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Abstract: It is challenging to overcome the low response rate of everolimus in the treatment of patients
with hepatocellular carcinoma (HCC). To overcome this challenge, we combined everolimus with
Ku0063794, the inhibitor of mTORC1 and mTORC2, to achieve higher anticancer effects. However,
the precise mechanism for the synergistic effects is not clearly understood yet. To achieve this aim,
the miRNAs were selected that showed the most significant variation in expression according to the
mono- and combination therapy of everolimus and Ku0063794. Subsequently, the roles of specific
miRNAs were determined in the processes of the treatment modalities. Compared to individual
monotherapies, the combination therapy significantly reduced viability, increased apoptosis, and
reduced autophagy in HepG2 cells. The combination therapy led to significantly lower expression
of miR-4790-3p and higher expression of zinc finger protein225 (ZNF225)—the predicted target of
miR-4790-3p. The functional study of miR-4790-3p and ZNF225 revealed that regarding autophagy,
miR-4790-3p promoted it, while ZNF225 inhibited it. In addition, regarding apoptosis, miR-4790-3p
inhibited it, while ZNF225 promoted it. It was also found that HCC tissues were characterized
by higher expression of miR-4790-3p and lower expression of ZNF225; HCC tissues were also
characterized by higher autophagic flux. We, thus, conclude that the potentiated anticancer effect of
the everolimus and Ku0063794 combination therapy is strongly associated with reduced autophagy
resulting from diminished expression of miR-4790-3p, as well as higher expression of ZNF225.

Keywords: autophagy; hepatocellular carcinoma; miR-4790-3p; mTOR inhibitor; ZNF225

1. Introduction

Hepatocellular carcinoma (HCC) is the third leading global cause of death, with a
5-year survival rate of 10%. To date, sorafenib is the only regimen that is used to increase
the survival rate of patients with advanced HCC. Everolimus is one of the inhibitors of the
mammalian target of rapamycin (mTOR) and is designed for oral administration. In phase
I/II trials, everolimus was shown to provide 3.8, 3.9, and 8.4 months of progression-free
survival, time to progress, and overall survival for the patients with HCC, respectively [1].
Particularly, everolimus has shown its effectiveness to sorafenib-refractory patients [2].
Therefore, everolimus is expected to become a second-line therapy for sorafenib-refractory
patients. However, the problem is that the response rate of everolimus to HCC is as low as
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4%. To overcome this, many researchers have investigated methods to combine everolimus
with other drugs.

Located downstream of phosphatidylinositol 3 kinase AKT pathways, mTOR plays a
key role in the growth and proliferation of tumor cells. Furthermore, mTOR signaling is
effective when it acts on the ribosomal protein S5 kinase beta-1 (S6K1) and eukaryotic entry
factor-4-binding protein 1 (4E-BP1) [3]. Activated mTOR signaling is found in a variety of
solid cancers, including HCC. In HCC, aberrant mTOR signaling is found in 48% of patients,
which correlates with poor prognosis [4]. There are two complexes of mTOR—mTORC1
and mTORC2 [5,6]. Whereas mTORC1 regulates cell proliferation by phosphorylating S6K1
and 4E-BP1, mTORC2 does this by phosphorylating Akt. Theoretically, inhibiting mTORC1
alone does not completely inhibit tumor growth. When everolimus is used to suppress
mTORC1, phosphorylation of S6K1 and 4E-BP1 is inhibited; however, tumor growth is
possible via uninhibited mTORC2, which phosphorylates Akt [7]. Thus, an ideal mTOR
inhibitor should inhibit both mTORC1 and mTORC2.

While everolimus is an mTORC1 inhibitor, Ku0063794 is a substance that can inhibit
both mTORC1 and mTORC2. However, for some reason, previous studies indicated that
everolimus and Ku0063794 did not differ significantly in terms of their anticancer effica-
cies against HCC [7,8]. Moreover, it was also revealed that combining everolimus and
Ku0063794 potentiated the anticancer effect against HCC by significantly reducing au-
tophagy [7,8]. However, the reason why autophagy increases in everolimus and Ku0063794
monotherapies but decreases in the combination therapy was not clearly defined [7]. In
this study, we intended to investigate the mechanism of autophagy reduction induced by
this combination therapy in relation to microRNA (microRNA) alternations.

2. Results
2.1. Comparison of Expression of miRNAs in Single and Combination Therapies of Everolimus
and Ku0063794

We investigated the effects of everolimus and Ku0063794, alone or in combina-
tion, on cell apoptosis, proliferation, and autophagy in HepG2 cells. First, the effect
of each treatment on the expression of p-mTOR was determined by Western blot analysis
(Figure 1A). Combination therapy decreased the expression of p-mTOR compared to
individual monotherapies. Next, leaved caspase-3 immunohistochemistry andtermi-
nal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)staining were per-
formed to determine the effects of combination therapy on apoptosis of HCC tissues
(Figure 1B,C). The combination therapy group exhibited a significantly higher numbers of
cleaved caspase-3-positive and TUNEL-positive cells, respectively.

