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Abstract
Neoantigens have attracted attention as biomarkers or therapeutic targets. However, 
accurate prediction of neoantigens is still challenging, especially in terms of its ac-
curacy and cost. Variant detection using RNA sequencing (RNA-seq) data has been 
reported to be a low-accuracy but cost-effective tool, but the feasibility of RNA-seq 
data for neoantigen prediction has not been fully examined. In the present study, 
we used whole-exome sequencing (WES) and RNA-seq data of tumor and matched 
normal samples from six breast cancer patients to evaluate the utility of RNA-seq 
data instead of WES data in variant calling to detect neoantigen candidates. Somatic 
variants were called in three protocols using: (i) tumor and normal WES data (DNA 
method, Dm); (ii) tumor and normal RNA-seq data (RNA method, Rm); and (iii) com-
bination of tumor RNA-seq and normal WES data (Combination method, Cm). We 
found that the Rm had both high false-positive and high false-negative rates because 
this method depended greatly on the expression status of normal transcripts. When 
we compared the results of Dm with those of Cm, only 14% of the neoantigen can-
didates detected in Dm were identified in Cm, but the majority of the missed can-
didates lacked coverage or variant allele reads in the tumor RNA. In contrast, about 
70% of the neoepitope candidates with higher expression and rich mutant transcripts 
could be detected in Cm. Our results showed that Cm could be an efficient and a 
cost-effective approach to predict highly expressed neoantigens in tumor samples.
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1  | INTRODUC TION

Neoantigens are tumor-specific antigens derived from somatic 
variants with amino acid substitutions. A number of studies re-
ported that neoantigens play principal roles in antitumor immune 
responses.1,2 It has been reported, through phase I clinical trials 
of personalized neoantigen vaccines for melanoma and glioblas-
toma, that vaccination induced neoantigen-specific T-cell re-
sponses, which suggested the effectiveness of this therapeutic 
strategy.3-5 Other studies reported that the landscape of neoan-
tigens is associated with clinical outcome6 and with response to 
immune checkpoint inhibitors.7,8 Hence, identification of neoan-
tigens is critically important to identify potential biomarkers and 
immunotherapeutic targets.

Recent improvements in next-generation sequencing have 
enabled rapid and high throughput prediction of neoantigens. 
The current standard method for prediction of neoantigens 
consists of four steps:9-11 (i) identification of somatic variants 
through comparison of WES data from tumor and normal mate-
rials; (ii) gene expression analysis by RNA-seq of tumor materi-
als; (iii) selection of nonsynonymous variants with expression in 
tumor samples; and (iv) prediction of binding affinities of a mu-
tated region with the MHC of patients by use of in silico predic-
tion algorithms such as NetMHCpan.12 Although this approach 
could comprehensively detect candidate neoantigens and has 
been used in clinical trials,3-5 many challenges remain. One of 
the critical problems of this approach is the cost of obtaining 
multiple sequencing data, even though the cost of next-genera-
tion sequencing is decreasing.

RNA-seq data, which are commonly used for gene expression 
analysis, gene fusion detection, and identification of splice events, 
can be used to detect somatic variants. Previous studies showed 
that variant detection using RNA-seq data is a feasible and cost-ef-
fective tool,13-17 whereas this approach is still challenging in terms 
of its low accuracy. Compared with the use of WES data, the use 
of RNA-seq data in variant calling is error-prone owing to several 
issues, including alignment errors near splice junctions, errors pro-
voked during reverse transcription, and RNA-editing sites.15 In addi-
tion, low coverage and low expression in RNA-seq data are the main 
causes for missing variants in variant calling with RNA-seq data.18 
However, gene expression and the presence of mutant transcripts 
are indispensable factors for neoantigen candidates, so the matter 
of missing variants due to low coverage and expression is considered 
permissible for prediction of neoantigen candidates. RNA-seq has 
the potential to enable prediction of neoantigens with increased ef-
ficiency and lower cost; however, this possibility has not been fully 
examined.

