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Defining target textures by increased bandwidths in
spatial frequency and orientation, we observed strong
cue combination effects in a combined texture figure
detection and discrimination task. Performance for
double-cue targets was better than predicted by
independent processing of either cue and even better
than predicted from linear cue integration. Application
of a texture-processing model revealed that the
oversummative cue combination effect is captured by
calculating a low-level summary statistic (�CEm), which
describes the differential contrast energy to target and
reference textures, from multiple scales and
orientations, and integrating this statistic across
channels with a winner-take-all rule. Modeling detection
performance using a signal detection theory framework
showed that the observers’ sensitivity to single-cue and
double-cue texture targets, measured in d′ units, could
be reproduced with plausible settings for filter and noise
parameters. These results challenge models assuming
separate channeling of elementary features and their
later integration, since oversummative cue combination
effects appear as an inherent property of local energy
mechanisms, at least for spatial frequency and
orientation bandwidth-modulated textures.

Introduction

Humans categorize visual scenes rapidly (Fei-Fei
et al., 2007; Schyns & Oliva, 1994), judging at a
glance whether its content is natural or man made
(Greene & Oliva, 2009a, 2009b; Loschky et al.,
2007; Loschky & Larson, 2008; Oliva & Torralba,
2001). Also discriminating scene objects at the basic
level of categorization seemingly works within the
first 100 ms of processing without allocation of
spatial attention (Grill-Spector & Kanwisher, 2005;
Hershler & Hochstein, 2005; Rousselet et al., 2005;
Thorpe et al., 1996). Rapid and preattentive scene
and object categorization indicates that observers rely
on cues provided by earlier stages of image analysis

(Baddeley, 1997; Groen et al., 2013; VanRullen, 2006;
Wichmann et al., 2006).

Likewise, rapid and preattentive discrimination
of “textures,” that is, artificial images with spatial
regularity, also indicates involvement of early analysis
mechanisms. First studies suggested that identity of
the power spectrum decides whether two textures
can be discriminated only with detailed scrutiny or
immediately and preattentively. However, later studies
found several counter examples, demonstrating that
there are textures with equal power spectra, and even
with equal third-order statistics, which segregate at a
glance (Julesz et al., 1973, 1978). These results suggested
that a Fourier-like image description that could be
extracted from the responses of orientation and spatial
frequency tuned cell populations found in striate cortex
(Campbell et al., 1969; Daugman, 1980; Hubel &
Wiesel, 1968) might only be an initial step in texture
segregation (Sagi, 1995; Victor et al., 1995).

In one class of feedforward processing models, the
output of orientation and spatial frequency selective
filters is squared or full-wave-rectified to form a local
energy measure (Landy, 2013; Lin & Wilson, 1996).
This basic operation not only marks local contrast
and luminance differences but also identifies texture
regions that differ in arbitrary feature modulations by
translating them into different local energy distributions
(Bergen & Adelson, 1988; Landy & Bergen, 1991). Due
to its simplicity, the model has widely been used to
describe human sensitivity to feature modulation across
space (Arsenault et al., 1999; Bergen & Adelson, 1988;
Caelli, 1982; Prins & Kingdom, 2006; Rubenstein &
Sagi, 1990; Sagi, 1995). It has also been used in recent
attempts to explain the rapid extraction of a scene
“gist” (Groen et al., 2013). In most implementations,
there is a first filtering stage, followed by local energy
computation, which again is followed by a secondary,
larger-scale filtering stage, which enhances pooled
regional differences in feature modulation. Models
of this class are referred to as filter-rectify-filter
(FRF) models (Landy & Bergen, 1991; Landy, 2013;
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Landy & Oruc, 2002; Prins & Kingdom, 2006). FRF
models can predict the close covariation of detection
performance with degree of texture modulation (Landy
& Bergen, 1991), the salience of texture boundaries
(Malik & Perona, 1990; Landy & Bergen, 1991), and
several asymmetries in human texture segregation
(Rubenstein & Sagi, 1990). However, as pointed out
by Prins and Kingdom (2006), direct evidence for the
existence of local energy-based texture mechanisms is
rare.

Malik and Perona (1990) claimed that a complete
model of texture perception should satisfy three
criteria: (1) It should be biologically plausible, (2) it
should be general enough to be tested on any gray-scale
image, and (3) it should yield a quantitative match
with psychophysical data. Local energy-based models
satisfy the first criterion of biological plausibility as
they use first-order filters with weighting characteristics
resembling the receptive field profiles of cortical
simple cells in V1 (Daugman, 1980, 1985), which
were found to be tuned to specific orientations and
spatial scales (Campbell et al., 1969; Hubel & Wiesel,
1965). Further, V2 cells were shown to respond to
locus and orientation of texture boundaries but were
unresponsive to the luminance profiles of texture
elements (von der Heydt et al., 1984), a behavior that
closely matches the non-Fourier second-order squaring
and pooling operation (Lin & Wilson, 1996). Thus,
FRF mechanisms can be viewed as modeling processing
chains of V1 and V2 cells. Local energy-based models
also easily satisfy the second criterion as they can take
an arbitrary gray-scale image as input.

The third criterion states that a test for local energy-
based texture mechanisms requires a psychophysical
benchmark. A strong challenge for feedforward local
energy-based models would be prediction of the
“feature synergy effect” arising in the discrimination of
texture regions defined by feature modulation in two
dimensions (Meinhardt & Persike, 2003; Meinhardt
et al., 2004, 2006; Kida et al., 2011; Straube et al.,
2010). Authors showed that sensitivity to target texture
regions that varied from the surround in orientation
and spatial frequency was much higher than predicted
from the assumption of detecting texture modulation
along either dimension independently. Such a multi
cue advantage has been termed “synergy” (Kubovy
& Cohen, 2001), and besides orientation and spatial
frequency, it has been reported for color and form
(Kubovy et al., 1999) and for color and orientation
(Saarela & Landy, 2012). Strong cue summation was
also found in contour integration, whereby additional
feature contrast enhanced detection of contours defined
by orientation alignment (Machilsen & Wagemans,
2011; Persike & Meinhardt, 2015).

Assuming feature independence implies the notion
that the visual system analyzes visual scenes in terms
of “features,” using feature-specific modules acting in

parallel (Kubovy & Cohen, 2001). Such models have
been proposed to describe “pop out” in visual search,
whereby each module signals spatiotemporal gradients
for the feature it analyzes (Treisman & Gelade, 1980;
Treisman, 1988). Local energy-based models are at odds
with this notion, since their local nonlinearity marks
any regional texture change regardless of its specific
featural origin. Hence, in local energy-based models,
there are no feature modules built from the outputs of
the primary analyzers.

Predicting the feature synergy effect for textures
jointly modulated in two features from local energy-
based mechanisms would be strong evidence for this
model class, since there are no free parameters for
weighting how texture modulations from two features
combine. Support for local energy-based mechanisms
would be even stronger if the specific nature of the
texture stimuli makes architectures with separate feature
modules no likely candidates for explaining the synergy
effect, even with additional assumptions for the way
how module outputs are integrated.