In addition, quantitative analysis of apoptosis using Annexin V staining and flow
cytometry also validated the higher apoptotic cell proportion following combination ther-
apy (Figure S1). In the cell viability assay, the combination therapy significantly reduced
the viability of HepG2 cells compared to individual monotherapies (p < 0.05) (Figure 1D).
Subsequently, Western blot analysis was performed to determine the alterations in cell
apoptosis and autophagy when HepG2 cells were treated with everolimus or Ku0063794
alone or in combination (Figure 1E). The treatment with everolimus alone down- and up-
regulated the expression of Bax (an apoptotic marker) and Mcl-1 (an antiapoptotic marker),
respectively; while Ku0063794 alone up- and downregulated them, respectively. The effects
of individual monotherapies on the expression of autophagic markers (ATG7 and LC3B)
were inconsistent. By contrast, combination therapy reduced the expression of autophagy
markers (ATG7 and LC3B) and induced proapoptotic tendencies of apoptotic markers
(higher expression of Bax and lower expression of Mcl-1) (p < 0.05). The autophagic flux
(accumulation of LC3 expression in presence of autophagy inhibitor bafilomycin A1) also
validated the reduced autophagy following combination therapy (Figure S2). Taken alto-
gether, our results suggest that combination therapy significantly increases apoptosis of
HepG2 cells and reduces autophagy compared to individual monotherapies. Similar results
were also obtained in the experiments using Hep3B HCC cells (Figure S3, Supplementary
Materials).
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Figure 1. Comparison of expressions of miRNAs in mono- and combination therapies of everolimus and Ku0063794.
(A) Western blot analysis showing the effects of each treatment on the expression of p-mTOR. (B) Cleaved caspase-3
immunohistochemistry with and without combination therapy in hepatocellular carcinoma (HCC) tissues. (C) TUNEL
staining with and without combination therapy in HCC tissues. (D) Cell proliferation assay of HepG2 cells following mono-
and combination therapies of 100 nM everolimus and 1 µM Ku0063794. Compared to the monotherapies of everolimus and
Ku0063794, the combination therapy significantly reduced the viability of HepG2 cells. (E) Western blot analysis of HepG2
cells following mono- and combination therapies. Combination therapy induced a significant increase in the expression
of Bax, a decrease in the expression of Mcl-1, and a decrease in the expression of autophagy markers. (F) The heat map
of dysregulated miRNAs in HepG2 cells following mono- and combination therapies. Overall, everolimus monotherapy
increased the expression of many miRNAs, Ku0063794 monotherapy reduced the expression of many miRNAs, and mixed
therapies resulted in increased or decreased expressions of several miRNAs. Of all miRNAs, the alterations in the expression
of miR-4790-3p and miR-24-2 were most prominent according to each treatment. Values are presented as means ± standard
deviations of three independent experiments. Note: * p < 0.05. Abbreviations: Bax, Bcl-2-like protein 4; E, everolimus, K,
Ku0063794, Mcl-1, myeloid cell leukemia 1.
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Next, we compared the expression of miRNAs in HepG2 cells following treatments
with everolimus or Ku0063794 alone or in combination (Figure S4). Figure 1F illustrates
the difference in the expression of miRNA in HepG2 cells following the single and com-
bination therapies of everolimus and Ku0063794 using a heat map. Overall, everolimus
monotherapy increased the expression of many miRNAs, Ku0063794 monotherapy re-
duced the expression of many miRNAs, and combination therapy resulted in increased
or decreased expression of several miRNAs. Of all miRNAs, we found that alterations in
the expression of miR-4790-3p and miR-24-2 were most prominent according to each treat-
ment; the expression of these miRNAs was significantly increased following everolimus
monotherapy, decreased following Ku0063794 monotherapy, and significantly decreased
following combination therapy.

2.2. Changes in miR-4790-3p and miR-24-2-5p after Treatment with Everolimus or Ku0063794
Alone and in Combination

We performed real-time PCR to detect the expression of miR-4790-3p and miR-24-2-5p
in HepG2 cells after treating them with everolimus or Ku0063794 alone or in combination.
Compared to the control group, the expression of miR-4790-3p was significantly increased
after everolimus monotherapy, slightly decreased after Ku0063794 monotherapy, and
significantly decreased after combination therapy (Figure 2A). The expression of miR-24-2-
5p was similar to that of miR-4790-3p, but the range of the change was smaller (Figure 2B).
Similar results were also obtained in the experiments using Hep3B HCC cells (Figure S5,
Supplementary Materials).