In the present study, we evaluated the utility of RNA-seq in the 
prediction of neoantigens by using breast cancer and matched nor-
mal samples from six patients. We established three protocols for 
prediction of neoantigens: (i) variant calling with tumor and normal 
WES data (DNA method, Dm); (ii) tumor and normal RNA-seq data 
(RNA method, Rm); and (iii) combination of tumor RNA-seq data and 

normal WES data (Combination method, Cm). We examined charac-
teristics such as coverage, gene expression, and type of base sub-
stitution for unique or shared neoantigen candidates among each 
method. We observed that Cm could detect candidate neoantigens, 
especially those that have higher expression levels and rich variant 
allele reads in the tumor RNA, and that Cm could be an alternative 
approach for predicting neoantigens.

2  | MATERIAL S AND METHODS

2.1 | Patients and samples

Six patients with breast cancer who underwent surgical resection 
at University of Tsukuba Hospital were included in this study. All 
the patients had hormone receptor-positive and human epidermal 
growth factor receptor 2-negative invasive carcinoma. Median 
age at diagnosis was 65 years (range, 39-74) and one male patient 
(BC06) was included. Two patients (BC02 and BC07) underwent 
neoadjuvant endocrine therapy, and one patient (BC02) developed 
recurrence in the lung two months after surgery. Clinicopathologic 
characteristics of the patients are shown in Table 1. The study was 
approved by the ethics committee of University of Tsukuba Hospital 
(H29-069), and all the patients provided written informed consent.

Paired tumor and matched normal breast tissue blocks, collected 
from all the patients and cut into several slices immediately after 
surgery, were prepared as fresh-frozen tissues. Peripheral blood 
samples were obtained from four patients (BC02, 04, 06, and 07) as 
normal DNA materials. Genomic DNA samples were extracted from 
the paired tumor and normal fresh-frozen slices by use of a DNeasy 
Blood & Tissue Kit (Qiagen, Hilden, Germany), according to the 
manufacturer’s protocol. Extraction of DNA from peripheral blood 
samples was carried out using a QuickGene DNA whole blood kit L 
(Kurabo Industries Ltd., Osaka, Japan) and QuickGene-610L (Fujifilm, 
Tokyo, Japan). Total RNA was extracted from the paired fresh-frozen 
slices by use of a TRIzol reagent (Invitrogen, Carlsbad, CA, USA).

2.2 | Whole-exome sequencing and RNA-seq

Twelve genomic DNA samples (six from tumor tissue, two from 
matched normal breast tissue, and four from peripheral blood) un-
derwent library construction by use of a SureSelectXT Human All 
Exon V6 (Agilent Technologies, Santa Clara, CA, USA). The captured 
DNA libraries were sequenced with paired-end reads of 150 bp on a 
NovaSeq6000 (Illumina, San Diego, CA, USA).

RNA purification was carried out using a NEBNext rRNA 
Depletion Kit (New England Biolabs, Ipswich, MA, USA) for the 
normal breast tissue of BC02 and using a NEBNext Poly(A) mRNA 
Magnetic Isolation Module (New England Biolabs) for the other 11 
samples according to RNA integrity measured with an Agilent 2100 
Bioanalyzer (Agilent Technologies). The RNA libraries were con-
structed with a NEBNext Ultra Directional RNA Library Prep Kit for 
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Illumina (New England Biolabs). These libraries were sequenced with 
paired-end reads of 36 bp on a NextSeq500 (Illumina).

2.3 | Mapping and data cleanup

We used BWA-MEM (v0.7.17)19 for WES and STAR aligner (v2.7.3a)20 for 
RNA-seq data to align to the reference genome (hg38, https://genome.
ucsc.edu/). Alignment and data cleanup were carried out following the 
workflow of Genome Analysis Toolkit (GATK)21 Best Practices22 except 
for the addition of LeftAlignIndels (GATK v4.1.4.1) at the end of the RNA-
seq data procedure to adjust for differences in indel positions between 
aligners (Doc S1).

