14 of 18Fan and Peng BMC Bioinformatics (2022) 23:272

XGBoost is a scalable machine learning system implemented by Chen and Guestrin
in 2016 based on the gradient boosting framework. First of all, in principle, XGBoost
introduces regularization to prevent overfitting of the trained model and uses an
approximate algorithm to solve the problem that the greedy algorithm cannot make
data read into memory for calculation when the amount of data is too large. Secondly,
XGBoost relies on weighted quantile thumbnails to process weighted data to pro-
pose candidate split points and then applies the sparsity aware algorithm to deal with
sparse data and missing values. Finally, XGBoost adopts fast structure design, out-
of-core computing, and cache-aware learning in system design. Therefore, XGBoost
has the advantages of supporting distributed and parallel computing and fast, massive
data processing. The python version of the XGBoost package is delivered by https://
github. com/ dmlc/ xgboo st/ tree/ master/ python- packa ge.
RF is one of the most widely used maximum likelihood algorithms. The core idea

of RF is to integrate multiple independent and unrelated decision trees in the form of
bagging integration and introduce randomness (bootstrap sample method and ran-
dom selection of feature subsets) to prevent the risk of model overfitting and improve
anti-noise ability. The following is the construction process of the decision tree:

(1) For the training set with N samples, the bootstrap sample method is used to extract
N samples from it as the training set of the decision tree;

(2) Assuming that the number of features is M , and m(m ≪ M) features are randomly
selected to form a feature subset. When each node of the decision tree needs to be
split, the optimal feature is selected from the feature subset as the division attribute
of the node;

(3) Each tree grows as much as possible without pruning.

MLP is an artificial neural network that structurally includes input, hidden, and
output layers, uses backpropagation to update weight computationally and is used to
solve nonlinear problems. It has been widely used in problems in different fields.
LR is a maximum likelihood algorithm for solving classification problems, and it has

been successfully applied to many classification tasks in bioinformatics [49, 50].

Fig. 5 DF model structure. It consists of four main components: Binner, Cascade Layer, Estimator, and
Predictor. Binner is used to reduce feature input, Estimator is used to form cascade layers, and Cascade Layer
is used to process layer by layer and generate the next layer of feature information. Predictor is an estimator
for the final prediction result, which is optional

https://github.com/dmlc/xgboost/tree/master/python-package
https://github.com/dmlc/xgboost/tree/master/python-package

Page 15 of 18Fan and Peng BMC Bioinformatics (2022) 23:272

Stacking structure

Our study proposes a stacking ensemble learning framework, StackEPI, which can pre-
cisely identify cell-specific EPIs from only genetic sequence data. An overview of Stack-
EPI is illustrated in Fig. 1, including data preprocessing (in Fig. 1a), feature extraction (in
Fig. 1b), and integrated framework (in Fig. 1c). The detailed description of the data pre-
processing and feature extraction is given above, and the model structure is emphasized
here. StackEPI uses 5 outperforming machine learning algorithms and 6 sequence-based
feature encodings to build a total of 30 baseline models (i.e. first-level). Then we utilize
the predicted probability information obtained from these baseline models as a new fea-
ture input into the MLP to obtain the MLP meta-model (i.e. second-level). Finally, we
use the predictions we get from the meta-model as the final predictions.

Model training setup

As mentioned above, our dataset is an unbalanced dataset with a positive-to-negative
sample ratio of 1:20. In supervised learning, the classification model always tends to
focus on the majority class and reduce the prediction accuracy of the minority class.
Therefore, we perform data augmentation operations on the training set and test the
performance of our model on the independent test set. For a fair comparison with EPI-
VAN and EPI-DLMH, the specific training process of the ensemble model for any given
cell line is described as follows:

(1) The original unbalanced dataset D is randomly divided into a training set Dtrain
(90% of D) and independent test set Dtest (10% of D) by stratified sampling;

(2) Augment the training set Dtrain to produce a balanced training set Daug;
(3) Train the model on the balanced training set Daug;
(4) Evaluate the model on the independent test set Dtest.