The target of miR-4790-3p is predicted to be ZNF225 (http://www.targetscan.org.
accessed date: 1 August 2015). ZNF225 is a protein that in humans is encoded by the
ZNF225 gene. It belongs to the protein subtypes that contain the zinc finger, and little is
known about its function. To determine its function, the mRNA expression of ZNF225
either with or without combination therapy was first investigated. The mRNA expression of
ZNF225 was significantly increased in combination therapy compared to the control group
(p < 0.05) (Figure 2C). The mRNA expression of ZNF225 was significantly increased in the
group with combination therapy compared to the control and individual monotherapy
groups (p < 0.05). The increased expression of ZNF225 following combination therapy could
be attributed to the decreased expression of miR-4790-3p, which inhibits the expression of
ZNF225. We also found that combination therapy significantly reduced the expression of
LC3B, an autophagy marker, compared to monotherapy. Visualization of potential network
interactions of ZNF225 revealed that ZNF225 is closely related to FOSL2, JUNB, and JUND,
all of which play essential roles in the autophagic processes (Figure 2D).

http://www.targetscan.org
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Figure 2. Changes in miR-4790-3p and miR-24-2-5p after everolimus and Ku0063794 mono- and combination therapies.
(A,B) Real-time PCR showing the expression of miR-4790-3p and miR-24-2-5p in HepG2 cells after individual treatments.
Compared to the control group, the expression of miR-4790-3p and miR-24-2-5p was increased after everolimus monotherapy,
slightly decreased after Ku0063794 monotherapy, and significantly decreased after the combination therapy. (C) Real-
time PCR showing the expression of Zinc finger protein 225 (ZNF225) and LC3B after the combination therapy. ZNF225
is known to be the target mRNA of miR-4790-3p. The mRNA expression of ZNF225 and LC3B was significantly up-
and downregulated following combination therapy, respectively. (D) Potential network interactions of ZNF225 with
JUNB, JUND, and FASL2 in the autophagy processes. ZNF225 is closely related with FOS like 2 (FOSL2), jun B proto-
oncogene(JUNB), and jun D proto-oncogene(JUND), all of which play essential roles in the autophagic processes. The
resulting network was computationally generated based on the databases (http://string-db.org. accessed date: 15 July
2019). The colors of the lines denote activation (green), inhibition (red), and unspecified interactions (gray). Values are
presented as means ± standard deviations of three independent experiments. Note: * p < 0.05. Abbreviations: E, everolimus;
K, Ku0063794.

http://string-db.org
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2.3. Effects of miR-4790-3p and miR-24-2-5p on Autophagy in Combination Therapy

Next, we investigated the effects of miR-4790-3p and miR-24-2-5p on autophagy in
HepG2 cells using a combination therapy. To achieve this aim, we performed Western
blot analysis to determine the changes in apoptosis- and autophagy-related markers after
overexpressing miR-4790-3p and miR-24-2-5p, respectively. When miR-4790-3p was over-
expressed, we found that the apoptotic marker Bax decreased, the antiapoptotic marker
Mcl-2 increased, and the altered autophagy-related factors (higher expression of ATG5
and ATG7 and lower expression of p62) suggested proautophagy (Figure 3A). In contrast,
when miR-24-2-5p was overexpressed, there were no consistent changes in apoptosis- and
autophagy-related factors, such as those observed during the overexpression of miR-4790-
3p (Figure 3B). Similar results were also obtained in the experiments using Hep3B HCC
cells (Figure S6, Supplementary Materials).
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Figure 3. Overexpression test for the determination of the roles of miR-4790-3p and miR-24-2-5p. (A) (Left) Real-time PCR
analysis demonstrating higher miR-4790-3p expression in miR-4790-3p-transfected HepG2 cells 24 h after transfection.
(Right) Western blot analysis in HepG2 cells with miR-4790-3p overexpression following individual treatments. Over-
expression of miR-4790-3p led to downregulation of Bax, upregulation of Mcl-2, and proapoptotic alterations (higher
expression of ATG5 and ATG7 and lower expression of p62). (B) (Left) Real-time PCR analysis demonstrating higher
miR-24-2-5p expression in miR-24-2-5p-transfected HepG2 cells 24 h after transfection. (Right) Western blot analysis in
HepG2 cells with miR-24-2-5p overexpression following individual treatments. Overexpression of miR-24-2-5p did not lead
to consistent alterations in the expression of proapoptotic, antiapoptotic, or autophagic proteins. Values are presented as
means ± standard deviations of three independent experiments. Note: * p < 0.05. Abbreviations: Bax, Bcl-2-like protein 4; E,
everolimus; K, Ku0063794; Mcl-1, myeloid cell leukemia 1; miR-NC, miRNA mimic negative control.
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To further clarify the relationship between autophagy and miR-4790-3p, we inves-
tigated the changes in apoptosis- and autophagy-related markers in HepG2 cells when
miR-4790-3p was inhibited (Figure 4A). The inhibition of miR-4790-3p potentiated proapop-
totic and antiautophagic effects of combination therapy. In particular, after inhibiting miR-
4790-3p, Bax increased, Mcl-1 decreased, and the changes in autophagy-related markers
indicated antiautophagy (downregulation of ATG5, ATG7, and LC3B, and upregulation
of p62). We then used monodansylcadaverine (MDC)—the autofluorescent drug—for
the analysis of the machinery involved in the autophagic process at the molecular level
(Figure 4B). In MDC staining, the addition of miR-4790-3p increased autophagy and the
inhibition of miR-4790-3p reduced autophagy in combination therapy. The results for the
addition or inhibition of miR-24-2-5p at the time of combination therapy were similar to
the addition or inhibition of miR-4790-3p; however, the results were not as prominent as
for miR-4790-3p. Similar results were also obtained in the experiments using Hep3B HCC
cells (Figure S7, Supplementary Materials).
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Figure 4. The miR-4790-3p inhibition test for the determination of the role of miR-4790-3p. (A) Western blot analysis in
HepG2 cells with miR-4790-3p inhibition following individual treatments. Inhibition of miR-4790-3p led to upregulation of
Bax, downregulation of Mcl-2, and antiapoptotic alterations (lower expression of ATG5, ATG7, and LC3B and higher expression
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of p62). (B) Determination of the degree of autophagy using immunofluorescences with MDC staining. The degree of
autophagy was determined in HepG2 cells with up- or downregulation of miR-4790-3p and miR-24-2-5p, respectively,
following individual treatments. While overexpressing miR-4790-3p promoted autophagy (bright blue), inhibiting miR-
4790-3p led to reduced autophagy (darked blue). Overexpressing or inhibiting miR-24-2-5p led to similar results as for
miR-4790-3p; however, the results were not as prominent as for miR-4790-3p. Values are presented as means ± standard
deviations of three independent experiments. Note: * p < 0.05. Abbreviations: Bax, Bcl-2-like protein 4; E, everolimus; K,
Ku0063794; Mcl-1, myeloid cell leukemia 1; MDC, monodansylcadaverine.