2.4 | Gene expression quantification and tumor 
purity estimation

We used kallisto (v0.46.1)23 on tumor RNA FASTQ files with Ensembl 
reference transcriptomes (GRCh38 release 99, http://jan20 20.archi 
ve.ensem bl.org/)24 and subsequently used sleuth (v0.30.0)25 for 
evaluation of gene-level expression. Tumor purity was calculated 
from the expression data using ESTIMATE (v1.0.13),26 a package of 
R (v3.6.3, https://www.R-proje ct.org/).27

2.5 | Variant calling and annotation

We tested three methods of variant calling: (i) that with tumor and 
normal WES data, named the DNA method (Dm); (ii) that with tumor 
and normal RNA-seq data, named the RNA method (Rm); and (iii) 
that with tumor RNA-seq data and normal WES data, named the 
Combination method (Cm).

For variant calling in the Dm, we used Mutect2 (GATK) with the 
default filtering thresholds.

For Rm and Cm, we used VarScan2 (v2.4.4),28 which accepts not 
only DNA data but also RNA-seq data, and applied the parameters 
based on TCGA-ICGC DREAM-3 SNV Challenge results, adding the 
estimated tumor purity and adjusting the trimmed read length (Doc 
S1). To filter potential false-positive variants often observed in variant 
calling with RNA-seq data,29-33 we applied four filtering methods of 

SNPiR15 on the Rm and Cm: (i) removal of variants located in repet-
itive regions in RepeatMasker34 track (hg38); (ii) removal of variants 
located in homopolymer bases of ≥5 bp; (iii) removal of variants caused 
by reads mapped to multiple sites using BLAT;35 and (iv) removal of 
variants registered as RNA-editing sites in RADAR (version 2).36

The VCF files were normalized using vt (v0.5772)37 and annotated 
using the Ensembl Variant Effect Predictor (VEP v99).38 We excluded 
variants located in immunoglobulin and HLA genes because alignment of 
these highly polymorphic regions is error-prone and requires specialized 
analysis tools.39,40

2.6 | Prediction of neoantigens

Human leukocyte antigen class I alleles of each patient were deter-
mined from normal DNA FASTQ files using HLA-HD (v1.2.0.1).41 The 
annotated VCF files were analyzed using pVACseq, a tool of pVAC-
tools (v1.5.9),42 with the default setting except for turning off the 
coverage and VAF filters. We used all MHC class I binding algorithms 
implemented in pVACseq to predict HLA class I (A, B, or C) binding 7- 
to 11-mer epitopes. The epitopes with a median IC50 binding score 
≤500 nM were chosen as neoantigen candidates. Somatic variants 
that generate neoantigen candidates were manually checked using 
Integrative Genomics Viewer (v2.8.2).43

The general workflow of neoantigen prediction and de-
tailed methods of data processing are described in Figure 1 and 
Supplementary Methods (Doc S1), respectively.

2.7 | Statistical analysis

The Mann-Whitney U test was used to compare coverage and VAF 
between two groups. For multiple comparison of gene expression 
levels and variant allele coverage among method unique variants 
and shared variants, the Kruskal-Wallis test followed by the Mann-
Whitney U test with Bonferroni adjustment was used. Missing val-
ues of coverage, VAF, and gene expression level were excluded from 
the analysis. The Pearson chi-squared test followed by a Bonferroni 
post hoc test was used to compare the proportion of coding variants 
among method unique variants and shared variants. All statistical 
analyses were carried out using R (v3.6.3).

TA B L E  1   Clinicopathological characteristics of six patients

Patient Age (y) Gender Neoadjuvant therapy Histology
Hormone 
receptor HER2

Ki-67 
LI (%)

Pathological 
TNM

BC02 64 F Letrozole 9 months IDC Positive Negative 15 ypT2N1a

BC03 39 F – IDC Positive Negative 25 pT2N1a

BC04 66 F – ILC Positive Negative 33 pT4bN2a

BC05 72 F – IDC Positive Negative 20 pT2N0

BC06 49 M – IDC Positive Negative 30 pT1cN1a

BC07 74 F Letrozole 4 months IDC Positive Negative 20 ypT4bN1a

IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; HER2, human epidermal growth factor receptor 2; LI, labeling index.

