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GproDIA enables data-independent acquisition
glycoproteomics with comprehensive statistical
control

1234 12,3,45X &

Yi Yang 15 Guoqguan Yan', Siyuan Kong1, Mengxi Wu', Pengyuan Yang , Weigian Cao

Liang Qiao =

Large-scale profiling of intact glycopeptides is critical but challenging in glycoproteomics.
Data independent acquisition (DIA) is an emerging technology with deep proteome coverage
and accurate quantitative capability in proteomics studies, but is still in the early stage
of development in the field of glycoproteomics. We propose GproDIA, a framework for
the proteome-wide characterization of intact glycopeptides from DIA data with compre-
hensive statistical control by a 2-dimentional false discovery rate approach and a glycoform
inference algorithm, enabling accurate identification of intact glycopeptides using wide iso-
lation windows. We further utilize a semi-empirical spectrum prediction strategy to expand
the coverage of spectral libraries of glycopeptides. We benchmark our method for
N-glycopeptide profiling on DIA data of yeast and human serum samples, demonstrating that
DIA with GproDIA outperforms the data-dependent acquisition-based methods for glyco-
proteomics in terms of capacity and data completeness of identification, as well as accuracy
and precision of quantification. We expect that this work can provide a powerful tool for
glycoproteomic studies.
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ARTICLE

rotein glycosylation is one of the most abundant and het-

erogeneous post-translational modifications (PTMs) that

provides great proteomic diversity and plays a key role in
various biological processes!=3, even the host-pathogen interac-
tion of the ongoing coronavirus disease 2019 pandemic*. Precise
characterization of protein glycosylation is critical for under-
standing mechanism of diseases™®, discovery of biomarkers for
diagnosis’, and development of drugs and vaccines®. The high
heterogeneity of glycans across glycosites results in an increased
number of glycoproteoforms. Profiling of intact glycopeptide
provides the opportunity of simultaneous analysis of glycans,
glycosite occupancy and site-specific glycosylation on a
proteome-wide scale’, and is an imperative but still challenging
component to modern glycoproteomic studies!”.

Currently, liquid chromatography coupled with tandem mass
spectrometry (LC-MS/MS) is the method of choice widely used in
proteomics and glycoproteomics!!:12, Novel MS/MS fragmenta-
tion methods derived from higher-energy collisional dissociation
(HCD) and electron transfer dissociation (ETD), such as stepped
collision energy HCD (SCE-HCD)!3 and ETD with supplemental
HCD (EThcD)!4, have been proven powerful for intact glyco-
peptides profiling. The most common strategy for glycopeptide
profiling uses the data-dependent acquisition (DDA) approach, in
which MS/MS (MS2) fragmentation is triggered by precursor ions
observed in a full mass range survey scan (MS1). Various software
tools!®, such as Byonic!®, pGlyco!”!8, MSFragger-Glyco!®,
MetaMorpheus29, et al., have been developed for the interpreta-
tion of DDA data of intact glycopeptides. In pGlyco, compre-
hensive quality control has been developed with error rate
evaluation on all levels of matches to glycans, peptides and
glycopeptides'”-18, However, a major bottleneck of the DDA
approach is that the precursor selection constitutes a stochastic
element?!, resulting in the “missing value” problem.

To overcome this limitation, data-independent acquisition
(DIA) methods have been proposed*2-24, including a repre-
sentative variant named sequential window acquisition of all
theoretical mass spectra (SWATH-MS)2°, where the instrument
acquires fragmentation information of all precursor ions within
defined isolation windows in a systematic manner. DIA has been
reported to achieve deep proteome coverage with quantitative
consistency and accuracy for large-scale proteomic studies?®, and
is now starting to be applied to the field of glycoproteomics®”.
Based on standard DIA protocols developed for proteomics,
Zacchi et al. developed DIA analysis of intact glycopeptides to
measure the pattern of glycosylation at eight N-glycosites in
Saccharomyces cerevisiae®S. In their protocol, spectral libraries of
glycopeptides were generated using fragment ions from non-
glycosylated counterparts of each peptide and precursor masses
corresponding to various glycans. Sanda et al. reported detection
of intact IgG glycoforms from human plasma, where spectral
libraries were built by adding manually curated glycan fragment
Y ions?*30. Pan et al. built a spectral library containing both
peptide fragments and glycan Y ions, achieving site-specific N-
glycosylation analysis of six glycosites in IgM3!. Zhou et al.
developed a SWATH-MS method with optimized variable win-
dows for a set of target glycopeptides to allow accurate glycoform
measurement’2. These methods have achieved better sensitivity
than DDA for targeted analysis of glycoforms of several or a
dozen of glycoproteins. In 2019, Ye et al. proposed Glyco-DIA, a
DIA-based strategy for O-glycoproteomics, enabling high-
throughput quantitative O-GalNAc type glycoproteomic analy-
sis in complex biological samples33.

Error rate control for glycopeptide identification is essential but
particularly complicated in DIA analyses due to the increased
complexity of DIA MS/MS spectra originated from multiple co-
eluted precursors, especially when using wide isolation windows.

In the case of HCD MS/MS, the same set of fragment ions could
be generated for glycopeptides common in peptide sequence but
different in glycan, resulting in a high level of misinterpretations
of DIA data?’. Although a few studies have elucidated error rate
estimation for DDA-based glycopeptide analyses!”-34-30, statis-
tical control of DIA-based proteome-wide glycopeptides analyses,
to the best of our knowledge, has not been properly addressed.

Herein, we propose GproDIA, a pipeline that applies the
concept of peptide-centric DIA analysis to proteome-wide char-
acterization of intact glycopeptides. GproDIA provides compre-
hensive statistical control by a 2-dimentional (2D) false discovery
rate (FDR) approach and a glycoform inference algorithm,
enabling accurate glycopeptide identification using wide isolation
windows. We further utilize a semi-empirical spectrum prediction
strategy to expand the coverage of spectral libraries for glyco-
peptides. We benchmarked GproDIA for N-glycopeptide profil-
ing on DIA data of yeast samples, which only contain high-
mannose-type glycans, as well as human serum samples with
glycomes of much more complexity. The results demonstrate that
DIA with GproDIA outperforms DDA in terms of capacity and
data completeness of identification, as well as accuracy and pre-
cision of quantification.

Results

GproDIA enables characterization of intact glycopeptides from
DIA data. GproDIA was developed based on the principle of
peptide-centric analysis, which has been commonly used for the
detection of peptides from DIA data2®. The workflow is presented
in Fig. 1. First, a spectral library of glycopeptides was built by
DDA with pre-fractionation or using a long LC gradient. As LC
conditions in this study were different from those used for non-
glycosylated peptides, instead of using iRT?7 as exogenous stan-
dards for retention time (RT) normalization, an extra DDA
injection of the glycopeptides sample was performed with the
same LC condition as that used for DIA experiments. The shared
identifications between different LC conditions were used as
internal standards to calibrate library RT to the gradient used in
DIA. An example of RT calibration is shown in Supplementary
Fig. 1. The spectral library contained the RT of glycopeptides, the
precursor m/z, and m/z and intensities of annotated fragments in
SCE-HCD MS/MS including peptide fragments (b/y, with or
without one HexNAc residue and its cross-ring fragment)
and intact peptide with glycan fragments (Y) (Fig. 1la). Next,
three types of decoy libraries were generated by adding random
mass shifts to glycan fragment peaks (glycan decoy), reversing
the peptide sequences (peptide decoy), and performing the two
operations successively (both decoy) (Fig. 1b). The idea of gly-
can decoy by random mass shift was initially reported in
pGlyco3s.