2.4. Determining the Expression of miR-4790-3p and ZNF225

To determine the role of ZNF225 in the HepG2 cells, a ZNF225 overexpression and sup-
pression test was performed (Figure 5A,B). ZNF225 overexpression and suppression were
achieved through transfection with pcDNA3.1Myc-ZNF225 and treatment with siZNF225,
respectively. Western blot analysis showed that overexpressing ZNF225 led to reduced
expression of proautophagic proteins (ATG5 and LC3B) and higher expression of a proapop-
totic marker (Bax), which was reversed by the suppression of ZNF225(siZNF225). Similar
results were obtained from the experiment using Hep3B cells (Figure S8). These results
suggest that ZNF225 has a role in inhibiting autophagy and promoting apoptosis.

We next examined the expression of miR-4790-3p in healthy liver tissue samples, the
liver tissue samples with chronic hepatitis, and the HCC tissue samples of patients with
HCC (Figure 5C). Real-time PCR indicated that the expression of miR-4790-3p was more
significantly increased in the HCC tissues than in controls (p < 0.05). It was also found that
the expression of ZNF225 mRNA, a target mRNA of miR-4790-3p, was more significantly
decreased in the HCC tissues than in controls (p < 0.05). In addition, the expression of au-
tophagy marker LC3B was more significantly increased in the HCC tissues than in controls
(p < 0.05). Finally, we determined the effect of everolimus and Ku0063794 combination
therapy on the expression of ZNF225 in the ex vivo model of HCC. HCC tissues were
cultured with 100 nM everolimus and 1 µM Ku0063794. After the combination therapy for
48 h, it was found that the expression of ZNF225 was significantly increased in the HCC
tissues (p < 0.05) (Figure 5D). Subsequently, we determined the effect of everolimus and
Ku0063794 combination therapy on the autophagy in the ex vivo model of hepatocellular
carcinoma. The combination treatment led to downregulation of LC3B as well as upreg-
ulation of p62, suggesting autophagy reduction (p < 0.05) (Figure 5E). Taken altogether,
Figure 6 illustrates the possible mechanism of action, comparing everolimus monotherapy
and everolimus and Ku-0063794 combination therapy. We think that combination therapy
could be reasonably applied for patients with HCC because combination therapy has the
potential to reduce autophagy by decreasing the expression of miR-4790-3p.
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Figure 5. Determining the expression of miR-4790-3p and Zinc finger protein 225 (ZNF225) (A) Western blot analysis
showing the effects of overexpressing ZNF225 on the expression of markers related to apoptosis and autophagy, respectively,
in HepG2 cells. (B) Western blot analysis showing the effects of suppressing ZNF225 on the expression of markers related
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with apoptosis and autophagy, respectively, in HepG2 cells. (C) Comparison of miR-4790-3p and related markers between
normal liver and HCC tissues. Real-time PCR indicated that the expression of miR-4790-3p was more significantly increased
in the HCC tissues than in normal liver tissues (left). The expression of ZNF225 mRNA, a target mRNA of miR-4790-3p,
was more significantly decreased in the HCC tissues than in normal liver tissues (middle). In addition, the expression of
autophagy marker LC3B was significantly increased in the HCC tissues than in normal liver tissues (right). (D) ZNF225
immunohistochemistry showing the effect of everolimus and Ku0063794 combination therapy on the expression of ZNF225
in the ex vivo model of hepatocellular carcinoma (HCC). HCC tissues were cultured with 100 nM everolimus and 1 µM
Ku0063794. After the combination therapy, the expression of ZNF225 was significantly increased in the HCC tissues. (E)
Immunofluorescence showing the effect of everolimus and Ku0063794 combination therapy on the autophagy in the ex vivo
model of hepatocellular carcinoma. The combination treatment led to downregulation of LC3B, as well as upregulation
of p62, suggesting a decrease in autophagy. Values are presented as means ± standard deviations of three independent
experiments. Note: * p < 0.05. Abbreviations: EK, everolimus plus Ku0063794 combination therapy; HCC, hepatocellular
carcinoma.
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3. Discussion