https://genome.ucsc.edu/
https://genome.ucsc.edu/
http://jan2020.archive.ensembl.org/
http://jan2020.archive.ensembl.org/
https://www.R-project.org/)
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F I G U R E  1   Workflow of neoantigen prediction in this study. WES and RNA-seq data were mapped to the reference genome by BWA-
MEM and STAR, respectively. After data cleanup, somatic variants were called in three combinations: tumor and normal WES data (Dm); 
tumor and normal RNA-seq data (Rm); and tumor RNA-seq and normal WES data (Cm). In the Dm, somatic variant calling was carried out by 
Mutect2 (GATK). In the Cm and Rm, VarScan2 and a part of SNPiR were used for variant detection and subsequent filtering, respectively. 
After functional annotation, neoantigen prediction was carried out by pVACseq with individual human leukocyte antigen (HLA) class I alleles. 
BAM, binary alignment map; Cm, Combination method; Dm, DNA method; GATK, Genome Analysis Toolkit; Rm, RNA method; RNA-seq, 
RNA sequencing; VCF, variant call format; VEP, Variant Effect Predictor; WES, whole-exome sequencing
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3  | RESULTS

3.1 | Number of somatic variants detected in each 
method

Whole-exome sequencing and RNA-seq were carried out on six 
breast cancer tissues and matched normal samples. Respective 
median numbers of the total and mapped reads were 158.9 mil-
lion and 142.9 million for WES data, and 37.9 million and 31.5 
million for RNA-seq data, respectively (Table S1). Tumor purities 
of each sample, calculated from the ESTIMATE scores, were ap-
plied to variant calling in Cm and Rm (Table S2). Somatic variants 
were called by Mutect2 in Dm and by VarScan2 in Cm and Rm, 
and the respective total numbers of the somatic variants in all 
the patients detected in Dm, Cm, and Rm were 3443, 401, and 
54 (Figure 2). Detailed numbers of the variants for each patient 
are shown in Table S3. The numbers of variants shared among 
the methods were small, especially in Rm, with only five common 
variants being detected in all the methods.

3.2 | Comparison of the RNA method and the 
Combination method variants

Because the difference between Cm and Rm is based on whether 
the normal sample is DNA or RNA, we first compared the results 
of Cm and Rm. A large number of the variants detected in Cm were 
not detected in Rm because there was either no or low coverage in 
the normal RNA at the variant sites (Figure 3A). Of the Rm unique 

variants, 68% (32 of 47) were classified as germline or LOH in Cm be-
cause of wild-type allele-specific expression in the normal RNA; 30% 
(14 of 47) was not detected in Cm, mainly owing to low coverage in 
the normal DNA; and one was considered an artifactual variant allele 
in Cm (Figure 3B). Among the 14 Rm unique variants not detected 
in Cm, all the variants were located in the noncoding region, and 12 
variants were deposited in dbSNP (build 146). Of note, most of the 
Rm unique somatic variants (45 of 47) were included in the dbSNP 
(build 146) database.

3.3 | Comparison of the DNA method and the 
Combination method variants

When comparing Dm and Cm, 3353 somatic variants were detected 
only in Dm; 311 only in Cm; and 90 in both methods. Features of 
total coverage and VAF in the tumor DNA for the Dm variants and in 
the tumor RNA for the Cm variants are shown in Figure 4A. The Cm 
variants showed a high and wide range of VAF: median 0.40 (IQR, 
0.22-0.75), and relatively low coverage: median 8.0 (4.0-17.0). In con-
trast, the Dm variants showed lower VAF: median 0.13 (IQR, 0.08-
0.22), and median coverage was 69.0 (25.0-167.0). Subsequently, we 
examined the coverage and VAF of the Dm unique variants in the 
tumor RNA and of the Cm unique variants in the tumor DNA to in-
vestigate the reasons for the inconsistency between the results of 
these methods (Figure 4B). A large number of the Dm unique vari-
ants showed low coverage in the tumor RNA and 74% (2471 of 3353) 
had no reads, whereas the Cm unique variants had a relatively high 
coverage in the tumor DNA: median 57.0 (IQR, 5.5-168.5). However, 