OpenSWATH?3? was used to extract chromatogram data of the
target glycopeptides and the decoys from the DIA data (Fig. 1c),
and the extracted peak group features were scored using a semi-
supervised learning approach implemented by PyProphet40. The
peptide discriminant scores (D-scores) were computed using the
target peak groups and the glycan decoy peak groups as “targets”,
while the peptide decoy peak groups and the both decoy peak
groups as “decoys”. Glycan D-scores were computed using the
target peak groups and the peptide decoy peak groups as
“targets”, while the glycan decoy peak groups and the both decoy
peak groups as “decoys”. Error rates of identification were
estimated using a 2D FDR approach (Fig. 1d), which extends the
conventional FDR method in DIA for peptide identification?C to
the 2D condition. Indeed, the idea of performing two-tier quality
control on glycan and peptide levels has been reported in pGlyco
for DDA using decoys generated for both the peptide and glycan
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Fig. 1 The workflow of GproDIA. a Building a spectral library of glycopeptides
HexNAc or its cross-ring fragment) and glycan Y ions (red lines) by DDA. “J"

containing peptide ions (blue lines for b/y, and green lines for b/y with one
in peptide sequence indicates the N-glycosylation site. The glycan symbols

are as follows: a green circle or “"H" represents Hex; a blue square or “N" represents HexNAc. b Generating peptide decoys, glycan decoys and both decoys.
¢ Extracting chromatogram features of the target glycopeptides and the decoys from the DIA data. d Scoring the extracted features and estimating error

rates by a 2-dimentional FDR approach and a glycoform inference strategy. e

Performing multi-run alignment to reduce missing values. c-e Green color

indicates target peak groups, yellow indicates peptide decoy peak groups, blue indicates glycan decoy peak groups, and red indicates both decoy peak
groups. Details on the glycoform inference strategy is illustrated in Fig. 3 and Supplementary Fig. 11.

parts of a glycopeptide!718. Details of the DIA 2D FDR approach
are described in the “Methods” section. In brief, the distributions
of peptide and glycan D-scores of the targets and 3 types of
decoys were fitted using a bivariate four-groups mixture model.
The proportion of target peak groups for which the peptide and/
or glycan part was incorrect was estimated from the D-score
distributions of targets and 3 types of decoys. Local FDR (namely
posterior error probability, PEP), which is the probability of each
target peak group to be incorrect, was computed from the ratios
of corresponding bivariate densities of the incorrect and total
target peak groups with specified D-scores (Supplementary Fig. 2).
Global FDR (qg-value), which conveys the error introduced in the
whole reported results if we accept a peak group with specified
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D-scores as a positive identification, was then derived from PEP
by averaging PEPs of all the positive identifications. The 2D FDR
approach using glycan decoys by random mass shift aims to
indicate whether a glycan match is a random match and can
rule out false identifications in less complex samples, e.g., yeast in
this study. For complex samples such as sera, a glycoform
inference strategy was further implemented to resolve glycopep-
tide precursors with the same peptide sequence but different
glycans in one isolation window (Fig. 1d). Details of the
glycoform inference strategy are described in the “Inference of
glycoforms in wide isolation windows” subsection below.
Finally, TRIC*! is used for multi-run alignment to reduce
missing values (Fig. le).
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Benchmarking using data from yeast samples. For benchmark
purposes, we performed DDA and DIA experiments using an 1 h
LC gradient with 4 technical replicates (repeat injections of the
same sample), as well as a DDA using a 6 h LC gradient with 3
repeat injections, on a sample of fission yeast (Schizosacchar-
omyces pombe) glycopeptides. Glycopeptides were enriched using
zwitterioic hydrophilic interaction liquid chromatography (ZIC-
HILIC) method!”. The DDA data were searched using pGlyco3!8
against the Swiss-Prot S. pombe protein database and an
embedded glycan database, considering asparagines (N) in N-X-
S/T/C (X # P) sequons as potential glycosites. Glycopeptide FDR
cutoff at glycopeptide-spectrum match (GPSM) level was 1%. A
sample-specific spectral library (fission yeast SSL, Supplementary
Table 1 and Supplementary Data 1) was built using all the 6 h
DDA data and one injection of the 1 h DDA data for DIA data
analysis by GproDIA (detailed in the “Methods” section). For
DIA, results with g-value <5% in each run and g-value < 1% in at
least one run at peak group level, as well as g-value <1% at
glycopeptide level in the global context®), were reported. The
detected glycopeptide precursors, site-specific glycans and protein
glycosites are listed in Supplementary Data 2-4, and statistics of
the results are shown in Fig. 2 and Supplementary Fig. 3-5. In
average, 418 +2 (mean * standard deviation, sic passim) glyco-
peptide precursors of 348 + 2 site-specific glycans (corresponding
to 153 + 2 peptides) were detected per replicate run from the DIA
data (Fig. 2a), more than those identified from the 1 h DDA
(357 +£16 precursors and 293 +9 site-specific glycans corre-
sponding to 150 £ 8 peptides) and the 6 h DDA (351 + 12 pre-
cursors and 289 + 9 site-specific glycans corresponding to 127 +2
peptides). Notably, we use the term “site-specific glycan” referring
glycans on specific glycosylation sites in a group of glycoproteins
that are not distinguishable by protein inferencel”, rather than
positions of glycans on peptide sequences (see the “Methods”
section). Indeed, it is not very common that an N-glycopeptide
has more than one potential glycosylation sites.

From the 4 DIA replicate runs, 433 glycopeptide precursors of
358 site-specific glycans on 142 protein glycosites (corresponding
to 156 peptides of 79 proteins) were detected totally. Among
them, 91% (392) precursors, 93% (332) site-specific glycans, and
96% (136) glycosites were shared in all the replicates (Fig. 2b),
indicating much fewer missing values than those of 1 h DDA
(122/666 = 18% at precursor level, 119/504 = 24% at site-specific
glycan level, and 98/190 = 52% at glycosite level) and 6 h DDA
(246/461 = 53% at precursor level, 209/370 = 56% at site-specific
glycan level, and 102/139 = 73% at glycosite level). Considering
identifications shared in >50% (2/3 or 3/4) replicate runs, DIA
detected 21% more (418/346) glycopeptide precursors, 20% more
(346/288) site-specific glycans, 19% more (139/117) protein
glycosites, and 22% more (153/125) peptides than 6 h DDA, as
well as 84% more (418/227) precursors, 66% more (346/208) site-
specific glycans, 14% more (139/122) protein glycosites, and 20%
more (153/128) peptides than 1 h DDA (Fig. 2c). It should be
noticed that a less strict error rate control was applied on DDA
results (only a GPSM-level FDR cutoff) than that on DIA results
(peak group g-value and global glycopeptide q-value). Coeffi-
cients of variation (CVs) of glycopeptide precursor, site-specific
glycan and protein glycosite quantification results were calculated
among the technical replicates as shown in Fig. 2d. The median
CVs were ~11% using DIA, much smaller than those using 1 h
DDA (~17% at precursor level, ~23% at site-specific glycan level,
and ~37% at protein glycosite level) and 6 h DDA (>32% at all
levels). We also present the DIA results without multi-run
alignment (1% peak group g-value and 1% global glycopeptide q-
value) in Supplementary Fig. 6, wherein glycopeptides identifica-
tion and quantification results close to the ones with multi-run
alignment were obtained. The results indicate that the DIA

workflow using GproDIA outperforms DDA not due to the
multi-run alignment, but originated from the inherent feature of
systematic and panoramic MS/MS recording in DIA that provides
broadly informative data.

DIA analysis with 1 h gradient can measure more glycopep-
tides than an 1 h DDA, while it requires DDA runs with longer
gradient to build sample-specific libraries. As an alternative to
sample-specific libraries, community spectral libraries such as
Pan-Human*? can be effectively used for peptide-centric DIA
data analysis*3. Such concept is also adequate for glycoproteo-
mics. We tested the feasibility of using a lab repository-scale
spectral library (fission yeast LRL, Supplementary Table 1 and
Supplementary Data 1) generated by combining the SSL library
and fission yeast data of previous projects in our labs. The results
are presented in Supplementary Data 5 and Supplementary Fig. 7.
Using LRL, 18% more (495/418) glycopeptide precursors, 14%
more (394/346) site-specific glycans, and 3% more (143/139)
protein glycosites were detected in at least 3 of the 4 replicate runs
than using SSL, while the CVs (~11%) were very close to those
using SSL.

DIA analysis was also performed on a budding vyeast
(Saccharomyces cerevisiae) sample with 3 repeat injections and
an 1 h LC gradient, using a spectral library built from budding
yeast DDA data (Supplementary Table 1 and Supplementary
Data 1). Low levels of missing values and CV's were also observed
(Supplementary Data 6 and Supplementary Fig. 8). All the results
suggest that, within the tested condition, DIA with GproDIA
improves the number of identifications and reproducibility of
glycopeptide  characterization compared to DDA-based
workflows.

Inference of glycoforms in wide isolation windows. We further
compared DDA and DIA on a human serum sample acquired
with 3 repeat injections using the 1 h LC gradient. The DDA
results are shown in Supplementary Data 7 and Supplementary
Fig. 9. The DIA data were analyzed using a sample-specific
spectral library built by DDA with pre-fractionation (serum SSL,
Supplementary Table 1 and Supplementary Data 8). Unlike high-
mannose-type glycans of yeast, glycans in human serum have
more complex compositions, presenting greater challenges for
DIA analysis. For yeast samples, glycopeptides with the same
peptide sequence and different glycans (HexNAc,Hex,) have
mass differences of at least one hexose residue (162 Da), and
are hardly co-fragmented in an isolation window (25 m/z in this
study). For human serum samples, however, DIA analysis suffers
from potential interference of glycopeptides with the same pep-
tide sequence but different glycans (referred to as “glycoforms”)
in the same isolation window. Therefore, although a large number
of glycopeptides were reported by DIA (Supplementary Fig. 10),
the results can have high error rates of identification in the
glycan part.