To make the ensemble model achieve better performance, we use grid search to tune
the essential parameters of the base classifiers and meta-classifiers of the ensemble
model. If only a one-time grid search adjusts all parameters for some classifiers that need
to be tuned with many parameters, it will result in a considerable time cost. Therefore,
we group the parameters of such classifiers and then sequentially adjust them layer by
layer. The optimized machine learning parameters and search ranges are given in Addi-
tional file 1: Table S1.

Performance evaluation

This study uses AUROC, AUPR, and F1-score to evaluate our method. The receiver
operating characteristic curve reflects the relationship between sensitivity and specific-
ity at different thresholds. The precision-recall curve reflects the tradeoff between the
model’s accuracy for identifying positive examples and the model’s ability to cover posi-
tive examples. The closer the values of AUROC, AUPR, and F1-score are to 1, the better
the model’s performance.

Abbreviations
3C Chromosome conformation capture

Page 16 of 18Fan and Peng BMC Bioinformatics (2022) 23:272

AUROC Area under receiver operating characteristic curve
AUPR Area under precision-recall curve
ChIA-PET Chromatin interaction analysis by paired-end tag sequencing
CNN Convolutional neural network
DF Deep Forest
DNC Dinucleotide composition
EFB Exclusive feature bundling
EPIs Enhancer–promoter interactions
GBDT Gradient boosting decision tree
gcForest Multi-grained cascade forest
GOSS Gradient-based one-side sampling
Hi-C High-throughput chromosome conformation capture
LR Logistic Regression
LSTM Long short-term memory
MLP Multi-Layer Perceptron
NAC Nucleotide acid composition
PseDNC Pseudo dinucleotide composition
PseTNC Pseudo trinucleotide composition
RBF Radial basis function
RF Random Forest
SVM Support Vector Machine
TeNC Tetranucleotide composition
TNC Trinucleotide composition

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 022- 04821-9.

Additional file 1. Parameters and the value range of parameter adjustment.

Acknowledgements
We thank the editor and the anonymous reviewers for their many insightful comments and constructive suggestions.

Author contributions
YXF gave the guidance, provided the experiment devices, edited and polished the manuscript. BCP conceived the pre-
diction method, implemented the experiments, conducted the experimental result analysis, and wrote the manuscript.
All authors read and approved the final manuscript.

Funding
This work was supported in part by the National Natural Science Foundation of China under Grants 62162015 and
61762026, in part by the Innovation Project of GUET Graduate Education under Grant 2021YCXS058. The funder of
manuscript is Yongxian Fan (YXF), whose contribution are stated in the section of Author’s Contributions. The funding
body has not played any roles in the design of the study and collection, analysis and interpretation of data in writing the
manuscript.

Availability of data and materials
The datasets supporting the conclusions of this article are included with article. Project name: StackEPI. Project home
page: https:// github. com/ 20032 303092/ Stack EPI. git. Project inclusion: All datasets and the code needed to replicate the
experiment.

Declarations

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 4 April 2022 Accepted: 1 July 2022

References
 1. Fullwood MJ, Ruan Y. ChIP-based methods for the identification of long-range chromatin interactions. J Cell Bio-

chem. 2009;107(1):30–9.

https://doi.org/10.1186/s12859-022-04821-9
https://github.com/20032303092/StackEPI.git

Page 17 of 18Fan and Peng BMC Bioinformatics (2022) 23:272

 2. Whalen S, Truty RM, Pollard KS. Enhancer–promoter interactions are encoded by complex genomic signatures on
looping chromatin. Nat Genet. 2016;48(5):488–96.

 3. Smith E, Shilatifard A. Enhancer biology and enhanceropathies. Nat Struct Mol Biol. 2014;21(3):210–9.
 4. Shlyueva D, Stampfel G, Stark A. Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev

Genet. 2014;15(4):272–86.
 5. Visel A, Rubin EM, Pennacchio LA. Genomic views of distant-acting enhancers. Nature. 2009;461(7261):199–205.
 6. Van Steensel B, Dekker J. Genomics tools for unraveling chromosome architecture. Nat Biotechnol.

2010;28(10):1089–95.
 7. Bickmore WA, van Steensel B. Genome architecture: domain organization of interphase chromosomes. Cell.