In this sense, the present study provides evidence
for local energy-based mechanisms in human texture
segregation. We devised stimuli with no likely
double-cue advantage, using textures with no feature
contrast but different orientation and spatial frequency
bandwidths. In these textures, orientation and spatial
frequency differences of target and reference textures
arise in regions of the parameter space where practically
no overlap of the response characteristics of primary
filters can be expected. However, we observed a strong
double-cue benefit for these stimuli, which was at
least as strong as the synergy effect for textures with
orientation and spatial frequency contrast (Meinhardt
et al., 2006; Persike & Meinhardt, 2008). Analyzing
the textures with a plausible local energy model and
combining the space-average responses with a simple
max-rule replicated the synergy effect for detection,
while no further assumptions or free parameters
entered. The findings suggest that nonlinear saliency
enhancement for jointly modulated textures is an
inherent property of local energy mechanisms, which
offers a parsimonious and straightforward explanation
of the feature synergy effect in texture segregation.

Method

Experimental rationale

Varying the spread parameters of Gabor kernels for
Landy-Bergen textures yields a synergy effect

Landy and Bergen (1991) constructed oriented
noise textures by convolving a spatial noise image,
having the gray value of each pixel sampled from
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Figure 1. Reference and target textures (A), created by convolving Gabor-like kernels (B) with spatial noise images. The kernels were
derived from the reference Gabor kernel by shrinking the spread parameter for the axis of luminance modulation (σx), perpendicular
to it (σy), and doing both (σx + σy). In (C), the target textures are included in the middle square region, surrounded by the reference
texture. Only for σx + σy, the middle region becomes salient as a square, while the texture figures for σx and σy manipulations are
barely detectable. To avoid artificial texture edges, a cumulative Gaussian was used to smooth the transition from outer to inner
square region.

independent and normally distributed random variables
with the same mean, with a Gabor kernel with defined
orientation and spatial frequency. Textures derived
with this technique (Landy-Bergen textures) are shown
in Figure 1A; the generating kernels are shown in
Figure 1B. The first example shows a texture created
with a Gabor kernel with equal-spread parameter of
the Gaussian envelope in either direction, σx = σy,
which defines the “reference” texture. If the spread
parameter along the axis of sinusoidal luminance
modulation, σx, is diminished, the textures’ spatial
frequency variability increases. Thus, line segments of
similar average length but more inhomogeneous spatial
periodicity than the reference appear (“ω f -target”).
If the spread parameter for the axis perpendicular
to the axis of luminance modulation, σy, is reduced,
textures with the same average spatial periodicity but
more local orientation jitter shortening the average
length result (“ωφ-target”). Shrinking both σx and
σy creates a texture that combines these two effects
(“ω f + ωφ-target”). The four individual textures look
quite distinct in a side-by-side view. However, when
each target texture is embedded into the reference
texture as a smaller square region (Figure 1C), different
perceptual effects result. While ω f - and ωφ-targets are
just barely detectable, the ω f + ωφ-target is strongly
salient. These examples indicate that σx and σy kernel

manipulations for Landy-Bergen textures are a further
candidate for the synergy effect in texture segregation
(Meinhardt et al., 2006).

Selectively changing bandwidths of principal frequency
and orientation components

Analyzing the texture examples in terms of Fourier
amplitude spectra shows the results of σx and σy
manipulations, which can be expressed in the space
spanned by spatial frequency ( f ) and orientation (φ)
(see Figure 2).1 The plots show that, compared to the
reference, a wider range of spatial frequencies but not
orientations is introduced in the ω f -target, and a wider
range of orientations but not spatial frequencies is
introduced in the ωφ-target. The points of maximum
difference of targets and reference lie on the axes of
principal spatial frequency and orientation, and are
found at the same locations for the ω f + ωφ-target (see
red and yellow circles in Figure 2). Figure 3 shows the
amplitude characteristics of Gabor filters tuned to the
these positions in ( f , φ)-space (( f = 3.5, φ = 26.4)
and ( f = 5.4, φ = 0)) along their connection line (see
dashed line in right panel of Figure 2). The plots show
that each filter is nearly unresponsive to the ( f , φ)
parameters of the other filter.
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Figure 2. Amplitude spectra for the four texture stimuli shown in Figure 1, plotted in coordinates of spatial frequency (x-axis, f ) and
orientation (y-axis, φ). The major orientation of the textures (45◦) was set to (0◦), for convenience (horizontal axis). The major spatial
frequency component (carrier frequency of the Gabor-kernel) was 3.5 cpd. The yellow circles mark the coordinates of maximum
difference of ω f -target textures and reference; red circles mark the corresponding coordinates for ωφ-target textures and reference.
The intersections of the major spatial frequency and orientation components (light gray dots) mark the spectral centroids, which
coincide for all four textures.

Figure 3. Normalized amplitude characteristics of Gabor filters
located at the points of maximum difference of ω f -target (a)
and ωφ-target (b) to the reference texture (see yellow and red
circles in Figure 2), for ( f, φ)-parameters along the connection
line of both points in ( f, φ)-space (dashed line in Figure 2).
Spatial frequency filter bandwidths were about 0.5 octaves (see
Model section). Filters (a) and (b) have moderate intersection
and are mutually unresponsive at each others’ ( f, φ)-
coordinates.

For a given choice of σx and σy, one can calculate
spatial frequency and orientation bandwidths of the
texture generated by a kernel with these σ parameters,
defined as the half-amplitude range for f and φ when
going along the principal carrier orientation and
spatial frequency component (gray lines in Figure 2).
Figure 4 shows either bandwidth measure. The oblique
planes shown in Figures 4A and 4B illustrate that
σx and σy manipulations affect spatial frequency
bandwidth (ω f ) and orientation bandwidth (ωφ)

independently. Hence, by selectively manipulating
either the σx or the σy parameter, it is possible to create
textures with higher spatial frequency bandwidth but
same orientation bandwidth than the reference or
vice versa.

It is straightforward to study the psychophysical
effect that results when both orthogonal bandwidth
manipulations are combined in the ω f + ωφ-target.
In the present study, we report a synergy effect of
spatial frequency and orientation bandwidth in texture
figure detection and identification, following the same
principal experimental setup as used in Meinhardt
et al. (2006). Using bandwidth differences of target
and reference in the order of magnitude of the
detection threshold, we show that combining ω f and
ωφ manipulations leads to strong improvement of form
completion and figure-ground segregation in noisy
environments.

Stimuli

Stimuli were Landy-Bergen textures (Landy &
Bergen, 1991), consisting of a target texture embedded
in a reference texture, while both differed in spatial
frequency bandwidth, orientation bandwidth, or
both. The whole texture display field comprised
16.35◦ × 16.35◦ visual angle (768 × 768 px). Within
this area, a central square region of 10.9◦ × 10.9◦
visual angle (512 × 512 px) was used for displaying
target textures in the spatial outline of a right-angle
triangle with a leg length of 5.47◦ (256 px) (see Figure 5
for illustration). The positions of target textures in
the central target region changed randomly across
trials. Triangle diagonals could be leftward (−45◦)
or rightward (45◦), occurring with equal frequency
throughout the experiment.
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Figure 4. Bandwidth measures ω f (A) and ωφ (B), defined as half-amplitude parameter distance for f and φ for textures generated with
given σx and σy parameters of the Gabor kernels. The x- and y-axes are normalized with respect to the σ parameters of the reference
texture. Measure ω f is given in octaves and ωφ in degrees. The four edge points correspond to the four textures shown in Figure 1.