Inspired by IPF#4, a DIA data analysis tool for peptides
carrying PTMs, we further developed an algorithm to evaluate the
global FDR (g-value) at glycoform level. The workflow is
illustrated in Fig. 3a—c and Supplementary Fig. 11, and described
in details in the “Methods” section. In brief, all theoretical Y
fragment ions (called “identification transitions”) are generated in
silico for each target glycopeptide precursor and the correspond-
ing potential glycoforms within the isolation window when
building the spectral library. The potential glycoforms were
collected from the pGlyco 2.0 built-in glycan databasel!?,
containing 3065 glycan structures, and might not be present in
the original library. Signals of precursors of target glycopeptides
and identification transitions of the target glycopeptides/glyco-
forms are traced during chromatogram extraction from DIA data.
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The PEP of MS2 peak groups (PEPy;s,), precursors (PEPyg;) and
identification transitions (PEPi.pngtion) are integrated using a
Bayesian hierarchical model (BHM), leading to a glycoform-
level posterior probability (PP) for each detected peak group,
from which the global FDR (q-value) at glycoform level can be
derived.

The performance of the glycoform-level FDR control was
tested on the fission yeast data using an entrapment strategy by
adding glycopeptides with peptide sequences (peptide

entrapment) or glycans (glycan entrapment) or both (both
entrapment) from human serum SSL to the fission yeast SSL
library. In all the analyses, we ensured that the entrapment
glycans were different from the yeast glycans, and kept the
number of entrapment glycopeptide precursors similar to that of
the yeast library (Supplementary Table 1). Since we focus on
investigating the performance of the glycoform-level error rate
control, multi-run alignment was not performed, and no global
glycopeptide-level g-value filter was applied. The DIA analyses
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blue square or “N" represents HexNAc; a red triangle or “F" represents Fuc;

a purple diamond or “A" represents NeuAc. b Extracting chromatograms of

identification transitions from the DIA data and performing transition-level scoring to get the PEPs of transitions. ¢ Integrating the precursor and transition
PPs to glycoform PPs using a Bayesian hierarchical model. d Numbers of identifications without (w/o0 GF) or with (GF) glycoform inference of the fission

yeast sample using the entrapment libraries.

results are presented in Fig. 3d and Supplementary Data 9. With
the entrapment library containing human glycopeptides (both
entrapment), fewer identifications were observed compared to
those using the fission yeast library only, because the entrapment
library contains a large fraction of “false targets” that are not
detectable in the sample (referred to as my*°), compromising the
detection sensitivity. Nevertheless, no entrapment identifications
were observed at 1% peak group-level g-value. Similar results
were obtained using the entrapment library containing glycopep-
tides with peptide sequences from human and glycans from yeast
(peptide entrapment), suggesting satisfactory performance of

6 | (2021)12:6073 | https://doi.org/10

error rate control in the peptide part. Using the entrapment
library containing glycopeptides with peptide sequences from
yeast and glycans from human (glycan entrapment), although 1%
peak group-level g-value filter was applied, there were in average
14% of entrapment identifications (to all of those identified)
remaining per run without glycoform inference. We optimized
the search space of glycoform inference (Supplementary Note 1
and Supplementary Fig. 12), and the maximum number of
potential glycoforms was set to 50 for a trade-off between
accuracy and size of search space. After applying 1% glycoform-
level q-value filter, despite a loss of 15% yeast identifications due
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to poor signals of precursors and/or glycoform-specific fragments,
the entrapment percentage declined to ~1%.

To the best of our knowledge, the methods for statistical
control of glycopeptide error rates in DIA analysis have not been
well established. In previous studies, spectral libraries were
generated from deglycosylated peptides?®32 or peptides with
truncated glycans33 by shifting the precursor mass, and DIA data
analysis of glycopeptides was performed using tools designed for
peptide analysis. Therefore, as a baseline for comparison, we built
another two glycan entrapment libraries using the peptide
sequences from yeast and glycans from human, one without Y
ions and the other including Y ions, to analyze the fission yeast
sample using the peptide-only FDR control approach with
peptide decoys only (Supplementary Note 2, Supplementary
Data 9 and Supplementary Fig. 13). The results indicate that the
peptide-only FDR approach for peptides cannot address error
rate control for glycopeptides properly, which again stresses the
significance of comprehensive statistical control by the 2D FDR
and glycoform inference.

We further benchmarked the performance of GproDIA on
DIA data of 14 synthetic glycopeptides with 7 peptide sequences
and 2 sialylated glycans for each sequence (Supplementary Note 3
and Supplementary Table 2). Three fucosylated glycans were
generated for each peptide sequence by replacing 1 NeuAc with 2
Fuc monosaccharides (with 1 Da mass difference) and used as
entrapment (Supplementary Table 2). DIA was performed with 1
h LC gradient and 3 repeat injections, together with 3 repeat
injections of DDA with 1 h LC gradient for library generation.
After applying 1% peak group-level q-value and 1% glycoform-
level q-value filter, 54 peak groups were reported from the DIA
data, including 2 (~4%) entrapment peak groups. From the 3 DIA
replicate runs, 13 of the 14 glycopeptides (93% recall) were
detected, while 1 entrapment glycopeptide was reported (Supple-
mentary Data 10 and Supplementary Fig. 14). The results
demonstrate that the comprehensive statistical control by
GproDIA can distinguish glycoforms with near identical masses
in a large part.

Improving glycoproteome coverage in human serum. GproDIA
was then tested on the human serum data with glycoform
inference enabled. In addition to the sample-specific library
(serum SSL), a lab repository-scale spectral library (serum LRL,
Supplementary Table 1 and Supplementary Data 8) was also used
for DIA data analysis. Global glycopeptide-level g-value cutoff
was 1%. After multi-run alignment, results with glycoform-level
g-value <5% in each run and <1% in at least one run were finally
reported (Supplementary Data 11 and 12, as well as Supple-
mentary Figs. 15 and 16). Comparison between DDA and DIA
results is illustrated in Fig. 4a-d. At site-specific glycan level,
compared to DDA, DIA using SSL and LRL brought 14% more
(539/474) and 35% more (638/474) identifications, respectively,
in average per run, whereas fewer missing values (463 shared in
all replicates/559 in total using SSL, and 531/733 using LRL) by
DIA were observed than DDA (262/717). Considering identifi-
cations shared in at least 2 of the 3 replicate runs, DIA using SSL
and LRL detected 26% more (556/443) and 47% more (650/443)
site-specific glycans, respectively, than DDA. CVs using DIA
(12.8% with SSL and 12.2% with LRL) were significantly smaller
than that using DDA (26.1%). The performance of statistical
control was tested on the human serum data using the entrap-
ment strategy by adding entrapment glycopeptides with peptide
sequences from human and glycans from the model higher plant
Arabidopsis thaliana to the human serum SSL library, where only
the plant glycans containing a xylose monosaccharide were used
as entrapment, and thus there was no overlap between the human

and entrapment glycans. With 1% glycoform-level q-value cutoff,
the entrapment percentage declined to 2.4%. Notably, the com-
positions of the entrapment glycans were very similar to the
human glycans except for their core xylose, and this test was
aimed at exploring the performance of the statistical control in a
worst-case scenario that barely distinguishable glycome is queried
against data of complex samples. (Supplementary Note 4, Sup-
plementary Data 13 and Supplementary Fig. 17). We further
examined the peaks of oxonium ions in the apex MS2 spectrum of
each peak group in the DIA results, and the vast majority of
identifications (2395/2398 by the SSL library and 2769/2774 by
the LRL library) were supported by the presence of oxonium ions
specific to the reported glycan (Supplementary Note 5).

From the human serum data, GproDIA with the serum SSL
library detected extra 265 site-specific glycans (corresponding to
322 glycopeptide precursors) that were missed by DDA,
considering the identifications shared in 2/3 runs (Fig. 4c).
Among them, 236 precursors and 194 site-specific glycans (73%)
were validated by targeted MS/MS experiments (Supplementary
Note 6 and Supplementary Data 14), and they were distributed
throughout the intensity range of DIA quantification results
(Supplementary Fig. 18). It should be noticed that we used
targeted MS/MS to support the identification results by DIA,
which does not indicate that the glycopeptides not observed by
targeted MS/MS were wrong.