Everolimus and Ku0063794 combination therapy significantly reduces viability, in-
creases apoptosis, and reduces autophagy in HCC cells compared to individual monother-
apies. In this study, we attempted to explain the superiority of combination therapy using
the alternations of miRNAs according to the treatment modalities. The combination therapy
led to significantly lower expression of miR-4790-3p and higher expression of ZNF225, re-
spectively. ZNF225 is predicted to be the target of miR-4790-3p (http://www.targetscan.org.
accessed date: 1 August 2015), and is closely related to FOSL2, JUNB, and JUND, all of
which play essential roles in the autophagic processes. The increased expression of ZNF225
following combination therapy could be attributed to the decreased expression of miR-
4790-3p, which has a role in suppressing the expression of ZNF225. The functional study
of miR-4790-3p and ZNF225 revealed that regarding autophagy, miR-4790-3p promoted
it, while ZNF225 inhibited it. In addition, regarding apoptosis, miR-4790-3p inhibited it,
while ZNF225 promoted it. HCC tissues exhibited higher expression of miR-4790-3p and
lower expression of ZNF225 compared to normal liver tissues; in addition, they exhibited
higher expression of a proautophagic marker (LC3B). However, treatment of HCC tissues
with the combination therapy led to higher expression of ZNF225; the combination therapy
also led to downregulation of LC3B, as well as upregulation of p62, suggesting autophagy
reduction. Taken together, our study suggests that the potentiated anticancer effect of the
everolimus and Ku0063794 combination therapy is strongly associated with reduced au-
tophagy resulting from diminished expression of miR-4790-3p, as well as higher expression
of ZNF225.

In this study, we clarified the reason why the therapeutic effects of combination ther-
apy showed great differences from each monotherapy in the context of miRNAs. The
miRNAs are small, non-coding RNAs composed of about 22 nucleotides targeting mRNAs
for cleavage and translational suppression [9]. The miRNAs bind to the 3′-untranslated
region (3′-UTR) of target mRNAs after transcription, inhibiting the translation process,
while exquisitely responding to the metabolic and stress conditions of the cells. Importantly,
the mechanisms of action of miRNAs are affected by a variety of pharmaceutical com-

http://www.targetscan.org
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pounds [10]. For instance, resveratrol downregulates the oncogenic miR-21, miR-30a-5p,
and miR-19, thereby upregulating the targets of these miRNAs, resulting in the inhibition
of glioma cell growth [11]. Curcumin upregulates miR-7 in pancreatic cancer cells, thereby
downregulating lysine methyltransferase SET-8—the oncogenic target of miR-7—resulting
in the inhibition of growth and invasion of pancreatic cancer cells [12]. Therefore, the mech-
anisms of various pharmaceutical compounds can be identified more clearly when they
are related to the alterations of miRNAs by the compounds. Therefore, the mechanisms
of various pharmaceutical compounds could be identified more clearly in the context of
miRNAs.