F I G U R E  2   Number of intersections 
of somatic variants called in the three 
methods (sum of all patients). Cm, 
Combination method; Dm, DNA method; 
Rm, RNA method
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F I G U R E  3   Characteristics of the 
RNA method unique variants compared 
to the combination method. A, Violin 
plot of total coverage in the normal RNA 
for the Cm and Rm unique variants. B, 
Distribution of VAF (x-axis) and total 
coverage (y-axis) in the normal DNA for 
the Rm unique variants. The shape of 
each plot shows the classifications in the 
Cm. Cm, Combination method; Rm, RNA 
method; VAF, variant allele frequency

F I G U R E  4   Characteristics of somatic variants detected in the DNA method and the Combination method. A, Distribution of VAF (x-axis) 
and total coverage (y-axis) in the tumor DNA for the Dm variants and in the tumor RNA for the Cm variants. B, Left and right scatterplots 
show the distribution of VAF (x-axis) and total coverage (y-axis) in the tumor RNA for variants detected in the Dm and in the tumor DNA 
for variants detected in the Cm, respectively. C, Proportion of base substitution patterns for each method’s unique and shared variants. D, 
Violin plot of TPM for each method’s unique and shared variants. Cm, Combination method; Del, deletion; Dm, DNA method; Ins, insertion; 
TPM, transcripts per million; VAF, variant allele frequency
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74% (231 of 311) of the Cm unique variants had no variant allele read 
in the tumor DNA. The shared variants showed higher coverage and 
VAF in the tumor DNA than those of the Cm unique variants, and 
coverage and VAF were also higher in the tumor RNA than those 
of the Dm unique variants: median coverage of 192.5 (Cm unique 
variants, median: 57.0, P < .001, Mann-Whitney U test) and median 
VAF of 0.16 (Cm unique variants, median: 0.0, P < .001) in the tumor 
DNA, and median coverage of 16.0 (Dm unique variants, median: 0.0, 
P < .001) and median VAF of 0.31 (Dm unique variants, median: 0.0, 
P < .001) in the tumor RNA. Next, we examined the proportion of 
base substitution patterns of the Dm unique, Cm unique, and shared 
variants (Figure 4C). Proportion of A-to-G and T-to-C substitutions, 
which are known as common substitutions of human RNA editing,44 
were higher in the Cm unique variants than in the Dm unique and 
shared variants although the 59 Cm unique variants had already 
been excluded as known RNA-editing sites. Distributions of expres-
sion quantification of genes, in which variants were detected, in the 
tumor samples are shown in Figure 4D. Median transcripts per mil-
lion (TPM) of the Dm unique, Cm unique, and shared variants were 
4.8 (IQR, 0.07-22.3), 21.9 (7.5-51.8), and 38.7 (17.9-102.5), respec-
tively. The Kruskal-Wallis test showed significant differences among 
these groups (P < .001), and multiple comparison tests showed sig-
nificant differences in gene expression levels among these three 
groups: that of the shared variants was highest and that of the Dm 
unique variants was lowest (P < .001).

As a result of variant annotation with VEP, the proportions of 
variants in the protein-coding regions were 23% (787 of 3353) in the 
Dm unique, 31% (95 of 311) in the Cm unique, and 69% (62 of 90) in 
the shared variants (Figure S1). Differences among the three groups 
were significant (P < .001, chi-squared test): the shared variants had 
the highest proportion and the Dm unique variants had the lowest 
(Table S4).

3.4 | Neoantigen candidates detected in the DNA 
method and in the Combination method

With in silico prediction of neoantigen, we used multiple prediction 
algorithms on somatic variants detected in Dm and Cm with patients’ 
individual HLA-A, -B, and -C alleles determined by HLA-HD. There 
were 154 epitope candidates detected in the Dm only, 28 candidates 
detected in the Cm only, and 26 candidates shared by both methods 
(Figure 5A). Detailed information on these neoantigen candidates is 
shown in Table S5.