GproDIA uniquely detected 25 new glycosites, including 11
from new glycoproteins, missed by DDA, by considering the
identifications shared in 2/3 runs (Supplementary Fig. 16). Among
them, 17 glycosites (9 from new glycoproteins) were supported by
targeted MS/MS results, including glycosites on selenoprotein P,
proteoglycan 4, plasma protease C1 inhibitor, and alpha-1-
antitrypsin. Selenoprotein P is a selenium-containing protein that
contributes to antioxidant-mediated protection in colitis-
associated cancer®>. Proteoglycan 4 can protect against the
development of osteoarthritis*. It has been reported that C1
esterase inhibitor can protect from lung injury?/, and alpha-1-
antitrypsin can inhibit SARS-CoV-2 infection in cell lines and
primary cells*. The results suggest promising prospects of
GproDIA for improving glycoproteome coverage in human serum
that boosts disease mechanism study and biomarker discovery.

Evaluating quantitative accuracy on mixed-organism samples.
The performance of GproDIA was further evaluated on data of
mixed-organism samples containing glycopeptides from budding
yeast and human serum with different abundance (510, S12, and
S15, see the “Methods” section). DIA analysis was performed
using a combined library of the budding yeast library and the
serum SSL library, as well as a combined library of the budding
yeast library and the serum LRL library, respectively (Supple-
mentary Table 1, Supplementary Data 15-17 and Supplementary
Figs. 19-21). Based on the mean quantities in three replicates of
each sample, fold changes of detected site-specific glycans of
samples S12/S10 and S15/S10 were calculated and visualized in
Fig. 4e. Fold changes of human and yeast glycopeptide abundance
were closer to the theoretical values using DIA-based quantifi-
cation at both MS1 and MS2 level with the yeast + serum SSL
library than those using DDA. Using the yeast 4+ serum LRL
library, fold changes of human glycopeptide abundance were
overestimated, while fold changes of yeast glycopeptides were
measured accurately. In addition, the distribution of fold changes
was less dispersed using DIA than that using DDA. All the results
underline the high quality of DIA-based glycopeptide character-
ization using GproDIA that outperforms DDA-based workflows
in terms of numbers of identifications, as well as accuracy and
precision of quantification.
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provided as a Source Data file.

Extending library coverage semi-empirically. In peptide-centric
DIA data analysis, the capability of detection is limited due to the
incomplete coverage of spectral libraries. For this reason, we
propose a computational approach to expand the coverage of
spectral libraries of glycopeptides semi-empirically, wherein the
MS2 spectra of predicted glycopeptides are generated by swap-
ping and combining the peptide and glycan fragment peaks in
experimental spectra of different glycopeptides using a k-nearest
neighbor (KNN) strategy (Fig. 5a). The RT of the predicted gly-
copeptide is the weighted mean RT of experimentally identified
glycopeptides with the same peptide sequences and close

monosaccharide compositions by the KNN strategy. Details are
described in the “Methods” section.

Cross validations of the prediction were conducted using the
fission yeast LRL library and the budding yeast library, wherein
the library entry of each glycopeptide precursor was pulled out
from the library, and meanwhile the rest of the library entries
were used to generate the predicted library entry of the
glycopeptide precursor. Different numbers of nearest neighbors
(k) were tested. Dot products (DPs) were computed between the
predicted and experimental MS/MS intensities (Supplementary
Figs. 22 and 23). With k = 3, the median DP was 0.820 for the
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fission yeast library and 0.922 for the budding yeast library,
higher than those without KNN and with k = 2 or 4. Increasing k
can lead to higher prediction accuracy, but fewer glycopeptides
can be predicted because at least k neighboring entries for
generating the peptide part and the glycan part are required in the
experimental library. Therefore, we chose k = 3 to achieve the

| (2021)12:6073 | https://doi.org/10.1038/s41467-021-2

trade-off between prediction accuracy and library coverage. With
k = 3, the interquartile ranges (IQRs) of the differences between
predicted and experimental RTs were <0.6 min. Pearson
correlation coefficients (r) of predicted and experimental RTs
were >0.99 (Fig. 5d, Supplementary Fig. 22 and 23). The serum
SSL library was also used for the cross validation with k = 3. The
9
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median DP was 0.865 (Fig. 5b), the IQR of RT differences was
1.1 min (Fig. 5c), and the r of RTs was >0.98 (Fig. 5d). The
prediction on human serum glycopeptides is less accurate
compared to yeast due to the high complexity of human serum
glycopeptides. DPs, RT differences and r were also computed
among replicate experimental spectra, which can be considered as
possible upper limit of prediction accuracy (Supplementary
Fig. 24), showing that there are still rooms for improvement.
Nevertheless, due to the limit of current available data of
glycopeptides and the highly complex isomeric glycan structures,
more accurate prediction by machine learning and deep learning
strategies can hardly be applied at this stage.

Next, we built a semi-empirical library based on the fission
yeast SSL library, which was then merged with the SSL to form an
extended library (fission yeast EXL, Supplementary Table 1 and
Supplementary Data 1), containing 331 extra precursors and 288
site-specific glycans that are not present in the SSL (Supplemen-
tary Fig. 25). From the fission yeast DIA data, 5% more (365/346)
site-specific glycans were detected in at least 3 of the 4 runs using
EXL than those using SSL, while the CVs stayed unchanged
approximately (Fig. 5e, Supplementary Fig. 26 and Supplemen-
tary Data 18). Performance of error rate control when using
extended libraries was also evaluated using the entrapment
strategy (Supplementary Fig. 27 and Supplementary Data 19).

An extended library (serum EXL, Supplementary Table 1 and
Supplementary Data 8) was also generated from the serum SSL
library. To avoid combinatorial explosion of peptides and glycans,
we collected a list of glycopeptides combined from the serum LRL
library and a publication on N-linked intact glycopeptides in
human serum?’, and only peptide-glycan combinations in the
glycopeptide list were taken into consideration when generating
the extended library. Consequently, the EXL library containing
1990 extra precursors and 927 site-specific glycans that are not
present in the serum SSL (Supplementary Fig. 25). Combining all
the 3 replicates, 118 protein glycosites were detected in total using
both the SSL and EXL libraries. Among them, on 39 glycosites,
more glycoforms were detected using EXL than using SSL, while
on 23 glycosites, more glycoforms were detected using SSL
(Fig. 5f, Supplementary Data 20). The increase in the detected
glycoforms can be attributed to the greater proportion of
fucosylated glycans (145 site-specific glycans with fucosylation
and without sialylation, as well as 208 with both fucosylation and
sialylation) detected using EXL than using SSL (124 with
fucosylation and without sialylation, as well as 177 with both
fucosylation and sialylation). It should be noted that the semi-
empirical approach does not increase the protein glycosites. The
CVs stayed unchanged approximately using the human serum
EXL (Supplementary Fig. 28).

Discussions

With more efficient usage of ions, DIA can provide a significant
increase in the identification efficiency of glycopeptides compared
to DDA27°0, We have benchmarked our DIA-based workflow
against the DDA-based glycoproteomics, demonstrating that short-
gradient DIA can outperform DDA under the same conditions or
even with a much longer gradient in terms of detectable glyco-
peptides as well as measurement reproducibility. It has been
reported that DIA copes well with shortening of the LC gradient
length because the deterministic nature of the MS2 sampling in
DIA attenuates the attrition in number of identifications for shorter
separation gradients, while the number of acquired MS/MS spectra
and identifications decrease proportionally with the gradient length
in DDA mode?0. As a less time-consuming approach for intact
glycopeptides profiling, short-gradient DIA is favorable for large-
scale quantitative glycoproteomic analyses.

Interference from other co-eluted and co-fragmented glyco-
peptides is the main challenge for DIA data analysis that may
result in a high level of misinterpretations. In GproDIA, we
implement a 2-dimensional FDR approach and a glycoform
inference strategy, providing comprehensive statistical control for
glycopeptide identification. For the peptide part of the
2-dimensional FDR approach, the reverse decoy approach was
inherited from the DIA analysis method for non-glycosylated
peptides. For the glycan part, random mass shifts were performed
on the glycan fragment peaks, which was initially reported in
pGlyco3®. In the 2-dimensional FDR approach, sufficient numbers
of training data are necessary for the semi-supervised algorithm.
Also, the decoy distribution should match the true-negative part
of the target distribution. If the spectral library is too small, these
conditions may not be fulfilled, and the machine learning and
FDR estimation may be biased (Supplementary Note 7). In this
study, however, we used the entrapment strategy to assess the
quality of statistical control. Even for the synthetic dataset, which
is the smallest dataset in the study, the false positives were still
well controlled. Glycoform inference can be used as an option to
perform more strict assessment by utilizing signals of precursors
and glycan-specific fragments to resolve interference from
potential glycoforms. In this study, glycoform inference was
enabled when multiple glycopeptide precursors with the same
peptide sequence and different glycans are arranged to be frag-
mented in one isolation window. Despite the herein proposed
strategies to control error rates when using wide isolation win-
dows, we still recommend to design the isolation windows
properly according to the mass distribution of glycopeptides3?, if
possible, for improving the detection sensitivity. Recent advances
in ion mobility spectrometry (IMS) including high field asym-
metric waveform ion mobility spectrometry (FAIMS)>! and par-
allel accumulation-serial fragmentation (diaPASEF)52  have
achieved rapid improvements in the sensitivity of DIA analysis.
We expect that DIA-based glycopeptides profiling can benefit
from the enhanced separation of glycoforms by IMS.