Our study determined the roles of miR-4790-3p and ZNF225 in relation to autophagy.
To date, little is known about the function of miR-4790-3p. Moustafa et al. identified
miR-4790-3p as one of 118 upregulated miRNAs in prostate tumor cells [13]; in contrast,
Wu et al. identified miR-4790-3p as one of 96 downregulated miRNAs in colorectal cancer
tissues [14]. This study revealed that miR-4790-3p could increase autophagy by inhibiting
the expression of the ZNF225. ZNF225 is a human protein that is encoded by the ZNF225
gene and is predicted to be the target of miR-4790-3p. It is one of the protein subtypes
that contain the zinc finger—a small protein structural motif—that is characterized by the
coordination of one or more zinc ions (Zn2+) in order to stabilize the fold. Visualization of
potential network interactions of ZNF225 revealed that ZNF225 is closely related to FOSL2,
JUNB, and JUND, all of which play essential roles in the autophagic processes. Data from
previous in vitro studies consistently support the notion that zinc is critical for early and
late autophagy [15–18]; of note, early and late autophagy were inhibited in cells treated
with zinc chelators [19]. In healthy liver tissue, the expression levels of miR-4790-3p and
ZNF225 were found to be depressed and elevated, while opposite results were found in
HCC tissues. Furthermore, HCC tissues were characterized by the significantly higher
expression of a proautophagic marker (LC3B). However, the treatment of HCC tissues with
the combination therapy reversed this trend—the expression of ZNF225 was significantly
increased and the expression of autophagic markers indicated autophagic reduction. In
addition, the functional study regarding miR-4790-3p and ZNF225 indicated they are
related to the promotion and reduction of autophagy, respectively.

In normal liver cells, autophagy prevents the development of malignant transfor-
mation by maintaining cell homeostasis [20–22]; however, once a tumor is established,
autophagy could enhance the survival of HCC cells in the tumor microenvironment [20,23].
As the tumor advances, HCC cells are put into a metabolically demanding or challenging
environment—limited blood supply, hypoxic environment, and marked inflammation—
which necessitates autophagy in order to acquire energy for growth and survival [24]. It
was revealed that autophagy is upregulated in up to 50–60% of tumor cells when they are
cultured in a hypoxic environment [25–28]. Advanced HCC cells exhibited the increased au-
tophagic flux [29,30], which also showed a positive correlation with tumor progression and
poor prognosis of HCC [31]. Our study is consistent with previous publications, whereby
HCC tissues showed higher autophagy than healthy liver tissues, and the treatment to
reduce autophagy—including everolimus and Ku0063794 combination therapy—could
increase apoptosis of HCC cells, because HCC cells essentially depend on autophagy for
their survival. Therefore, this study suggests that the pharmacologic or biological blockage
of autophagic flux could be one of the efficient anticancer strategies against HCCs.

The pharmaceutical compounds with antiautophagic properties include hydroxy-
chloroquine, chloroquine, thapsigargin, azithromycin, 3-methyladenine, monensin, ma-
trine, wortmannin, vorinostat, lucanthone, xanthohumol, and concanamycin A [32]. Of
these, hydroxychloroquine and chloroquine have been approved by the FDA and have
demonstrated their antitumor effects in various tumor models [33–35]. Recently, researchers
have developed novel autophagy inhibitors that interfere with the binding between au-
tophagosomes and lysosomes [36–38]. In addition, a number of studies have been con-
ducted to determine the effectiveness of combining autophagy inhibitors with existing ther-
apies, such as 5-fluorouracil, sorafenib, cisplatin, and oxaliplatin, in HCC models [39–41].
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For instance, the co-administration of sorafenib and chloroquine has been reported to
significantly reduce HCC growth rather than the monotherapy of either agent [40,42].
Currently, numerous clinical trials using autophagy inhibitors are underway, and thus it is
expected to be possible to develop novel therapies interfering with autophagy in tumor
cells in the near future.

4. Materials and Methods
4.1. Chemicals and Reagents

Everolimus and Ku-0063794 were obtained from Selleckem (Houston, TX, USA).
Monodansylcadaverine (MDC) was purchased from Sigma-Aldrich (St. Louis, MO, USA).
Lipofectamine RNAiMAX transfection reagent was purchased from Invitrogen (Carlsbad,
CA, USA).

4.2. Cell Culture

Human hepatoblastoma cell line HepG2 and human hepatocellular carcinoma cell
line Hep3B were obtained from Korean Cell Line Bank (KCLB, Seoul, Republic of Korea).
HepG2 and Hep3B cells were maintained in DMEM–high-glucose medium (Thermo Fisher
Scientific, Waltham, MA, USA). The medium was supplemented with 10% fetal bovine
serum (FBS; GibcoBRL, Calsbad, CA, USA) and 1% penicillin and streptomycin (Thermo
Fisher Scientific MA, USA) at 37 ◦C in saturating humidity with 5% CO2 in an incubator.