First, we examined why the Dm unique epitope candidates 
were missed in the Cm, by manually checking with Integrative 
Genomics Viewer and also by checking the filters in VarScan2 to 
determine if the variant allele was present in the tumor RNA. A 
large proportion of the Dm unique candidates (135 of 154) was 
not present in the output files of VarScan2, mainly owing to no 
coverage (n = 29) and to no or low variant allele reads (n = 97) in 
the tumor RNA. There were 12 insertion/deletion (two insertions 
and 10 deletions) that generated the Dm unique candidates, and 

eight of the 10 deletions were misidentified as soft clipped reads: 
bases in the 5′ or 3′ ends of the reads that are not aligned to the 
reference sequence (Table 2).

Second, we examined the characteristics of the 28 Cm unique 
epitope candidates. Two candidates were generated from variants in 
the variant-clustered reads and excluded because these were con-
sidered false-positive owing to mapping error. Of the 26 candidates, 
one had six variant allele reads at the DNA level (VAF of 0.042) but 
was not detected in Dm, and five of the remaining 25 candidates that 
had no variant allele reads in the tumor DNA were A-to-G or T-to-C 
substitutions (Table 3).

Third, we compared gene expression levels of the Dm unique 
epitope candidates, Cm unique ones (excluding two candidates con-
sidered false-positive), and the shared ones. Median TPM of the Dm 
unique, Cm unique, and shared candidates were 6.0 (IQR, 2.7-16.7), 
11.6 (6.7-23.4), and 22.0 (9.6-44.3), respectively. There were signifi-
cant differences among these three groups (P < .001, Kruskal-Wallis 

F I G U R E  5   Number and features of neoantigen candidates 
detected in the DNA method and the Combination method. A, 
Venn diagram of neoepitope candidates detected in the Dm and 
Cm. B, Scatterplot of variant allele coverage in the tumor RNA 
(x-axis) and TPM (y-axis) for the Dm unique, Cm unique, and shared 
neoepitope candidates. Cm, Combination method; Dm, DNA 
method; TPM, transcripts per million
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test). The shared ones had higher expression levels than those of the 
Dm unique ones (P < .001, Mann-Whitney U test with the Bonferroni 
adjustment), but no significant differences were observed between 
the Cm unique ones and the Dm unique ones (P = .29) and the shared 
ones (P = .23) (Figure S2A).

Theoretically, not only high expression levels in the tumor but 
also actual expression of the mutant alleles, rich variant allele reads 
in the tumor RNA, is desirable as neoantigen candidates, especially 
for neoantigen-targeted therapies. The means of variant allele cov-
erage in the tumor RNA were 0 (IQR, 0-1.0), 2.0 (1.3-3.0), and 5.5 
(3.3-9.8) in the Dm unique, Cm unique, and shared epitope candi-
dates, respectively. The Kruskal-Wallis test (P < .001) followed by a 
post hoc test showed significant differences among the three groups 
(Figure S2B). Finally, we assessed the number of mutant allele reads 
in the tumor RNA in conjunction with the gene expression levels 
(Figure 5B). All the Dm unique candidates with >1000 TPM (n = 5) 
were derived from mitochondrial DNA, and three of the five can-
didates, which also had abundant variant allele reads in the tumor 
RNA, were filtered in Cm by BLAT filter because of mapping to multi-
ple sites. Of the neoepitope candidates with >10 TPM and variant al-
lele reads in the tumor RNA >5, 68% (13 of 19) could be identified in 
the Cm. These results showed that neoepitope candidates detected 
in both methods had higher gene expression levels and a rich amount 
of mutant transcripts.

4  | DISCUSSION

In the present study, we investigated whether we could detect neo-
antigen candidates efficiently using RNA-seq data instead of WES 
data in the variant calling step. Our results showed that the method 

using RNA-seq data for both tumor and normal tissues (RNA method, 
Rm) had both high false-positive and high false-negative rates and is 
not suitable for neoantigen prediction, whereas the method com-
bining tumor RNA-seq data and normal WES data (Combination 
method, Cm) may be an efficient neoantigen prediction method be-
cause this method could detect neoepitope candidates that showed 
high expression levels and abundant variant allele reads in the tumor 
RNA. Although Cm requires normal WES data, we propose that Cm 
could be a cost-effective alternative strategy to the conventional 
method (DNA method, Dm) because it omits the most costly tumor 
WES, which generally demands higher coverage than the normal 
WES owing to tumor heterogeneity.45