Spectral library coverage determines the upper limit of the
identification capacity by peptide-centric DIA analysis. To date,
the majority of DIA studies have used DDA-based sample-spe-
cific spectral libraries, frequently with pre-fractionation (for the
serum sample in this study), or sometimes by repeated DDA
analysis of non-fractionated samples (for the fission yeast sample
in this study)?®. Other sources, such as previously assembled
repositories shared by the community, can also be considered as a
supplement for library completeness*>. We achieved the best
coverage by using repository-scale libraries integrating data from
multiple previous projects in our lab. In the context of DIA data
analysis, FDR control is performed on the features extracted from
the DIA data, rather than entries in the spectral library. Despite
the accumulation of false entries when combining multiple
spectral libraries, FDR of the DIA results can still be controlled,
unless it is in an extreme case of using very huge and hetero-
geneous spectral libraries. We envision that more “off-the-shelf”
glycopeptide libraries will be built and published by the com-
munity, just like those for proteomic studies*?, which can then be
used for glycopeptide DIA data analysis.

Since repository-scale libraries may not always be available, we
have built semi-empirical libraries as an attempt to extend the
library coverage. The current proposed strategy facilitates detec-
tion of more glycoforms by DIA on protein glycosites that are
observed by DDA, but cannot increase the coverage at glycosite
level. However, deep learning-based tools such as Prosit’® and
DeepDIA>4 have been developed for generating in silico peptide
spectral libraries directly from peptide sequences, and we
anticipate that predicted libraries will break through the limita-
tion on coverage of glycopeptide libraries by DDA in the future
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when large scale glycopeptide libraries are built by the commu-
nity for training the deep neural network models.

Since our proposed method is based on the concept of peptide-
centric analysis, it inherits the general limitation of working with
very large-scale spectral library resources, e.g., proteome-wide
predicted libraries. In such analyses, it is common that a sig-
nificant fraction of glycopeptides are actually not present in the
samples at a detectable level, and the large query space may
increase the multiple testing burden and compromise detection
sensitivity20. Therefore, instead of enumerating all the peptide-
glycan combinations in a spectral library, we suggest researchers
focusing on a subset of glycoproteins/glycoproteoforms of interest
for their specific biological questions. Another issue is the loca-
lization of glycosite. Our proposed method is demonstrated here
in the context of N-glycoproteomics, where it is not very common
that more than one potential glycosylation site exist in a glyco-
peptide. Although the principle of comprehensive statistical
control in GproDIA should also be applicable to O-glycopeptides
for peptide sequence and glycan identification, O-glycopeptides
generally have multiple serine and/or threonine residues that
serve as potential glycosites, which calls for site-specific glyco-
proteome profiling. Unfortunately, HCD is not sufficient for
glycosite localization for O-glycopeptides!®. ETD-based DIA
methods may solve the problems of glycosite localization, but
could also suffer from limited fragments information for both
peptide and glycan parts. We would expect development in
instruments, experimental methods and data analysis approaches
for site-specific O-glycopeptide analyses.

Methods

Term usage definition. Unless otherwise specified, when we use the term “glycan”
in this study, we refer to monosaccharide compositions, ignoring isomeric glycan
structures. When we use the term “glycopeptide precursor”, we refer to a precursor
with specific peptide sequence, modifications (other than glycosylation), glycan
composition and charge state, ignoring positions of the glycan on the peptide
sequence. Indeed, it is not very common that an N-glycopeptide has more than one
potential glycosylation sites. When we use the term “glycopeptide”, we refer to a
group of glycopeptide precursors with the same peptide sequence and glycan
composition. These precursors may contain different modifications (other than
glycosylation) and distinct charge states. When we use the term “protein glycosite”,
we refer to a group of glycoproteins with a corresponding glycosylation site on each
protein. These glycoproteins are not distinguishable by protein inference in DDA
database searching. We did not perform extra protein inference, and just used the
protein glycosylation site groups determined by pGlyco3 when building spectral
libraries. When we use the term “site-specific glycan”, we refer to a glycan com-
position on a “protein glycosite”, which contains a group of glycopeptide variants
covering the same “protein glycosite” resulting from missed cleavages in protein
digestion.

We use the term “q-value” to refer to global FDR, and “global g-value” to refer
to g-value in the global context. Global FDR is a concept opposite to local FDR
(PEP). Whereas local FDR is the probability of each target peak group to be
incorrect, global FDR conveys the error introduced in the whole reported results.
Q-value in the global context is a different concept. In contrast to the run-specific
context that conducts separate error rate estimation for each run, the global context
only considers the best-scoring peak group per analyte across the entire
experiment*0. Visualizations of these concepts are shown in Supplementary Fig. 29.

GproDIA uses DDA results by pGlyco3 for spectral library generation. For
compatibility purposes, GproDIA uses the nomenclature of monosaccharides
defined by the pGlyco series!”>18, which is associated with but slightly different
from the standard Symbol Nomenclature for Glycans (SNFG). The nomenclature is
listed in Supplementary Table 3.

Yeast sample preparation. Saccharomyces cerevisiae (budding yeast) and Schi-
zosaccharomyces pombe (fission yeast) were cultured in yeast extract peptone
dextrose (YPD) and yeast extract with supplements (YES) medium, respectively, at
30 °C until optical density at 600 nm (ODgoo) of 0.6 was reached. Then the yeasts
were harvested by centrifugation at 1000 g, and washed twice with a 10 mM Tris/
HCI buffer (pH = 7). Cells were then snap-frozen in liquid nitrogen, ground to a
fine powder with mortar and pestle in liquid nitrogen, and stored at —80 °C until
use. The grinding powder was processed to protein extraction. The powder was
dissolved in fivefold-volume lysis buffer (4% sodium dodecyl sulfate (SDS), 0.1 M
Tris/HCI, pH 8.0) with protease inhibitor (1 mM phenylmethanesulfonyl fluoride
(PMSEF), 1 mM cocktail), followed by boiling at 100 °C for 10 min, ultrasonication

for 5 min and centrifugation at 12,000 x g at 18 °C for 30 min to collect protein
extracts. The protein concentration was determined by bicinchoninic acid (BCA)
method. A starting amount of 100 pg protein was used for one LC-MS/MS analysis,
which was afterwards subjected to proteolysis and glycopeptide enrichment.

Proteins were reduced in 10 mM dithiothreitol (DTT) at 57 °C for 30 min, and
then alkylated in dark by 20 mM iodoacetamide (IAA) at room temperature for
30 min. After carbamidomethylation, six volumes of acetone were added to
precipitate the proteins at —20 °C for at least 3 h. The precipitates were dissolved in
a denaturing buffer (8 M urea in 50 mM NH,HCO;) following a tenfold dilution
with 50 mM NH,HCO;. Trypsin was added to a final enzyme-to-substrate ratio of
1:50 (wt/wt) and incubated at 37 °C overnight. The reaction was terminated by
adding 0.5% trifluoroacetic acid (TFA). All digested samples were centrifuged at
16,000 x g for 10 min and the supernatants were desalted using the Sep-Pak C18
cartridges (Waters, USA). Briefly, the samples were loaded into the cartridge, which
was preconditioned with 1 mL ACN once and 500 pL 0.1% TFA twice. Then, the
Sep-Pak C18 cartridge was washed with 500 uL 0.1% TFA twice, and eluted with
250 uL 30% ACN containing 0.1% TFA and 250 pL 70% ACN containing 0.1%
TFA, successively. The desalted peptides were then dried by vacuum centrifugation
and used for glycopeptide enrichment.

Human serum sample preparation. Human serum sampleswere collected under
the consent of the donors. The research followed the tenetof the Declaration of
Helsinki, and the protocol of blood collection, processingand MS analysis was
approved by the Ethics Committee of Fudan University, andcomplied with all
relevant laws and regulations of China.

A total of 40 human serum samples were collected. The collected blood samples
were immediately placed on ice for 30 min and then centrifuged at 2000 x g for
15 min. The supernatant was collected and stored at —80 °C until use.