4.3. Cell Viability Assay

The cell viability assay was evaluated with water soluble tetrazolium salt (WST-
1) using an EZ-Cytox Cell Viability Assay Kit (Itsbio, Seoul, Korea) according to the
manufacturer’s instructions. Briefly, HepG2 and Hep3B cells were cultured in 96-well
plates (1 × 104 cells per well). The HepG2 and Hep3B cells were treated with everolimus
and Ku-0063794 for 24 and 48 h, respectively. Then, the reagent from the EZ-Cytox Cell
Viability Assay Kit was applied to each well. Absorbance was measured at 450 nm using
the multi-mode reader (Bio-Tek, Winooski, VT, USA)

4.4. Western Blot Analysis

HepG2 and Hep3B cells were lysed using the EzRIPA Lysis Kit (ATTO Corporation,
Tokyo, Japan) and quantified using Bradford reagent (Bio-Rad, Hercules, CA, USA). Pro-
teins were visualized by Western blot analysis using the following primary antibodies
(1:1000 dilution) at 4 ◦C overnight and then with HRP-conjugated secondary antibodies
(1:2000 dilution) for 1 h at 25 ◦C. Primary antibodies against Bcl-2-like protein 4 (Bax),
myeloid cell leukemia 1 (Mcl-1), ATG5, ATG7, LC3B, p62, and β-actin were obtained from
Cell Signaling Technology (MA). Horseradish peroxidase (HRP)-conjugated secondary anti-
body were obtained from Vector Labs (Burlingame,WA, USA). Specific immune complexes
were detected using the Western Blotting Plus Chemiluminescence Reagent (Millipore,
Bedford, MA, USA).

4.5. Monodansylcadaverine (MDC) Staining

HepG2 and Hep3B cells were cultured on Lab-Tek chamber slides (Thermo Fisher
Scientific, Hemel Hempstead, UK) and the HepG2 and Hep3B cells were treated with
everolimus and Ku-0063794 for 24 and 48 h, respectively. Subsequently, HepG2 cells were
stained with 0.05 mM MDC at 37 ◦C for 30 min. The autophagic vacuoles were observed
using a laser scanning microscope (Eclipse TE300; Nikon, Tokyo, Japan).

4.6. Validation of miRNA Expression in Human HCC Tissues

Real-time PCR analysis was performed to validate miRNA expression in human
HCC tissues. This study was approved by the institutional review board at Daejeon
St. Mary’s Hospital, the Catholic University of Korea. Total RNA was extracted using
the mirVanaTM miRNA isolation kit according to the manufacturer’s protocol. Reverse
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transcription was performed with 1 µg RNA using a universal cDNA synthesis kit (Exiqon,
Vedbaek, Denmark). The primers used for ExiLENT SYBR Green master mix (Exiqon,
Vedbaek, Denmark) were the hsa-miR-24-2-5p and hsa-miR-4790-3p primer sets (Exiqon,
Vedbae, Denmark). The reaction was performed using an Applied Biosystems 7500 96-well
real-time PCR system (Life Technologies, Carlsbad, CA, USA). After normalization to U6
snRNA, the expression levels for each target gene were calculated using the comparative
threshold cycle method.

4.7. miRNA Transfection

The miR-4790-3p and miR-24-2-5p mirVana miRNA mimics were purchased from Am-
bion, Inc. (Bedford, MA, USA). Transfection was carried out using RNAiMAX (Invitrogen,
Carlsbad, CA, USA), according to the manufacturer’s instructions.

4.8. Microarray

Human microRNA expression was analyzed with miRCURY LNATM microRNA
Array (Exiqon, Vedbaek, Denmark), covering 1918 well-characterized human microR-
NAs among 3100 capture probes for human, mouse, and rat miRNAs. In this procedure,
5′-phosphate from 250 ng of total RNA was removed by treating with Calf Intestinal Al-
kaline Phosphatase (CIP) followed by labeling with Hy3 green fluorescent dye. Labeled
samples were subsequently hybridized by loading onto a microarray slide using a Hy-
bridization Chamber Kit part #G2534A (Agilent Technologies, Santa Clara, CA, USA) and
Hybridization Gasket Slide Kit part #G2534-60003 (Agilent Technologies). Hybridization
was performed over 16 h at 56 ◦C, followed by washing of the microarray slide as rec-
ommended by the manufacturer. Processed microarray slides were then scanned with
an Agilent G2565CA Microarray Scanner System (Agilent Technologies, Santa Clara, CA,
USA). Scanned images were imported using Agilent Feature Extraction software version
10.7.3.1 (Agilent Technologies, Santa Clara, CA, USA) and the fluorescence intensities of
each image were quantified using the modified Exiqon (Vedbaek, Denmark) protocol and
corresponding GAL files.