Figure 5. Illustration of spatial parameters of the display. The
triangular target texture region could appear in the central
portion of the stimulus and could be either variety of a leftward
or a rightward diagonal triangle. Gaussian blur was used for the
transition from target texture to reference texture.

For generating textures, normal spatial pixel noise
was convolved with a Gabor kernel defined by
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. Convolutions were

computed via fast inverse Fourier transform, using
a bounding box of 1.3◦ × 1.3◦ (61 × 61 px) for the
kernels. Carrier spatial frequency f was kept constant

at 3.5 cycles per degree (cdp) of visual angle for all
kernels, and the orientation φ was chosen randomly in
10◦ steps between 1◦ and 180◦ for each new trial but
was always the same for reference and target kernels.
The resulting reference and target textures did only
differ in the size and form of the Gaussian window of
their kernel controlled by the parameters σx and σy.
Reference textures had a spatial frequency bandwidth
of 0.60 octaves and an orientation bandwidth of
22.9 degrees. During the main experiment, the target
spatial frequency bandwidth ranged between 0.73 and
2.0 octaves while the target orientation bandwidth
ranged between 28.3 and 43.6 degrees. Target and
reference textures were blended with smooth transition
(standard deviation of Gauss smoothing σ = 0.174◦
[8 px]) as to avoid salient texture edges.

Psychophysical task and detection performance
level

A two-alternative forced-choice (2AFC) task for
target texture detection was followed by a target figure
orientation discrimination task. Participants saw two
subsequent stimulus frames, one of which contained a
target figure. Subsequently, they indicated by button
press whether the first or the second frame contained
the target and whether the target was a triangle
with leftward (−45◦) or rightward (45◦) diagonal.2
Acoustical feedback was provided about correctness
by two brief tone signals. Stimulus frame presentation
was terminated by masking with static noise with a
grain resolution of 1 px. The temporal order of events
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was fixation (500 ms), blank (200 ms), first stimulus
frame (280 ms), mask (400 ms), blank (200 ms), second
stimulus frame (280 ms), mask (400 ms), fixation until
response, and acoustical feedback.

The parameter difference in σx or σy parameters
for reference and the target determines the degree of
target detectability, as well as the degree to which the
texture triangle orientation can be discriminated. For
each cue, we used a parameter difference corresponding
to a detection rate of 71.4% proportion of correct
judgments (d ′ = 0.8), which was individually calibrated
for each participant. For double-cue targets, the
difference levels in both σ parameters were combined
at the 71.4% level. Only one detection level was chosen
since previous studies showed strong cue summation
for two basic texture cues (spatial frequency and
orientation contrast) at this level (Meinhardt et al.,
2006; Persike & Meinhardt, 2008).

Participants

Nineteen undergraduate students and one of the
authors, Cordula Hunt, served as observers. Seventeen
were female and two male. All participants had normal
or corrected-to-normal vision. The students were
paid and not informed about specific hypotheses or
expectations regarding the experimental tests until after
participation. All participants signed a written consent
form according to the World Medical Association’s
Helsinki Declaration. Prior to the experiment, they
were informed about the procedures and the general
intention of the study, and that they could withdraw
from the experiment at any time without negative
consequences. Further, participants were informed that
their data would be collected and stored anonymously
and that they could be shared with other researchers
for scientific purposes only. After the measurements,
a summary and a data explanation were provided for
each participant.

Apparatus

Textures were generated using Python 3.6 and the
psychopy-Toolbox (Peirce, 2008) and displayed on
an EIZO ColorEdge CG2420 monitor. The pixel
resolution of the monitor was 1,920 × 1,200 px with a
refresh rate of 60 Hz, mean luminance was 100 cd/m2,
and gamma was 1.0 for all three colors. Gray values
were taken from a gamma-corrected linear staircase
consisting of 256 steps. The room was darkened so
that the ambient illumination approximately matched
the illumination on the screen. Patterns were viewed
binocularly at a distance of 70 cm and participants
gave their responses via the arrow keys of the computer
keyboard.

Procedure

First, the participant’s ability to detect and
discriminate targets correctly was verified in a
preceding training period in which the participants
were made familiar with easily detectable targets.
Then, a calibration phase followed, in which the
parameters for the main experiment were estimated.
These measurements served to determine perceptually
equivalent parameter difference levels for both single
cues in order to define double-cue targets with equally
detectable components (Meinhardt et al., 2006; Persike
& Meinhardt, 2008). Participants performed the two
tasks at three arbitrarily chosen parameter difference
levels. Proportion correct rates were calculated from 32
trials per difference level. The proportion correct data
were fitted with Weibull functions, and the parameter
differences that corresponded to a proportion of correct
judgments of 71.4% (d ′ = 0.8) were estimated. These
values were used in the main experiment, which was
repeated three times per participant while previous
to each run, the σx and σy parameters were slightly
trimmed for better perceptual equivalence in single-cue
performance. Every main experiment consisted of
the same number of trials for each single cue and
the double-cue targets, and all trials were randomly
intermixed. Including the calibration the experiment
encompassed a total of 192 + 3 × 96 = 480 trials. These
were divided into two sessions, each lasting under 60
min. Measurements were done either on the same or on
two consecutive days.

Measure of cue summation

In a yes-no task, the sensitivity measure from signal
detection theory, d ′, is obtained from the hit rate (H)
and the false alarm rate (FA) as

d ′ = �−1(H) − �−1(FA). (2)

In a 2AFC task, it is uniquely related to the proportion
of correct responses and can be obtained as

d ′ =
√
2�−1(pc) (3)

with �−1(p) the p-th quantile of the standard normal
distribution in both cases and pc the proportion of
correct responses (MacMillan & Creelman, 2009).
Provided there is equal sensitivity to the individual
orientation and spatial frequency bandwidth targets,
we define the base sensitivity as the average single-cue
sensitivity

d ′
b = 1

2
(d ′

ω f
+ d ′

ωφ
). (4)
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There is some argument as to how to benchmark
the integration of information from different stimulus
commodities. The easiest and most intuitive way is to
refer to the rules of vector summation as first derived
by Tanner (1956). In the case of independent vectors,
the two single features are mapped onto orthogonal
random variables. The strength of the compound signal
is given by the length of the two vectors added:

d ′
⊥ =

√
(d ′

ω f
)2 + (d ′

ωφ
)2 (5)

(MacMillan & Creelman, 2009, see p. 158). This case is
referred to as “dimensional orthogonality” (Ashby &
Townsend, 1986). If the vectors are instead collinear,
sensitivity to the double-cue signal is given by the
linear sum of the two equal single-cue sensitivities, 2d ′

b.
However, orthogonality is an overly optimal solution
and not based in an actual signal detection theory
framework. Another pair of measures, probability
summation (PS) and additive summation (AS),
remedy this. Recently, Kingdom et al. (2015) proposed
flexible equations to compute PS and AS. PS assumes
separate mechanisms to detect different stimuli in an
independent way. Adding multiple features increases
information and thus the chance that any one feature
will be detected. AS, on the other hand, assumes a
mechanism sensitive to the cue combination itself
that pools the responses from different individual
mechanisms.