A pooled serum specimen mixed from equal volume of the above samples was
used in this study. A volume of 20 pL of the pooled serum was added to 180 pL of
50 mM NH,HCO;, and placed in boiling water and ice 40 times alternately to
denature the proteins. The proteins were then reduced with 10 mM DTT at 37 °C
for 1h and alkylated with 20 mM IAA for 0.5 h at room temperature in the dark.
Then the proteins were digested into peptides and desalted using the same protocol
as that for yeasts.

Fractionation with high-pH reversed-phase chromatography. For spectra
library building, the peptide digests from serum samples were fractionated by high
pH reverse phase (RP) LC separation using a Waters UPLC system coupled with a
C18 column (Waters BEH C18, 2.1x150 mm, 1.7 um). The digests were re-
dissolved in phase A (2% acetonitrile (ACN), 1% NH;-H,0, 97% H,0). The col-
umn flow rate was maintained at 0.2 mL min—! and the column temperature was
maintained at 45 °C. The gradient was as follow: 0% B (90% ACN, 1% NH;-H,0,
9% H,0) for 2 min, 0-5% B in 4 min, 5-10% B in 9 min, 10-25% B in 35 min,
25-35% B in 7 min, 35-50% B in 4 min, 50-90% B in 1 min, 90% B for 2 min,
return to 0% in 0.1 min, and hold until the end of gradient. Twenty fractions were
collected from the 3rd minute to the 64th minute within each 1 minute in turn as
the following conditions: fraction 1 (3, 23, 43, 63); fraction 2 (4, 24, 44); ... fraction
20 (22, 42, 62). Each fraction was dried in a vacuum concentrator and used for
glycopeptide enrichment.

Glycopeptide enrichment. Glycopeptides were enriched using a ZIC-HILIC
method with minor modification!”. The desalted peptides of 1 mg were resus-
pended in 300 uL loading buffer containing 80% ACN and 1% TFA and then
loaded onto an in-house micro-column containing 50 mg of ZIC-HILIC particles
(Merck Millipore, Darmstadt, Germany) packed onto a C8 disk. The flow through
was collected and reloaded onto the column for additional four times. Then, the
column was washed with 200 pL loading buffer for four times. Finally, the glyco-
peptides that have been enriched in the column were collected by elution with
600 uL 0.1% TFA and dried by vacuum centrifugation.

Mixed-organism sample preparation. Glycopeptides enriched from human
serum and budding yeast were resuspended in 0.1% formic acid (FA). Two mg
serum proteins were used as starting material and finally resuspended in 80 pL
0.1% FA after digestion and ZIC-HILIC enrichment, while 3 mg yeast proteins in
120 puL 0.1% FA. Then the samples were mixed at definite ratios: (i) sample S10, 1:1
(16 pL:16 pL, human: yeast); (ii) sample S12, 1:1.2 (16 uL:19.2 L, human: yeast);
(iii) sample S15, 1:1.5 (16 puL:24 uL, human: yeast). Four pL of each mixture was
subjected to LC-MS/MS analysis. Consequently, the final concentration ratio was
1:0.9:0.8 (S10:S12:S15) for human and 1:1.1:1.2 (S10:512:S15) for yeast.

LC-MS/MS analysis. Intact glycopeptides were detected using a nanospray LC-
MS/MS on an Orbitrap Fusion Tribrid system (Thermo Fisher Scientific, Waltham,
MA, USA) fitted with an EASY-nLC TM1100 system (Thermo Fisher Scientific,
Waltham, MA, USA) that included a reverse-phase analytical column without the
trap column. Samples were loaded onto a C18 column (50 cm x 75 pm i.d.) and
separated at a flow rate of 300 nL min—!. Solvent A was a 0.1% FA aqueous
solution. Solvent B was 80% ACN containing 0.1% FA. Two LC gradients were
used in this study: (i) 1 h in total, 5-10% B in 3 min, 10-40% B in 42 min, 40-60%
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in 5 min, followed by an increase to 90% B in 3 min, hold for another 1.5 min,
return to 5% B in 10 s and hold for the last 5 min; (ii) 6 h in total, 1-30% in
330 min, 30-45% B in 15 min, followed by an increase to 90% B in 1 min, hold for
another 7 min, return to 1% B in 10 s and hold for the last minutes. For DDA, the
fission yeast sample was analyzed using the 1 h and 6 h gradients, while the other
samples were only analyzed using the 1 h gradient. For DIA, the 1 h gradient was
always used.

Data collection was performed by Thermo Xcalibur (version 3.0.63). The
parameters for DDA MS analysis was: (1) MS: scan range (m/z) = 700-2000;
resolution = 120,000; AGC target = 500,000; maximum injection time = 50 ms;
included charge state = 2-6; dynamic exclusion after » times, n = 1; dynamic
exclusion duration = 15 s; the precursors were selected under the “top speed” mode
and each selected precursor was subject to one HCD-MS/MS; (2) HCD-MS/MS:
isolation window = 4; detector type = Orbitrap; resolution = 15,000; AGC
target = 500,000; maximum injection time = 250 ms; collision energy = 30%;
stepped collision mode on, energy difference of +10% (10% as absolute value in the
Orbitrap Fusion). The acquisition cycle time was set as 3 s, which was used to
determine the frequency of full scans with the maximum number of data-
dependent scans in the “top speed” mode.

DIA was performed with 40 isolation windows from 700 Da to 1636 Da (center)
with 25 Da width and 1 Da overlap. The acquisition cycle time was set as 3 s, the
maximum injection time was set as 50 ms, and the AGC target (the total number of
ions) was set as 2.0e5. The other MS parameters were the same as those in DDA.

Database searching of DDA data. The raw DDA data files were searched using
pGlyco3!8 (version 3.0.rc1). Mass tolerances for the precursors and fragment ions
were set as +4 ppm and +20 ppm, respectively. Two missed cleavages were allowed
for trypsin digestion. The fixed modification was carbamidomethylation of all
cysteine residues (457.02 Da). Variable modifications included oxidation of
methionine (+15.99 Da) and acetylation on protein N-term (442.01 Da). The
protein databases downloaded from Swiss-Prot/UniProt (https://www.uniprot.org/,
access date 2018-08) were used for each sample after replacing the “N” in the
sequon N-X-S/T/C (X # P) with “J” (as potential glycosites) in all protein
sequences: (i) for the fission yeast sample, the protein database with species of S.
pombe (5140 entries) was used; (ii) for the budding yeast sample, the protein
database with species of S. cerevisiae (6721 entries) was used; for the human serum
sample, the protein database with species of Homo sapiens (20,398 entries) was
used; (iii) for the mixed organism samples, the protein databases with species of S.
cerevisiae and H. sapiens were combined; (iv) for the synthetic glycopeptide sample,
a protein database containing 11 entries from H. sapiens and Mus musculus cor-
responding to the synthetic peptide sequences was used. A glycan database con-
taining 2922 entries (726 glycan compositions) embedded in pGlyco3 was used for
the human, yeast and mixed organism samples. A self-defined glycan database
containing 9 entries (5 glycan compositions) of the synthetic glycopeptides and
entrapments was used for the synthetic data. GPSM-level FDR cutoff was applied at
1% for quality control.

Spectral library building. For each GPSM, pGlyco3 reported a plausible glycan
structure in canonical form. GPSMs of each identified glycopeptide may be
annotated with different plausible glycan structures. For each plausible glycan
structure, the identification scores (total scores in pGlyco3) of corresponding
GPSMs were summed, and only the GPSMs annotated with the glycan structure
with the highest sum identification score were considered as confident
identifications.

For each of these confident identifications from DDA data, the corresponding
MS/MS spectrum was matched with m/z of theoretical fragment ions of intact
glycopeptides in SCE-HCD!7:38: (i) naked peptide (Y,) with charge states 1+ to
3+; (ii) peptide backbone with one HexNAc attached (Y;) and its corresponding
cross-ring fragmentation on the HexNAc residue (*2X,, denoted as Y for
simplicity) with charge states 14 to 3+; (iii) other Y ions with charge states 14 to
3+; (iv) naked peptide backbone b and y fragment ions with charge states 14+ and
2+; (v) bly ions with one HexNAc (b-N;/y-N;) and cross-ring fragment of
HexNAc (bg/ys) with charge states 14 and 2+. The matched peak intensities were
extracted and imported into a spectral library. Each library entry contained the
identification (peptide sequence, glycan, charge state, other modifications if any),
the retention time (RT), the precursor m/z, and the annotated fragment peak list.