The main causes for the high false-positive and false-negative 
rates in Rm were the misidentification of germline variants as so-
matic ones when there were no variant alleles in the normal RNA, 
or the overlooking of somatic variants when there were no or few 
transcripts in the normal sample (Figure 3). Although the accuracy 
of variant calling in the Rm depended greatly on the expression 
status of the normal transcripts, Cm could avoid these types of 
errors caused by transcripts from normal samples. As a result of 
comparing the somatic variants between Dm and Cm, a majority 
of variants detected in Dm were missed in Cm, mainly owing to 
low coverage in the tumor RNA (Figure 4B). The detection rate 
was improved at the level of neoantigen candidates (Figure 5A), 
but still 86% (154 of 180) of candidates detected in the Dm were 
not detected in the Cm, mainly owing to no or few variant allele 
reads in the tumor RNA (Table 2). Previous studies regarding so-
matic variant detection using RNA-seq data have also reported 
a small overlap between DNA and RNA, with recall rates of ap-
proximately 10%-20% in the exonic regions, and the fundamental 
factor of the missing variants at the RNA level was low expres-
sion.14,16-18 However, not only the gene expression but also the 
assured existence of mutant transcripts in tumor tissue is a crucial 
factor for precise identification of true neoantigens;46 therefore, 
neoepitopes missed for this reason could be permissible in terms 
of neoantigen prediction. Actually, about 70% of neoepitope can-
didates with higher expression and abundant variant allele reads in 
the tumor RNA could be detected in the Cm (Figure 5B).

In contrast, a large proportion of the Cm unique variants had no 
variant alleles in the tumor DNA (Figure 4B). A possible reason for 
this could be RNA editing. RNA editing is the post-transcriptional 
process leading to nucleotide substitution in mRNA, and the major 
types of human RNA editing are A-to-I substitution catalyzed by 
Adenosine Deaminase Acting on RNA (ADAR).47 Aberrant regulation 

TA B L E  2   Reasons why the DNA method unique neoantigen 
candidates were not detected in the Combination method

Total number 154

Not detected in VarScan2 135 (88%)

No coverage in the tumor RNA 29

Low variant allele coverage (≤3) 97

Misidentified indels 8

Low mapping quality 1

Filtered by VarScan2 filters 14 (9%)

Low VAF (<0.1) 2

Short read length (<33) 8

Low variant base quality (<30) 6

Difference of mapping quality between REF and  
VAR (>10)

1

Low variant allele coverage (<3) 1

Filtered by SNPiR filters 5 (3%)

Not uniquely mapped reads (BLAT) 4

Repetitive region in RepeatMasker 1

REF, reference; VAR, variant.

TA B L E  3   Characteristics of the Combination method unique 
neoantigen candidates

Total number 28

Likely false positive due to mapping error 2 (7%)

No variant allele reads in the tumor DNA 25 (89%)

A-to-G and T-to-C substitutions 5

Existing variant allele reads in the tumor DNA 1 (4%)
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of RNA editing is reported in multiple cancer types,48-50 and a recent 
study showed that several epitopes generated from RNA editing 
have a function to elicit the immune response as cancer antigens.51 
Although we excluded variants known as RNA-editing sites in the 
present study to verify the accuracy of the variant calling step 
among different methods, the proportion of A-to-G and T-to-C sub-
stitutions was high in Cm (Figure 4C). The Cm has a potential to find 
novel RNA editing-derived epitopes.