Evaluating double-cue effects heavily depends on
the benchmark prediction to compare behavioral
performance. For a differential comparison of our
results, we will consequently report all four measures
where this is possible. While computation under
the assumptions of dimensional orthogonality and
collinearity is straightforward, PS as well as AS
predictions need to be calculated under the signal
detection framework, taking into account the specific
experimental task and stimulus setting. In our study,
we had a 2AFC task for detection, this means there
were two intervals during each trial, two single cues had
to be monitored, and two mechanisms were activated
by our compound stimulus. However, a prerequisite
for the computation with the formulae provided by
Kingdom et al. (2015) is that the experimental setting
follows a multiple AFC paradigm. In our study, this
is true only for the detection task but not for the
discrimination task, which is a yes-no task by structure.
We therefore report all four measures for the detection
task but only the traditional measures of prediction
based on orthogonality and linear summation for the
discrimination task. We compute predictions of PS and
AS via the Palamedes Toolbox in MATLAB, which
were contributed by Prins and Kingdom (2018) for
these purposes. For a detailed discription of the utilized
formulae, see Kingdom et al. (2015).

Figure 6. Difference of the sum vectors from collinear and
orthogonal component vectors with complementary length
‖b‖ = 2 − ‖a‖, as a function of the length ratio |a‖/‖a + b‖.

Cue summation can be judged by considering the
fraction formed by the sensitivity to the combined
orientation and spatial frequency bandwidth
components, d ′

c = d ′
ω f +ωφ

, and the base sensitivity d ′
b

q = d ′
c

d ′
b

(6)

henceforth referred to as “summation ratio.” As a
rule of thumb for the strength of synergy effects,
two summation ratios are noteworthy. Both express
tangible changes in the summation process. Provided a
stable baseline (d ′

ω f
= d ′

ωφ
), q = √

2 expresses the case
of d ′

c = d ′
⊥, that is, cue orthogonality. Larger effects

have previously been denoted as “synergy” (Kubovy &
Cohen, 2001). q = 2 expresses the case of d ′

c = 2d ′
b, that

is, linear summation. Larger effects violate the triangle
inequality ‖a + b‖ ≤ ‖a‖ + ‖b‖ and can be denoted as
“oversummative.”

Perceptual equivalence of the single cues is an
important constraint for measuring cue summation
effects under all summation frameworks. If the
single-cue sensitivities differ largely, true cue summation
effects (synergy) can hardly be distinguished from cue
independence. Figure 6 shows the difference of the
sum vectors from collinear and orthogonal component
vectors (directly pertaining to orthogonal summation,
but the principle is the same for PS and AS). This
difference is maximum, that is, 2 − √

2, for component
vectors of equal length and rapidly declines the more
the lengths of the component vectors differ.

Data clearing

Proportions correct for perfect performance were
replaced by 1 − (2N )−1, where N is the number
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Figure 7. Mean d′ sensitivities for target texture detection (purple circles) and target figure orientation discrimination (orange
squares) for spatial frequency bandwidth (ω f ) targets, orientation bandwidth (ωφ) targets, and double-cue (ω f + ωφ) targets. The
different panels refer to all data (left panel) and to 90%, 80%, and 70% of the data remaining in the sample after clearing for
single-cue sensitivity deviations, �d′

b. Bars denote 95% confidence intervals of the means. The right ordinate shows proportion
correct (pc) rates corresponding to d′. The lower dashed line indicates predicted double-cue sensitivity for independent cues,

√
2d′

b,
while the lower dotted line indicates double-cue sensitivity as predicted by PS. Upper solid lines indicate predicted double-cue
sensitivity for linear cue summation, 2d′

b, while the upper dashed-and-dotted line indicates double-cue sensitivity as predicted by AS.
For a better overview, only the most conservative criterion, 2d′

b, is depicted for orientation discrimination.

of replications (MacMillan & Creelman, 2009, see
p. 8). Analysis of single-cue sensitivities showed
strong deviations from equality in places, albeit the
σ - parameters were carefully adjusted for perceptual
equivalence prior to the main experiment. To analyze
the effects on the cue summationmeasure (6), we formed
the distribution of �d ′

b = d ′
ω f

− d ′
ωφ

for each target
detection and target figure orientation discrimination
and sequentially removed all data beyond the 90th,
80th, and 70th percentiles in each distribution to
achieve stepwise improvement of single-cue equivalence
(see Results). Since this technique implies that missing
data likely occur for almost every participant, we used
linear mixed models for statistical analysis, which is
more appropriate in these cases than repeated-measures
analysis of variance (McCulloch & Searle, 2001).

Results

Figure 7 shows the results for the d ′ measure for target
texture detection (purple circles) and discrimination
(orange squares) for the complete sample and 4 degrees
of clearing the sample for unequal single-cue sensitivity.

With all data included, ω f -targets were better detectable
than ωφ-targets, t(df ) = 2.67(56), p = .010. However,
removing data with the most extreme 10% single-cue
sensitivity deviations already resulted in just slightly
unequal equal single-cue detection performance,
t(df ) = 1.54(51), p = .130 (Figure 7, second panel
from the left). There, the detection baseline d ′

b was
stable at the level that was targeted on the basis of the
preparatory calibration measurements (d ′ = 0.8). The
same was true for removing most extreme 20% and 30%
single-cue deviations (20%: t(df ) = 1.25(45), p = .217;
30%: t(df ) = 0.3(39), p = .764). Target figure
discrimination performance was somewhat lower than
target detection performance. Including discrimination
data only if the previous detection was successful
stabilized the baseline throughout at slightly above
d ′ = 0.5. Cue summation was reduced by this but
remained markedly larger that under detection (for
more information, see Figure 14 in Appendix A). Both
tasks reflected a very strong double-cue advantage.
Table 1 shows the q-ratios (6), which reflect the strong
benefit of double-cue targets compared to the single-cue
baseline. The summation ratio q results were quite stable
across the different degrees of clearing for single-cue
sensitivity deviations. For all four samples, the table



Journal of Vision (2021) 21(2):5, 1–25 Hunt & Meinhardt 9

Detection

Tanner (1956) measures Kingdom et al. (2015) measures

% incl. n d̄′
b d̄′

c q d′
⊥ d′

c − d′
⊥ 2d′

b d′
c − 2d′

b d′
PS d′

c − d′
PS d′

AS d′
c − d′

AS

100 57 0.885 2.19 2.47 1.27 0.924 1.71 0.484 1.33 0.862 1.65 0.544
90 52 0.874 2.18 2.49 1.24 0.940 1.75 0.430 1.32 0.862 1.64 0.540
80 46 0.867 2.20 2.54 1.23 0.972 1.73 0.472 1.32 0.885 1.64 0.564
70 40 0.834 2.15 2.58 1.18 0.970 1.67 0.482 1.29 0.864 1.60 0.555

Discrimination

Tanner (1956) measures

% incl. n d̄′
b d̄′

c q d′
⊥ d′

c − d′
⊥ 2d′

b d′
c − 2d′

b

100 57 0.571 2.47 4.32 0.817 1.65 1.14 1.33
90 52 0.510 2.39 4.69 0.731 1.66 1.02 1.37
80 46 0.510 2.43 4.76 0.728 1.70 1.02 1.41
70 40 0.490 2.39 4.88 0.703 1.69 0.980 1.41

Table 1. Sensitivity advantage of double-cue targets compared to the base sensitivity level for different percentages of data included.
The table shows the number of data triplets included for each task n, mean base sensitivity level d̄′

b, the mean sensitivity for
double-cue targets d̄′

c, and the ratio of double-cue to single-cue performance q. Further, the prediction of orthogonality d′
⊥, the

prediction of linear summation 2d′
b, the prediction of PS d

′
PS, the prediction of AS d

′
AS, and the corresponding differences of sensitivity

for double-cue targets to each of the predictions are depicted.

shows summation ratios q of about 2.5, indicating
stronger summation than expected from linear cue
integration (q = 2) for target texture detection, while
even summation ratios q of about 5 were reached in
target figure orientation discrimination. Hence, results
indicate “oversummative” cue combination effects for
detection and discrimination of orientation and spatial
frequency bandwidth targets.