The generated spectral library contained non-unique entries (replicates)
resulting from multiple GPSMs of the same glycopeptide precursor. Where
available, replicates were combined to create a “consensus” spectrum®” through a
series of steps: (i) pairwise dot products (DPs) were calculated among replicates,
and dissimilar replicates (with median DP < 0.5 to the other replicates) were
discarded; (ii) only peaks present in >60% of the replicates were kept; (iii) the
consensus m/z and intensities were calculated as averages of the corresponding
peaks in the replicates weighted by the identification scores.

Transitions with fragment ion m/z out of the scan range or falling within the
isolation window of their precursor m/z°¢ were excluded from the library. Up to 10
+ 10 most intense peptide/glycan transitions per precursor were kept, respectively,
and the top 6 + 6 were used for quantification. Precursors with <3 peptide
transitions or <3 glycan transitions were excluded.

In each DDA run with long LC gradient and/or pre-fractionation, RT values of
glycopeptides were calibrated to the single shot 1 h LC DDA run using the shared
identifications as anchors. Locally weighted scatterplot smoothing (LOWESS) was
used to scale the RT values into the 1 h LC gradient space. Transitions of the
anchors were saved as TraML file, which was used by OpenSWATH in the
chromatographic extraction step.

Decoy generation. The decoy peptides were generated in silico from the target
peptide list by reversing the amino acid sequence (while keeping the C-terminal
arginine and lysine unmoved?®). For glycans, a spectrum-based decoy method33
was used to generate decoy glycan spectra by adding a random mass shift ranging
from 1 to 30 Da to the mass of each Y ion (except Y, and Yg). A peptide decoy
library containing glycopeptide precursors with decoy peptides and target glycans,
a glycan decoy library containing precursors with target peptides and decoy gly-
cans, and a both decoy library containing precursors with decoy peptides and
decoy glycans were appended to the target library. The same number of decoys
were generated as targets for each decoy type, and the size of the final combined
library was 4 times the size of the target library.

Chromatographic extraction from DIA data. The raw DIA data files were con-
verted to mzML format using MSConvert from ProteoWizard (version 3.0.11537)
with the peak picking algorithm set to vendor. Then the precursor and fragment
ion chromatograms of the glycopeptides in the spectral library were extracted from
the mzML files using OpenSWATH (version 2.6.0)3°. The MS1 and MS2 m/z
extraction windows were set to 10 ppm and 20 ppm, respectively. The anchor
TraML file generated in the spectral library building step was used as reference
glycopeptides for retention time normalization, which was similar to the iRT
approach®’. The RT alignment method was set to LOWESS.

Peak group scoring and statistical control. Semi-supervised learning was con-
ducted to compute discriminant scores (D-scores) of the extracted candidate peak
groups using PyProphet (version 2.1.5)40:57, Peptide D-scores were computed using
the target peak groups and the glycan decoy peak groups as “targets”, while the
peptide decoy peak groups and the both decoy peak groups as “decoys”. Glycan
D-scores were computed using the target peak groups and the peptide decoy peak
groups as “targets”, while the glycan decoy peak groups and the both decoy peak
groups as “decoys”. Linear discriminant analysis (LDA) was used to calculate a
weighted linear combination of the peptide and glycan D-scores (combined D-
scores) to separate targets and decoys. For each queried glycopeptide precursor, the
peak group with the highest combined D-score was then considered as the most
likely detected peak group.

Error rates of identification were estimated using a 2-dimentional FDR
approach. The distributions of peptide and glycan D-scores (sp and sg) were
estimated using a bivariate four-groups mixture model®. The bivariate density of
the targets (frr) is given by

F11(5p+56) = moafo0 (Se+56) + Torfon (51 56) + 1af 10 (52 56) + maf 11 (S 56)
m
where T is the proportion of target peak groups for which both peptide and
glycan are null, 1y, is the proportion where peptide is null and glycan is non-null,

Mo is the proportion where peptide is non-null and glycan is null, m;; is the
proportion where both peptide and glycan are non-null, and they satisfy that

Too + 7oy + 79 + 711y =1 (2)

fyi=0o0r1,j=0or 1) is the corresponding null or non-null density. In the
glycan decoys, all the glycans are null, and the proportion where peptide is null is
oo + To1. Thus, the bivariate density of the glycan decoys (frp) is

S1D(5:56) = (o0 + 701)f o0 (S 56) + (710 + 7111 )f 10 (5p+56) )
Similarly, the bivariate densities of the peptide decoys (fpr) and the both decoys
(fop) are

ST (8:56) = (oo + 710)f 00 (501 56) + (o1 + 711) for (55 56) 4
fDOD (5 56) = foo (sp+56) ()
Therefore,
56) = (0 + S
f01 (Sp-,SG) =fDT (SP SG) 75:10: ﬂzw)fDD (SP S(J) (6)
_ f1D(59:56) = (o0 + 701)f DD (595 56)
S0 (SPv SG) = Ty + 71y (7)

In the target peak groups, the proportion for which peptide is null is
TTp = Thoo + Ty (®)

which can be estimated from the peptide D-score distributions by Storey’s
method®?, using the target peak groups and the glycan decoy peak groups as
“targets”, while the peptide decoy peak groups and the both decoy peak groups as
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“decoys”. Similarly, the proportion for which glycan is null is
TG = Moy + My ©

which can be estimated from the glycan D-score distributions using the target peak
groups and the peptide decoy peak groups as “targets”, as well as the glycan decoy
peak groups and the both decoy peak groups as “decoys”. my can be estimated
from the combined D-score distributions using the targets and the both decoys.
With the estimated values of g, o1, 710 and myy, the f;; of each target peak group
can be derived by using Egs. (1), (3), (4), (5) to calculate the local FDR, which is
given by

7oaf 00 (805 56) + Toufor (595 56)

PEP; (sp,sg) = (10)
p (Sp556) F17 o0 56)
where the peptide part of a target peak group is null,
PER (556) = "/ Cr2%6) + 7 o ) (11)
frr(se:se)
where the glycan part of a target peak group is null, and
PEP, g (sp,5g) = M (12)

- frr(se:56)

where both the peptide and glycan parts of a target peak group are null. The total
PEP or local FDR is

PEPp  (sp,5g) = Toaf oo (595 56) + 7});{;)1(5:?:3) + 710f 10 (595 56)

= PEPy (sp,5g) + PEPG (sp, 5g) — PEPprg (s, 5G)

The estimated PEP is then monotonized so that it decreases with sp and sg
increasing.

Given a PEP threshold ¢, a rejection region can be delineated in which all peak
groups are reported as positive identifications (rejecting the null hypothesis). The
global FDR (g-value) is the average of the local FDR (PEP)®0:

(13)

ictiipep, <) PEP;

>
40 = P, <7 a

where i is a peak group reported as a positive identification.

The strategy described above is applied to individual runs separately at peak
group level. It can also be conducted at glycopeptide level in an “experiment-wide”
fashion and in a “global” context4(. In this study, a q-value cutoff of 1% was used at
glycopeptide level in the global context. Besides, only peak groups with g-value <
5% were subjected to downstream multi-run alignment.

Multi-run alignment. TRIC*! from msproteomicstools (version 0.11.0) was used
to propagate identification and quantification across runs. The tree-based align-
ment strategy was used. The maximal RT shift was 90. A fixed q-value cutoff of
0.01 was used, which means only glycopeptide precursors with g-value < 1% in at
least one run were reported.

Glycopeptide and protein glycosite quantification. Median normalization was

applied to the peak group intensity matrix for each run. The normalized intensities
of peak groups were aggregated into glycopeptide-level intensities per sample by

summing the 3 most intensive peak groups per glycopeptide. The 3 most intensive
glycopeptides per site-specific glycan were summed to calculate the intensities at

site-specific glycan level. The intensities at protein glycosite level were calculated by
summing up all site-specific glycan intensities per glycosite.

Glycoform inference. For glycoform inference, all theoretical Y fragment ions
(called “identification transitions”) are generated in silico for each target glyco-
peptide precursor and the corresponding glycoforms with the same peptide
sequence but different glycans that fall within the same precursor isolation window
(called “background” glycoforms) when building the spectral library. The identi-
fication transitions are in silico generated even when the fragment ions are also
observed experimentally. For the fission yeast entrapment libraries, human serum
libraries and mixed-organism libraries, background glycoforms were selected from
the pGlyco 2.0 built-in glycan database!”, containing 3065 glycan structures con-
sisted of HexNAc, Hex, NeuAc and Fuc. Since the DDA data analysis is performed
using pGlyco, all the glycan structures in the original library are covered by the
built-in glycan database. Isomeric glycan structures are combined if their theore-
tical Y fragment ions are exactly the same. The background glycan structures are
sorted by Jaccard similarity coefficient, i.e., the ratio of the number of the theo-
retical Y fragment ions shared with those of the target glycan to the number of their
union:

|Frag, NFragg|

A,B) =
J4,8) |Frag, U Fragg|

(15)

where A and B are the target glycan and a background glycan structure, respec-
tively. To reduce the search space, only the top n,, background glycan structures

were included in the spectral library. We tested different ny,g from 20 to 70, and

chose 50 for a trade-off between accuracy and size of search space. Additionally,

unfragmented precursor in MS2 can be used and added as identification transitions
to support precursor detection as IPF does*%. In this work, MS2 precursor detection
was enabled.