Another possible cause of the Cm unique variants is techni-
cal artifacts or true variants not found in the tumor DNA. Variant 
calling with RNA-seq data is known to have a high false-positive 
rate due to several reasons such as alignment or sequencing errors 
around the splice junction or repetitive regions, and misalignment 
to paralogous regions.29-32 Although we reduced a large amount of 
false-positive variants by adding several filters of SNPiR,15 some 
of the Cm unique epitope candidates were derived from the vari-
ant-clustered reads that considered mapping error. It is probably 
effective to add a filter to remove clustered variants for improv-
ing the accuracy of the Cm. As reported previously, variant call-
ing with RNA-seq data may find true mutations that were missed 
at the DNA level or a novel RNA-editing site.14,16 In the present 
study, we detected one epitope candidate missed in the Dm and 
25 Cm unique candidates or novel RNA-editing sites (Table 3). 
Hence, modifying the filters and manual checking are necessary 
not only to reduce false-positive variants but also to detect true 
neoantigen candidates identified only at the RNA level.

We acknowledge that there are several limitations to the present 
study. First, this study showed a small overlap between Dm and Cm 
even in the coding region and one that was slightly inferior to those 
shown in previous studies.14,16-18 Possible reasons are the low num-
ber of RNA-seq reads and short read length (36 bp). The majority of 
RNA-seq data used in previous studies were with reads of ≥50 million 
and read lengths of ≥50 bp. In the present study, the number of total 
reads in the tumor RNA-seq data was <40 million, whereas it has been 
shown that total reads ≥50 million are required to improve the detec-
tion accuracy of mutant mRNA.46 In addition, a short read length has 
the risk of missing indels52 and multiple mapping, especially around 
the splice junction. In fact, a majority of indels could not be detected 
correctly in the Cm in the present study and some neoantigen candi-
dates were filtered by multiple mapping (Table 2). Neoantigens derived 
from indels are known to be highly immunogenic,53 and accurate iden-
tification of indels is essential for neoantigen candidate prediction. It 
has been reported that STAR aligner misidentified indels as soft clips 
at read lengths ≤50 bp, but the detection rate of indels improved at 
read lengths of 100 bp.54 As several software programs have been de-
veloped for indel-sensitive detection with RNA-seq data,55,56 the de-
tection rate of indels could be improved using longer read length and 
appropriate tools. Moreover, longer read length is known to improve 
the detection of the splice junction.57 Further investigation regarding 
appropriate library size and read length in RNA-seq is necessary to 
optimize neoantigen prediction using RNA-seq data.

Second, although we applied the GATK Best Practices pipeline, 
one of the most popular workflows for processing next-generation 
sequencing data, and major variant calling software (Mutect2 and 
VarScan2), it has been reported that the results of somatic calls dif-
fer depending on the variant calling algorithms,58 and the choice of 
alignment tools also affects the results of variant detection with 
RNA-seq data.59 Somatic variant calling using RNA-seq data is still 
challenging and a standardized analytical pipeline has not yet been 
established, although several algorithms were developed for RNA-
seq data analysis.15-17 Sophistication of the analysis pipeline for 
RNA-seq data is needed to improve the accuracy of variant and neo-
antigen candidate discovery in Cm.

Third, neoantigen prediction using in silico MHC-binding predic-
tors is not sufficient to determine the immunogenicity of the neo-
antigens. There are many factors associated with immunogenicity 
of neoepitopes besides MHC peptide-binding affinity, such as T-cell 
recognition, processing in tumor, T-cell repertoires of individual pa-
tients, and clonality of the neoantigen.60 Experimental validations 
are necessary to detect truly immunogenic neoepitopes.

In summary, the present study showed that the neoantigen 
prediction method using tumor RNA-seq data and normal WES 
data could detect neoantigen candidates that have higher expres-
sion and rich variant transcripts and also has a potential to find 
novel neoantigen candidates that were not detected using the 
conventional strategy. The Cm has potential clinical applications, 
including vaccine target detection and prediction of therapeutic 
effects of immune checkpoint inhibitors that have been reported 
to be associated with the degree of tumor mutation burdens.7,8 
Although we focused on SNV in the present study, several soft-
ware programs for predicting neoantigens derived from fusion 
genes61 and alternative splice events62,63 have been developed 
using RNA-seq data. These variants are known to be an important 
source of potentially immunogenic neoantigens;64-66 therefore, 
further utilization of RNA-seq data in addition to Cm may provide 
a comprehensive landscape of immunogenic neoantigens.
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