Since the single cues were nearly equally detectable
when data with at least the most extreme 10% single-cue
sensitivity deviations were removed, we analyzed the
samples with 90%, 80%, and 70% data included with a
linear mixed model (LMM). Analyses were completed
in R (R Core Team, 2012) with the lme4 package (Bates
et al., 2015) and the MuMIn package (Barton, 2013)
for estimating global model fit achieved with fixed and
random effects (R2). We predicted d ′ performance
from a model including Feature (d ′

b “baseline,” d ′
c

“combined”), Task (“detection,” “discrimination”),
and their interaction as fixed effects, as well as random
intercepts for participants and measurement times
to account for the repeated measurements structure
of our data. Table 2 summarizes the LMM analysis
for the 90% sample, which explained 70.8% of d ′
variance. While the large slope for Feature (i.e., the
average d ′ difference for single-cue and double-cue
targets of 1.31 d ′ units) contributed the strongest
significant effect, t(df ) = −13.26(187), p < .001,
the d ′ difference between tasks of 0.44 d ′ units was
also highly significant, t(df ) = −4.45(187), p < .001.

Factor Estimate (SE) t (df ) p R2

Intercept 2.18 (.117) 18.64 (14.7) <.001 .708
Feature −1.31 (.099) −13.26 (187) <.001
Task −.441 (.099) −4.45 (187) <.001
Feature × task −.074 (.140) −.528 (187) .598

Table 2. Fixed-effects estimates and global model fit (R2) of the
LMMmodel.

The Feature × Task effect was not significant,
t(df ) = −0.528(187), p = .598. The model residuals
were analyzed with the Kolmogorov-Smirnov Lilliefors
test (Lilliefors, 1967), indicating no violation of
normality (D = .049, p = .256). Analyzing the 80%
and 70% samples yielded practically the same results
picture, with highly significant Feature and Task effects
while the Feature × Task interaction was not significant.
The latter finding indicated that there was an almost
equal sensitivity decline for the baseline and the cue
combination condition when comparing detection to
discrimination. Constantly lower sensitivities raise
the summation ratios q for the discrimination task.
However, the absence of a Feature × Task interaction
gives no support for concluding a larger cue summation
effect in discrimination compared to detection. Also,
for target figure detection, summation ratios q were
found to be larger at lower base sensitivity levels (see
Table 1 in Meinhardt et al., 2006).
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Figure 8. Scheme of the multiscale texture analysis model. (A) Filter-Rectify-Filter (FRF) chain. Texture input is convolved with a
quadrature pair of even and odd Gabor filters selectively tuned to orientation and spatial frequency. Convolved images are rectified
and passed through a compressive nonlinearity. The resulting gain-controlled local energy distribution is smoothed by a large-scale
isotropic filter and then pooled into a space-average mean contrast energy, CE. (B) Subtracting the CE values for target and reference
textures yields a net contrast energy measure, �CE.

Modeling synergy with an
energy-based model

Outline

Experimental results reflected oversummative
double-cue advantage in either task. In the modeling
part, we show that oversummative double-cue
advantage is captured by spatial frequency and
orientation selective Filter-Rectify-Filter (FRF)
mechanisms. We restrict modeling to the detection
task, since modeling the discrimination task requires
the assumption of further stages of shape processing
(e.g., edge detection and form template matching
[Landy & Bergen, 1991] or hierarchical feature coding
[Riesenhuber & Poggio, 1999]), which is beyond the
scope of this study.

In the first part, we demonstrate that the maximum
energy difference to target and reference textures
(“net contrast energy”), obtained from FR or FRF
mechanisms at multiple scales and orientations, agrees
fairly well with the summation ratio observed for
double-cue texture targets (q ≈ 2.5). In the second part,
we include the effects of sensory noise on the energy
distributions as well as on net contrast energy of each
FRF chain and use a signal detection framework to
predict detection performance.

Part I: Net contrast energy from multiple FRF
mechanisms

We suggest a local energy-based model that combines
the first stages of an FRF model (i.e., a bank of Gabor
filter pairs in quadrature, local energy computation,
and nonlinear compression) with the subsequent
computation of contrast energy (CE), coding for
contrast strength from local energy maps. Contrast
energy has been shown to be associated with behavioral

responses as well as single-trial event-related potentials
during natural scene classification (Groen et al., 2013;
Scholte et al., 2009). A model overview is depicted in
Figure 8; details of the implementation are provided in
Appendix B.

To identify the crucial stages for texture cue
summation, we considered two varieties, the basic FR
chain and the full FRF chain, which included the
large-scale secondary filter. We first tried the FR and
then the FRF variety.

Initially, the input was filtered with a bank of
Gabor filters with variable spatial envelopes following
a flexible scaling principle that smoothly increased
spatial frequency resolution in the midrange of spatial
frequency centered at the carrier spatial frequency of
the texture stimuli. Filter bandwidths were narrowest
(≈ 0.5 octaves) for medium spatial frequencies between
2.5 and 5 cpd while they approached 1 octave for
lower and higher spatial frequencies (see Table 3; see
Appendix B for details of the bandwidth modulation).
A dense frequency sampling was realized in the range of
0.7 cpd to 11.0 cpd, and orientation sampling was done
in 3.5-degree steps. Local energy was computed from
even and odd filter outputs and then passed through a
compressive nonlinear transducer to account for gain
control in texture discrimination (Legge & Foley, 1980;
Rubenstein & Sagi, 1990; Motoyoshi & Nishida, 2001).

Thus, each even-odd filter pair localized in ( f , φ)-
space translated a texture into a gain-controlled local
energy map, Ef ,φ (x, y). Contrast energy, CE, was
calculated from each map by taking its space-average
mean value (Groen et al., 2013). Since also reference
textures with no embedded target elicit contrast
energy, we used the CE difference for a texture with
target embedded (T) and reference texture (R),
�CE = CET −CER, to describe the differential
response of each ( f , φ)-tuned filter pair to target and
reference textures (“net contrast energy”) of a 2 AFC
trial. The distribution of net contrast energy across
filter spatial frequencies and orientations is shown
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

fi 0.69 0.89 1.13 1.39 1.68 2.01 2.38 2.78 3.24 3.76 4.37 5.08 5.96 7.08 8.63 10.92
ωi 0.89 0.77 0.69 0.62 0.57 0.53 0.5 0.48 0.47 0.47 0.48 0.5 0.55 0.64 0.79 0.99

Table 3. Center spatial frequencies and half-amplitude bandwidths (octaves) for the primary Gabor filters in the model.