2013;152(6):1270–84.
 8. Dekker J, Mirny L. The 3D genome as moderator of chromosomal communication. Cell. 2016;164(6):1110–21.
 9. Rowley MJ, Corces VG. The three-dimensional genome: principles and roles of long-distance interactions. Curr Opin

Cell Biol. 2016;40:8–14.
 10. Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science. 2002;295(5558):1306–11.
 11. Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of

long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289–93.
 12. Tang Z, Luo OJ, Li X, Zheng M, Zhu JJ, Szalaj P, et al. CTCF-mediated human 3D genome architecture reveals chroma-

tin topology for transcription. Cell. 2015;163(7):1611–27.
 13. Mao W, Kostka D, Chikina M. Modeling enhancer-promoter interactions with attention-based neural networks. 2017.
 14. Yang Y, Zhang R, Singh S, Ma J. Exploiting sequence-based features for predicting enhancer–promoter interactions.

Bioinformatics. 2017;33(14):i252–60.
 15. Singh S, Yang Y, Poczos B, Ma J. Predicting enhancer-promoter interaction from genomic sequence with deep

neural networks. Quant Biol. 2019;7(2):122–37.
 16. Zhuang Z, Shen X, Pan W. A simple convolutional neural network for prediction of enhancer–promoter interactions

with DNA sequence data. Bioinformatics. 2019;35(17):2899–906.
 17. Hong Z, Zeng X, Wei L, Liu X. Identifying enhancer–promoter interactions with neural network based on pre-trained

DNA vectors and attention mechanism. Bioinformatics. 2020;36(4):1037–43.
 18. Oladokun SO, Zhou J, Liu R, Wu Z, Zhang J, Liu J, et al. Exploiting epigenomic and sequence-based features for

predicting enhancer-promoter interactions. E3S Web Conf. 2020;218:03046.
 19. Min X, Ye C, Liu X, Zeng X. Predicting enhancer-promoter interactions by deep learning and matching heuristic. Brief

Bioinform. 2021;22(4):bbaa54.
 20. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv preprint

arXiv:13013781. 2013.
 21. Xu H, Zhang S, Yi X, Plewczynski D, Li MJ. Exploring 3D chromatin contacts in gene regulation: The evolution

of approaches for the identification of functional enhancer-promoter interaction. Comput Struct Biotechnol J.
2020;18:558–70.

 22. Jing F, Zhang S-W, Zhang S. Prediction of enhancer–promoter interactions using the cross-cell type information and
domain adversarial neural network. BMC Bioinform. 2020;21(1):1–16.

 23. Nair AS, Sreenadhan SP. A coding measure scheme employing electron-ion interaction pseudopotential (EIIP).
Bioinformation. 2006;1(6):197.

 24. Chen W, Lei TY, Jin DC, Lin H, Chou KC. PseKNC: a flexible web server for generating pseudo K-tuple nucleotide
composition. Anal Biochem. 2014;456:53–60.

 25. Chen W, Lin H, Chou KC. Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic
sequences. Mol Biosyst. 2015;11(10):2620–34.

 26. Zhou Z-H, Feng J. Deep forest. arXiv preprint arXiv:170208835. 2017.
 27. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
 28. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. Lightgbm: A highly efficient gradient boosting decision tree.

Adv Neural Inf Process Syst. 2017;30:3146–54.
 29. Chen T, Guestrin C (eds) Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD interna-

tional conference on knowledge discovery and data mining. 2016.
 30. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiol-

ogy. 1982;143(1):29–36.
 31. Davis J, Goadrich M (eds) The relationship between Precision-Recall and ROC curves. In: Proceedings of the 23rd

international conference on machine learning. 2006.
 32. Hasan MM, Alam MA, Shoombuatong W, Deng HW, Manavalan B, Kurata H. NeuroPred-FRL: an interpretable predic-

tion model for identifying neuropeptide using feature representation learning. Brief Bioinform. 2021;22(6):167.
 33. Charoenkwan P, Nantasenamat C, Hasan MM, Manavalan B, Shoombuatong W. BERT4Bitter: a bidirectional encoder

representations from transformers (BERT)-based model for improving the prediction of bitter peptides. Bioinformat-
ics. 2021.