4.9. Overexpression and Silencing of the ZNF Genes

Human ZNF cDNA were obtained by RT-PCR using HepG2 cell RNA. PCR products
were digested with HindIII and XhoI (Takara Tokyo, Japan) and ligated into the pcDNA3.1
Myc-His vector (Invitrogen, Carlsbad, CA, USA). Transcription was specifically suppressed
by the introduction of the 21-nucleotide duplex siRNA, which targeted the zinc finger
(ZNF) mRNA coding sequence. Briefly, HepG2 and Hep3B cells were plated in 6-well plates
(2 × 105 cells/well) and transiently transfected with 100 nM per well of ZNF siRNA (Santa
Cruz, Santa cruz, CA, USA) mixed with the Lipofectamine transfection reagent (Thermo
Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. After
5 h incubation, the medium was changed to complete culture medium and the cells were
incubated at 37 ◦C in a CO2 incubator for 48 h before harvesting.

5. Quantification of Apoptosis by Flow Cytometry

To determine the proportion of cells undergoing apoptotic cell death, HepG2 and
Hep3B cells were stained with Annexin V/propidium iodide (PI) (BD Biosciences, Flanklin
Lakes, NJ, USA). After incubation for 10 min in the dark at 25 ◦C, the cells were analyzed
using an Attune NxT Acoustic focusing cytometer (Thermo Fisher Scientific, Carlsbad, CA,
USA).

5.1. TUNEL Assay

TUNEL analysis was performed for the detection of apoptosis in HCC tissues using
the in situ Apoptosis Detection Kit (Takara, Tokyo, Japan) following the manufacturer’s
instructions. In brief, sample slides were incubated with 50 µL of TUNEL reaction mixture
and TdT labeling reaction mix for 1 h at 37 ◦C in the dark. After being rinsed with PBS
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three times, the samples were observed using a fluorescence imaging system (EVOS U5000;
Invitrogen, Carlsbad, CA, USA).

5.2. Ex Vivo Culture of Hepatocellular Carcinoma Tissue

Human hepatocellular carcinoma tissue specimens (paired normal and cancer tissues
from each patient, n = 10) were obtained after surgical resections performed at our institu-
tion. The ethics committee at our institution approved the use of the tissue specimens for
the research.

Human HCC tissues were cultured in DMEM/F12 media supplemented with 10%
fetal bovine serum (FBS; GibcoBRL, Calsbad, CA, USA) and 1% penicillin and streptomycin
(Thermo, Waltham, MA, USA) at 37 ◦C in saturating humidity with 5% CO2 in an incubator.
The tissues were treated with 100 nM everolimus and 1 µM Ku0063794 or vehicle solution.
After the treatment for 24 h, the tissues were processed for histological analyses.

5.3. Immunohistochemical Analyses

For immunohistochemical analyses, formalin-fixed, paraffin-embedded (FFPE) tissue
sections were deparaffinized, rehydrated in an ethanol series, and subjected to epitope
retrieval using standard procedures. Primary antibodies to ZNF225, LC3B, p62, and
cleaved caspase-3 were used for immunochemical stains. ZNF225, LC3B, p62, and cleaved
caspase-3 were obtained from Cell Signaling Technology (MA). Horseradish peroxidase
(HRP)-conjugated secondary antibody was obtained from Vector Labs (CA). LC3B and
p62 were observed using a fluorescence imaging system (EVOS U5000; Invitrogen, CA,
USA). ZNF225 was observed using a panoramic distal slide scanner system (3D HISTECH;
Budapest, Hungary).

5.4. Statistical Analysis

All data were analyzed using SPSS 11.0 software (SPSS Inc.; Chicago, IL, USA) and
are presented as the means ± SDs. Statistical comparisons between the mean values of two
groups were performed using Mann–Whitney U tests; to compare three or more groups,
Kruskal–Wallis tests were used. Probability (p) values of <0.05 were considered statistically
significant.

6. Conclusions

The combination therapy of everolimus and Ku0063794 significantly reduced viabil-
ity, increased apoptosis, and reduced autophagy in HCC cells compared to individual
monotherapies. We found that the superiority of the combination therapy is closely re-
lated to the alteration of miRNAs according to the treatment modalities. The combination
therapy led to the significant decreased expression of miR-4790-3p and the increased ex-
pression of ZNF225—the predicted target of miR-4790-3p. In addition, the functional study
regarding miR-4790-3p and ZNF225 indicated that they are related to the promotion and
reduction of autophagy, respectively. It was also revealed that HCC tissues are character-
ized by higher expression of miR-4790-3p and lower expression of ZNF225; they are also
characterized by higher autophagic flux. We, thus, conclude that the potentiated anticancer
effect of the everolimus and Ku0063794 combination therapy is strongly associated with
reduced autophagy resulting from diminished expression of miR-4790-3p, as well as higher
expression of ZNF225.
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Abbreviations

Bax Bcl-2-like protein 4
E Everolimus
K Ku0063794
Mcl-1 Myeloid cell leukemia 1
miR-NC miRNA mimic negative control
MDC Monodansylcadaverine
EK Everolimus plus Ku0063794 combination therapy
HCC Hepatocellular carcinoma
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