Figure 9. (A) Net contrast energy distributions obtained from the bank of filters jointly tuned to orientation (0◦–180◦, x-axis) and
spatial frequency (0.69–10.92 cpd, y-axis). Net contrast energies are displayed as luminance values for ω f -targets, ωφ-targets, and the
double-cue (ω f + ωφ)-targets. The maxima of the distributions are indicated by red circles. (B) Size-ordered normalized net contrast
energies from all FR mechanisms (scree plot). The summation ratio q calculated from the maxima of the three target conditions
(mechanisms with element no. 0) was q = 2.64.

in Figure 9A. The FR mechanisms with maximum
responses to ω f -, ωφ-, and ω f + ωφ-targets are very
close in ( f , φ)-space. The distributions of net contrast
energy are nearly symmetrical with respect to the
90◦ axis. Peaks are centered on 20◦ and 160◦ and
at a spatial frequency of 2.38 cpd. For double-cue
targets, the most responsive maps come from the
small common peak region for both single-cue targets,
forming a small subset in ( f , φ)-space. Note that it
is an inherent property of local energy models that
the most responsive energy mechanisms are tuned to
orientations and spatial frequencies that do not match
those most prominently present in the stimulus (Prins
& Kingdom, 2006). Here, the strongest net contrast
energy comes from primary filters with about half an
octave lower carrier spatial frequency than the texture
stimuli. This is in line with results from adaptation
experiments showing that units centered at lower
spatial frequencies than the target stimuli mediate
discrimination performance (Regan & Beverley, 1983),
a finding that is explained by multichannel models with

response pooling and compressive nonlinearity (Wilson
& Regan, 1984).

The scree plot of net contrast energy for ω f + ωφ

targets declines sharply, while the curves for both
single-cue targets fall at slower rates (see Figure 9B).
This indicates an oversummative double-cue advantage
only for the maximally responding FR mechanism, or
just few FR mechanisms around the maximum. A way
to substantiate a max-decision rule (“winner-take-all”
rule) is to apply a p-norm to a data set and fitting the
exponent, p. A large value of p indicates that only the
largest values of a set determine the p-norm (Micko &
Fischer, 1970), which means that there is practically no
summation among set items.3 Using this approach, we
calculated the final model output, �CEm, as a p-norm
of all net contrast energies

�CEm =
⎛
⎝∑

f ,φ

|�CE |p
⎞
⎠

1/p

(7)
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Figure 10. Behavioral detection data (A) compared to the model
prediction (B). The empirical cue summation ratio was q = 2.49
(90% data included; see Figure 7), while the model predicted a
gain of q = 2.64. Below the abscissa, the most responsive
energy maps for each target texture type are depicted. Data
were normalized at baseline sensitivity, d′

b, for convenience.
The bars indicate 95% confidence intervals of the means for
behavioral data. For the model predictions, five independent
runs with newly computed random textures for target and
reference were carried out. The data show mean normalized
CEm values of these five runs. Confidence intervals are quite
small and fall within the circle symbols.

and fitted the summation exponent, p. To do so, we
normalized the behavioral d ′ data at the mean base
sensitivity level, d̄ ′

b, and also normalized �CEm values
at the mean �CEm of the two single-cue conditions.
This means that performance is expressed in units of
the summation ratio, q (6), both for the psychophysical
data and FR model predictions. Varying p from 1
to 15 showed settled agreement of normalized data
and normalized model �CEm output for values of
p > 10, confirming a max-rule for the integration of
net contrast energies (see Figure 10). While participants
showed a ratio of q = 2.49 (see Table 1 for 90% data
included) for double-cue targets, the model predicted
a close ratio of q = 2.64. The model also reproduced
the slight advantage in baseline performance for ω f -
compared to ωφ-textures.4 These results substantiate
that oversummative double-cue advantage comes
from only few maximally responding FR mechanisms,
while there is practically no summation across
mechanisms.

Since the standard FRF model includes a second-
order filtering stage (Landy, 2013), we also added
second-order filtering, using a large-scale isotropic

Figure 11. Effect of different p-norms for integrating net
contrast energies, ranging from linear summation (p = 1) to
large p values (p = 10) approaching a winner-take-all rule, for
models without (A) and including (B) a second stage of isotropic
Gaussian filtering. Best responsive energy maps are displayed
for each target kind.

Gaussian with a standard deviation of σ = 0.713◦.
Figure 11 shows results for normalized net contrast
energy computation without (A) and with (B)
second-order filtering. While the second-order filter
clearly enhanced the target region from the background,
practically the same summation ratios q resulted from
the FR and the FRF versions of the multiscale local
energy model. Also the effects of different p-norms for
integrating net contrast energies in ( f , φ)- space were
nearly identical.

These results show that net contrast energy, obtained
from the maximally responding spatial frequency
and orientation selective local energy mechanisms,
captures the oversummative double advantage in the
order of magnitude observed in the detection task.
Comparing the results for FR and FRF chains shows
that oversummative cue integration occurs in the first
steps, joint spatial frequency and orientation selective
coding, followed by a nonlinearity.

Part II: A signal detection theory framework

The modeling results of Part I show that a multiscale
local energy model can account for oversummative
double-cue effects in terms of net contrast energy.
However, a more comprehensive approach would
model the observers’ detection performance in terms of
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Figure 12. Outline of the detection model based on multiple FRF mechanisms. Texture is passed through the FR stage, resulting in
spatial local energy distributions for target and reference textures. The second-order filter averages over larger regions, thus filtering
out much of the spurious local energy fluctuations while enhancing the target region. Since an FRF chain is assumed behind each
retinal location, the output for a definite spatial coordinate (x, y) is contaminated by noise that originates from spontaneous
fluctuations within each FRF chain. A detector unit linked to each FRF chain averages across the spatial energy distributions and
evaluates their mean difference relative to the measured spatial variability, yielding a standard score for signal-to-noise distance as
the final output of the j-th FRF mechanism. After adding noise to each score, all scores are integrated according to amax-rule at the
final decision stage.

measured sensitivity, d ′. To do this requires to consider
the effects of sensory noise.

The detection model assumes two classes of basic
neural units operating at distinct levels, each with its
own noise source. First, we assume spatial frequency
and orientation selective FRF mechanisms as the
neural units behind each retinal location. If random
activation generated in these units adds to their local
energy response, the local energy distributions are
overlaid by spatial noise. Second, we assume that the
response of each j-th FRF mechanism is integrated by
a later stage unit, which calculates the CE difference
of target and reference local energy distributions (see
Part I of modeling section). In the presence of spatial
noise, this response is measured in units of the standard
deviation of local energy, thus yielding a signal-to-noise
ratio score, z j . Noise that originates at the level of
these later units may add as well (channel noise). The
observer is assumed to rely on the j-th FRF channel
with the largest response. The model is outlined in
Figure 12.