Decoy identification transitions are generated for scoring chromatograms of
individual identification transitions in subsequent steps. Instead of reversing the
peptide sequence, a random sequence of the 20 amino acids with identical length as
the target is generated, with all the PTMs kept, referring to the IPF34. Decoy
identification transitions are generated using the decoy peptide sequence and the
target glycan. To ensure that decoy identification transitions are not overlapping
with the target identification transitions, the target and decoy peptide sequence
must have at least 1 Da mass difference.

Chromatograms of identification transitions and precursors are extracted from
DIA data by OpenSWATH and scored by PyProphet. For a given peak group, both
target glycopeptides and the corresponding glycoforms are considered for the
extraction of identification transitions. The PEP of MS2 peak groups (PEPys»),
precursors (PEPys;) and identification transitions (PEP  nsition) are used by a
Bayesian hierarchical model (BHM) and integrated to glycoform-level PPs. The
priors for each candidate glycoform (hypothesis A;, i # 0) or incorrect detection
(hypothesis Ap) of the precursor are derived from the PEPys):

I=PEPus jf %0
P(A) = N

e (16)
PEPy, ifi=0

with N representing the total number of potential glycoforms including target
glycopeptides. The conditional probability for MS1 precursor signal is derived from
the PEPyg,:

1 - PEPy, ifie M

17
PEP,, ifi¢M a7

P(Bysi 14)) = {
with M representing the set of glycoforms whose precursor m/z is within the
tolerance window (10 ppm in this study) of the target precursor m/z. When
information of MS2-level unfragmented precursor of each candidate glycoform is
available, the conditional probability of glycoform i for MS2 precursor signal k is

1- PEPMSZPreck ithk=i
P(Byg A;) = ' 18
( MbZ.Preckl 1) { PEPMsz‘p,eck ifkzi ( )
The combined precursor conditional probability is
P(BIAi) = P(BMSI |Ai) HP(BMSZ.PrecklAi) (19)
k
The PP of hypothesis A; with precursor information can thus be defined as
P(B|A,)P(A)
P(G)=PA|B) = = 20
() = P IB) = s 20)

The conditional probability for each transition j is derived from the transition-
level PEP:

1 — PEP; if j € transition(i)

21
PEP; @

P(T;|G;) =
(73169 { if j¢ transition(i)

with transition(i) representing the set of identification transitions that can originate
from the glycoform i. The PP of glycoform i (or incorrect MS2 peak group
detection i = 0) is then defined as

(ITP(T;IG))P(G))
S(ILP(T,1G)PG,)
Isomeric glycan structures of the same monosaccharide composition may have
different theoretical fragments. For each glycan composition i, the prior is equally
divided for each isomeric glycan structure [, which is considered separately in the
BHM. The PP of a glycan composition is the sum of PPs of its isomeric glycan
structures:

P(GIT) = (22)

PPcompi = g P(GslmctllT) (23)

The global FDR (q-value) at glycoform level can be derived from PEP (ie, 1 — PP),
as described in the “Peakgroup scoring and statistical control” subsection.

The glycoform-level g-value can also be used for downstream multi-run
alignment by TRIC. In this study, target peak groups (excluding background
glycans) with glycoform-level g-value < 5% were subjected to downstream multi-
run alignment, and glycopeptide precursors with glycoform-level q-value <1% in at
least one run were reported finally.

Entrapment strategy. An entrapment strategy was used to benchmark statistical
control. Three entrapment libraries were built for the fission yeast: (i) by selecting
glycopeptide precursors from the human serum library (both entrapment); (ii)
using peptide sequences from the human serum library and glycans from the
fission yeast library (peptide entrapment); (iii) using peptide sequences from the
fission yeast library and glycans from the human serum library (glycan entrap-
ment). Only the human glycans containing Fuc or NeuAc monosaccharides were
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used as entrapment, and thus there was no overlap between the yeast and
entrapment glycans. The peptide and glycan entrapment libraries were generated
using a semi-empirical approach (see below in Semi-empirical spectral library
generation). The three entrapment libraries were randomly subsampled that they
were of roughly equivalent size to the fission yeast library. The fission yeast library
and each entrapment library were merged and used as the target library, respec-
tively. The generation of decoy was on the whole target library including entrap-
ment. Identification results were filtered by 1% q-value at peak group level by a
target-decoy approach, and no glycopeptide-level q-value cutoff was applied in the
global context. Glycoform-level g-value cutoff was 1%. Multi-run alignment was
not performed. As we introduced the entrapment entries in the target database, the
entrapment hits in filtered target hits were considered as false positive results, and
thus the entrapment percentage (percentage of the number of entrapment hits to
the target hits) can be used to evaluate the performance of error rate control. In a
similar way, glycan entrapment libraries were built by adding entrapment glyco-
peptides with peptide sequences from human and glycans from the model higher
plant Arabidopsis thaliana to the human serum SSL library. Only the plant glycans
containing a xylose monosaccharide were used as entrapment, and thus there was
no overlap between the human and entrapment glycans.

Semi-empirical spectral library generation. A computational approach was used
to expand the coverage of spectral libraries for glycopeptides by generating semi-
empirical spectra combining the peptide and glycan fragment peaks in the
experimental spectra of different glycopeptides using a k-nearest neighbor (KNN)
strategy. To generate a semi-empirical spectrum of a glycopeptide precursor with
peptide P, glycan G, and charge state n+, the algorithm looks up the experimental
spectral library to find a set of spectra of n+ glycopeptide precursors with peptide P
(Sp) or glycan G (Sg). Peptides are vectorized to amino acid composition (an array
of numbers of the 20 amino acids) and glycan are vectorized to monosaccharide
composition (an array of numbers of Hex, NexNAc, NeuAc, and Fuc). Experi-
mental spectra in Sp are ranked by Euclidean distances between its glycan and the
target glycan G to find the k nearest neighbors to G in Sp, denoted as Sp. Similarly,
the k nearest neighbors to peptide P in S; are denoted as Sgx. The peptide/glycan
fragment peaks in each spectrum in Spi/Sgy are extracted and merged into a
consensus peptide/glycan spectrum, respectively, using the strategy described in
Spectral library building. The ratio (r) of the sum intensity of the peptide fragment
peaks to that of the glycan fragment peaks is calculated for each spectrum in Sp
and S The consensus peptide and glycan spectra are merged by the mean r, and
the merged spectrum is used as a semi-empirical spectrum of the target glyco-
peptide precursor (P, G, n+).

Assuming that glycopeptides with the same peptide sequences will have similar
RT, the weighted mean RT of the spectra in Sp is used as a semi-empirical RT of
the target glycopeptide (P, G). The weight is a Gaussian function of the distance
between G and the glycan of each experimental spectrum.

w, = (24)

1 a2

——exp| — —=

' V2n0? P\ 7202
where d; is the Euclidean distance between G and the glycan of the experimental
spectrum i in Spy, and 02 is the mean of d2 (i = 1, ..., k). The predicted RT value is

k
Y wiRT;
Zf'(:lwi
Charge states are ignored when calculating semi-empirical RTs.

For comparison, we also predicted MS/MS and RTs without KNN, in which Sp
was used as Spy, and Sg was used as Sgx.

RT(pq) = (25)

Implementation, statistics and visualization. GproDIA was implemented in
Python (version 3.5.6, Anaconda distribution version 4.2.0, https://
www.anaconda.com/). Post-analysis statistics was conducted using R (version 3.5.1,
Microsoft R Open, https://mran.microsoft.com/open). The Python package
“matplotlib” (version 3.0.3), as well as the R packages “ggplot2” (version 3.0.0) and
“VennDiagram” (version 1.6.20) were used for data visualization.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All raw mass spectrometry data, spectral libraries and search results generated in this
study have been deposited in the ProteomeXchange via the iProX6! partner repository
with the dataset identifiers PXD023980 or IPX0002792000. Swiss-Prot protein databases
used in this study are available at UniProt (https://www.uniprot.org), and have also been
deposited to the ProteomeXchange/iProX repository. Source data are provided with
this paper.

Code availability
GproDIA is open source and freely available on GitHub (https:/github.com/Imsac/
GproDIA) and Zenodo (https://zenodo.org/record/5496762)%2.
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