 34. Xu Z-C, Feng P-M, Yang H, Qiu W-R, Chen W, Lin H. iRNAD: a computational tool for identifying D modification sites
in RNA sequence. Bioinformatics. 2019;35(23):4922–9.

 35. Wang J, Li J, Yang B, Xie R, Marquez-Lago TT, Leier A, et al. Bastion3: a two-layer ensemble predictor of type III
secreted effectors. Bioinformatics. 2019;35(12):2017–28.

 36. Wang J, Yang B, Leier A, Marquez-Lago TT, Hayashida M, Rocker A, et al. Bastion6: a bioinformatics approach for
accurate prediction of type VI secreted effectors. Bioinformatics. 2018;34(15):2546–55.

 37. Basith S, Hasan MM, Lee G, Wei L, Manavalan B. Integrative machine learning framework for the identification of cell-
specific enhancers from the human genome. Brief Bioinform. 2021;22(6):bbab52.

 38. Charoenkwan P, Chiangjong W, Nantasenamat C, Hasan MM, Manavalan B, Shoombuatong W. StackIL6: a stacking
ensemble model for improving the prediction of IL-6 inducing peptides. Brief Bioinform. 2021;22(6):172.

 39. Wei L, He W, Malik A, Su R, Cui L, Manavalan B. Computational prediction and interpretation of cell-specific replica-
tion origin sites from multiple eukaryotes by exploiting stacking framework. Brief Bioinform. 2021;22(4):bbaa75.

Page 18 of 18Fan and Peng BMC Bioinformatics (2022) 23:272

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 40. Zhang WY, Xu J, Wang J, Zhou YK, Chen W, Du PF. KNIndex: a comprehensive database of physicochemical proper-
ties for k-tuple nucleotides. Brief Bioinform. 2021;22(4):bbaa284.

 41. Xu H, Jia P, Zhao Z. Deep4mC: systematic assessment and computational prediction for DNA N4-methylcytosine
sites by deep learning. Brief Bioinform. 2021;22(3):099.

 42. Bi Y, Xiang D, Ge Z, Li F, Jia C, Song J. An interpretable prediction model for identifying N7-methylguanosine sites
based on XGBoost and SHAP. Mol Ther Nucleic Acids. 2020;22:362–72.

 43. Feng C-Q, Zhang Z-Y, Zhu X-J, Lin Y, Chen W, Tang H, et al. iTerm-PseKNC: a sequence-based tool for predicting
bacterial transcriptional terminators. Bioinformatics. 2019;35(9):1469–77.

 44. Burges CJ. A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc. 1998;2(2):121–67.
 45. Keerthi SS, Lin C-J. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput.

2003;15(7):1667–89.
 46. Wen Z, Shi J, Li Q, He B, Chen J. ThunderSVM: a fast SVM library on GPUs and CPUs. J Mach Learn Res.

2018;19(1):797–801.
 47. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;46:1189–232.
 48. Tyree S, Weinberger KQ, Agrawal K, Paykin J, editors. Parallel boosted regression trees for web search ranking. In:

Proceedings of the 20th international conference on World wide web; 2011.
 49. Song J, Li F, Leier A, Marquez-Lago TT, Akutsu T, Haffari G, et al. PROSPERous: high-throughput prediction of sub-

strate cleavage sites for 90 proteases with improved accuracy. Bioinformatics. 2018;34(4):684–7.
 50. Ichikawa D, Saito T, Ujita W, Oyama H. How can machine-learning methods assist in virtual screening for hyperurice-

mia? A healthcare machine-learning approach. J Biomed Inform. 2016;64:20–4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	StackEPI: identification of cell line-specific enhancer–promoter interactions based on stacking ensemble learning
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Results and discussion
	Pairwise evaluation of 6 feature encodings for 5 machine learning algorithms
	Ensemble results of candidate meta-classifiers
	StackEPI-faster: faster and stronger predictor of EPIs
	Compared with public methods
	Faster training speed

	Conclusions
	Methods
	The benchmark dataset
	Feature encodings
	Conventional classifiers
	Stacking structure
	Model training setup
	Performance evaluation

	Acknowledgements
	References