Contrast energy detection in the presence of noise
Neural systems show fluctuating responses to

repeated presentations of the same visual stimulus
(Tolhurst & Dean, 1983), while the variance is
level dependent (Roufs, 1974). To account for level
dependency with a simplified assumption, we used
Crozier’s law (Crozier, 1936), which claims constancy
of the ratio of standard deviation to the mean, cv,
known as variation coefficient. Constrained by linearity
assumptions in the vicinity of detection thresholds,

Roufs (1974) showed that constancy of the variation
coefficient implies detector operation at a constant
signal-to-noise ratio for Gaussian noise. Assuming

σ

μ
= cv = const, (8)

we set σ j = cvμ
[
Ê j,R

]
, with μ

[
Ê j,R

]
the space-average

energy of the j-th FRF chain for a reference texture (see
Appendix B for the definition of Ê). Here, j is a running
index for ( f , φ) combinations, j ∈ [n], [n] = {1, . . . , n}, n
the number of mechanisms. The value of cv was chosen
such that the distribution function of the noise had a
slope parameter of β = 3 if the Weibull function was
used as an approximation to a Normal distribution.
Setting β = 3 results in a variation coefficient of
cv = 0.384 (see Equation 33 in Appendix C). A value of
β = 3 is a good overall estimate for the slope parameter
of psychometric curves in many psychophysical tasks
(Robson & Graham, 1981; Watson, 1982; Graham,
1989; Wallis et al., 2013; Kingdom et al., 2015). To
mimic spatial noise, we added a sample ξ j (x, y) from
a Normal distribution N(0, cvμ j ) to each point of
the local energy distributions for target and reference
stimuli of the j-th FRF chain. To control noise strength
while maintaining a constant variation coefficient, each
sample was multiplied by a spatial noise factor, nx. The
resulting energy distributions,

Ẽ j (x, y) = Ê j (x, y) + nxξ j (x, y), (9)
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have two independent sources of random variation, one
stemming from the local energy response to a spatial
random signal (see subsection “Stimuli” in Method
section) and the other from external Gaussian noise.5
Since in target intervals, local energy is increased in a
given spatial region while the background is generated
with the same rule as for nontarget intervals (see
example pictures in Figure 12), a classical signal-to-
noise ratio detector (Green & Swets, 1966/1988) would
measure the separation of energy means in units of
spatial energy variation in the reference (nontarget)
distribution:

z j = μ
[
Ẽ j,T

] − μ
[
Ẽ j,R

]
√
VAR

(
Ê j,R(x, y)

) + n2xVAR
(
ξ j (x, y)

) . (10)

The z j score can be considered a d ′ measure,
signal-to-noise ratio, calculated by a contrast
energy detector operating on the spatial energy
distributions of the j-th FRF chain. Now, since
μ[ξ j ] = 0 for all j ∈ [n], the numerator of (10)
reduces to the mean difference of energies, that is,
μ

[
Ẽ j,T

] − μ
[
Ẽ j,R

] = μ
[
Ê j,T

] − μ
[
Ê j,R

]
. This means

that

z j = CEj,T −CEj,R√
VAR

(
Ê j,R(x, y)

) + n2xVAR
(
ξ j (x, y)

) (11)

measures the signal-to-noise ratio of net contrast
energy, �CE , from the j-th FRF chain.

Also, in these later-stage neural units, spontaneous
random activity may be generated (channel noise). This
can be modeled by adding independent Gaussian noise
to each z j score in a given experimental trial. Since
the detector outputs are standard scores sharing the
same scale, we used the mean of all z j baseline scores
to estimate the standard deviation of the noise, again
assuming a variation coefficient of cv = 0.384. Noise
samples ζ j from N(0, cvμz) were scaled by a factor nc
to control the magnitude of the noise. As in Part I of
modeling, a max-rule is suggested for the integration of
all detector outputs,

d = max
j∈[n]

{z j + ncζ j}, (12)

which means that the maximum of all randomly
confounded signal-to-noise ratios determines the
observers’ response.

Modeling results
To calculate model predictions, we used 128

independent runs with newly computed random
textures. For creating target texture sets, we used

the across-subjects median values for ω f and ωφ

parameters. With this basic setup, several settings for
the noise amplitude parameters nx and nc were tried.
Model calculations were done both for the FR model
and the FRF model. Figure 13 gives an overview of the
results for the full FRF model.

Figure 13A, panel b shows results for nx = 0.125
and nc = 1.0. The scree plots and the results plot in
the format of Figure 7 indicate that the FRF model
outlined in Figure 12 fairly well explains the behavioral
detection data with these settings. Measured d ′ and
model d predictions nearly coincide for ω f and ωφ

baselines and the ω f + ωφ double-cue condition. The
summation ratio q ≈ 2.5 could be exactly replicated by
the model.

The major effect of increasing spatial noise
amplitudes (compare a to d in Figure 13A) is a
continuous drop in the signal-to-noise ratio, d . This
is illustrated by the target energy distributions in the
upper row of the figure, which show a fading triangle
with increasing spatial noise. Apparently, this affects
baseline and double-cue conditions to equal degrees,
since the summation ratio q is not affected, while
performance in all three conditions gradually falls.
Hence, the oversummative cue summation effect proves
to be robust against spatial noise. The model suggested
here would predict oversummative cue integration
over the whole usable range of baseline performance
in a cue summation experiment, from lowest (as low
as d = 0.25) to high (as high as d = 1.4) baseline
performance likewise.

The major effect of increasing channel noise
amplitudes (compare a to d in Figure 13B) is a
perturbation of the distribution of detector responses
in ( f , φ)-space. The density plots illustrate that the
distribution of z + ncζ becomes more and more random
due to the increase of the random part ncζ relative to z.
The density plots illustrate a randomly sampled picture
for one trial, which means that each ( f , φ)-tuned cell
was overlaid by one random sample ncζ . Apparently,
the maxima d come from the same ( f , φ)-tuned FRF
mechanisms in baselines and the double-cue condition
for nc ≤ 1 (see red circles), while this no longer holds for
nc ≥ 2. Generally, the distribution of detector responses
in ( f , φ)-space appears to be more resilient against
channel noise for the double-cue condition compared to
the single-cue condition. To further explore the effects
of increasing channel noise, we varied nc while nx was
constant at nx = 0.125. From 128 trial replications, we
determined the maxima d for double-cue and baseline
conditions, as well as their fraction, q. Table 4 shows
means and standard deviations. The summation ratio
q falls from 2.70, obtained without channel noise,
to 1.97 for nc = 4. With increasing nc, the maxima
of z + ncζ are more and more determined by the
channel noise component ncζ while the z component
remains at its local energy-driven level. Increasing the
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Figure 13. Overview of the model simulation results. (A) a to d show the effects of increasing the spatial noise factor nx for the maxima
d in the resulting scree plots, the summation ratio q, and the results plots in the format of Figure 7. The channel noise factor was held
constant at nc = 1.0 in all calculations. Horizontal bars indicate 95% confidence intervals of the means from 128 replications. (B) The
effects of increasing the channel noise factor nc on the distribution of detector outputs z j + ncζ j in ( f, φ)-space for a single trial. Red
circles mark the maxima for each condition. The spatial noise factor was held constant at nx = 0.125 in all calculations.

nc 0 0.5 1 2 4

d̄b 0.808 0.829 0.871 0.975 1.22
σdb 0.000 0.023 0.035 0.062 0.103
d̄c 2.18 2.18 2.19 2.25 2.40
σdc 0.000 0.028 0.051 0.086 0.141
q̄ 2.70 2.63 2.51 2.31 1.97
σq 0.000 0.056 0.082 0.133 0.153

Table 4. Average d measures for baseline and double-cue
conditions, summation ratio, q, and standard deviations of all
measures, for increasing channel noise factor, nc. Means were
calculated from 128 trial replications.

random component thus progressively masks the local
energy-rooted differences of double-cue and baseline
conditions. The data in Table 4 therefore indicate that
stronger channel noise is not compatible with the
observed double-cue advantage in the detection task.

Since the modeling results of Part I showed that
both the FR and the FRF variety could explain the
summation ratio q, we also tested the FR model in the
presence of noise. The calculations showed very low
baselines of d ≈ 0.25 for the FR model even with no
spatial noise. The variability in the local energy response
to a spatial random signal, obvious as “salt and pepper”

noise in the local energy distributions (see density plots
of FR output in Figure 13), was too strong to allow
larger signal-to-noise ratios (Equation 11). Hence, the
large-scale second-order filter was necessary to raise
the signal-to-noise ratio for single texture cues into
the empirically observed range. The largely increased
signal-to-noise separation thus motivates one to assume
a larger-scale second-order filtering stage after the
primary local energy extraction.

Discussion

We investigated interactive nonlinear cooperation
(synergy) in texture figure detection and discrimination
using target textures defined by bandwidth enlargement
in spatial frequency and orientation. Performance
for double-cue targets was better than predicted
by independent processing of either cue and even
better than predicted from linear cue integration.
This indicates that texture cues are not handled as
independent “features.” Particularly, the finding of
oversummative cue combination effects suggests highly
effective cue integration in a specific mechanism rather
than separate sensory channeling and later integration.

Application of an energy-based texture-processing
model revealed that the oversummative double-cue
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advantage is captured by assuming feedforward
Filter-Rectify-Filter processing chains at multiple
spatial scales and orientations, differential response
calculation of pooled contrast energy for stimulus
alternatives, and a max-decision rule for the integration
of channel outputs. Modeling results showed that the
observers’ sensitivity to single-cue and double-cue
texture targets, measured in d ′ units, could be
reproduced with plausible settings for filter and noise
parameters. Comparing FR and FRF model varieties
indicated that the oversummative cue combination
advantage roots in the early energy extraction (FR)
stage, while replication of detection performance
in terms of signal-to-noise ratio requires including
a secondary, large-scale isotropic Gaussian filter.
These results suggest that the synergy effect in texture
segregation roots in the computation of a low-level
summary statistic, net contrast energy (�CEm), and
does not require higher-order integration of separately
encoded first- or second-order feature information.

Synergy for bandwidth defined textures

Studies on the synergy effect in visual segmentation
have so far used stimuli with “feature contrast”
in different dimensions (Nothdurft, 2000). Studies
reporting synergy of color and form (Kubovy et al.,
1999), color and orientation (Saarela & Landy, 2012),
and the synergy effect for spatial frequency and
orientation (see Introduction) all used target and
reference textures that had different mean values in two
feature dimensions. In this study, target and reference
regions had the same centroids in ( f , φ)-space, which
means that there were no mean differences in spatial
frequency or orientation. Instead, ω f - and ωφ-targets
had larger bandwidths, being not so well localized
than the reference texture in this space. However, we
observed a strong oversummative synergy effect for
ω f + ωφ-targets. This shows that defining target textures
by feature contrast in elementary feature dimensions
is not necessary for the synergy effect. In an earlier
study, Wolfson and Landy (1998) postulated different
texture analysis mechanisms for discriminating textures
with and without orientation contrast of the abutting
areas. Our findings suggest that assuming two distinct
texture analysis mechanisms may not be necessary, since
the �CEm measure can explain detection of regional
texture variation without feature contrast.

Local energy-based models predict the synergy
effect

Local energy-based models have widely been used
for predicting human texture segregation (Rubenstein
& Sagi, 1990; Landy, 2013; Prins & Kingdom, 2006),

and their predictive value has also been demonstrated
for more complex stimuli like natural scenes (Groen
et al., 2013). However, local energy-based models have
not yet been applied to predict the synergy effect. Our
results show that the �CEm measure is a suitable and
accurate predictor of the amount of cue summation.
Beyond its capability of accounting quantitatively for
the synergy effect in texture segmentation, the local
energy-based model offers a biologically plausible
and parsimonious explanation for cue combination
effects by feedforward processing chains at early
visual processing stages. Our modeling results showed
that maximum net contrast energy occurred in the
same or closely neighbored mechanisms for the
single-cue conditions, ω f and ωφ, and the double-cue
condition, ω f + ωφ (see Figure 9A, net contrast energy
distributions in ( f , φ)-space, and Figure 9B, sharply
declining scree plots). Hence, the model predicts
cue combination effects of bandwidth-modulated
textures as a result of local energy computation and
a subsequent nonlinearity in the same units. Thus, as
a surprising result, oversummative cue combination
effects appear as an inherent property of local energy
mechanisms.

The calculations in Part I of the modeling section
showed that adding a large-scale isotropic secondary
filter (FRF model) yielded practically the same cue
summation predictions than the mere FR model (see
Figure 11). This indicates that the oversummative cue
combination effect roots in the much stronger local
energy values for double-cue targets, which are extracted
by local filtering and the subsequent nonlinearity. The
secondary, large-scale filtering stage is functional in
other respects. It enhances figure-ground separation
of target and reference texture by suppressing
salt-and-pepper noise in the energy maps, makes the
processing chain completely nonresponsive to the
original properties of the texture elements, and is also
functional for subsequent edge detection (Landy &
Bergen, 1991). Modeling in a signal detection theory
framework (Part II of modeling section) clearly showed
the enhancement of figure-ground separation by the
secondary large-scale Gauss filter, which lifted the
baseline performance compared to the mere FR model
remarkable on the signal-to-noise ratio (d) scale. The
data also showed that this effect concerned single-cue
and double-cue conditions to equal degrees, since
the summation ratio q was the same in FR and FRF
variety, and also increasing spatial noise did not affect
the value of q. Cells that responded to locus and
orientation of texture boundary but were insensitive to
local texture features were found in V2 (von der Heydt
et al., 1984; von der Heydt & Peterhans, 1989). A full
FRF model is thus biologically more plausible than
the FR model, and the fact that observers’ detection
performance could only be reproduced by a full FRF
model is a strong indication for including the secondary
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filtering stage. It cannot be omitted in a reasonable
early mechanism model of texture segregation.

The model introduced here is not a comprehensive
one—our intention was to demonstrate that a simple
feedforward local energy model can explain the synergy
effect in texture segregation with spatial frequency
and orientation bandwidth-modulated textures,
both in terms of net contrast energy and observers’
sensitivity. Therefore, its scope is narrowly focused
on the prediction of the oversummative double-cue
advantage. In a more comprehensive approach, Olzak
and Thomas (1999) introduced a five-stage model
that includes higher-level mechanisms at later stages,
which allow flexible extraction of features for task-
driven comparisons of information provided by the
earlier levels. In series of experiments, they tested
whether discrimination decisions root in direct access
to early layers or need transformations by higher-level
units. Configural effects in orientation discrimination
with compound f + 3 f gratings, concluded from
performance decline in cue summation conditions,
showed that the observers’ decisions were not based on
a direct access to two independent grating components,
but their information was used to evaluate the whole
stimulus configuration as conflicting or congruent
when the components were tilted in opposite or
same directions. These effects could only be modeled
by higher-level units and are evidence against a
direct-access account. This points to limitations of the
direct-access FRF model proposed here. Constructing
target stimuli that deviate from the reference texture in
two orientations or two well-separated ranges of spatial
frequency, both equal in contrast energy but forming
different texture shapes, would pose problems for a
simple feedforward FRF model with a winner-take-all
decision rule.

Local energy from joint coding challenges the
“feature module” account of feature integration

Bergen and Adelson (1988) gave the first evidence
that human segregation of textures could be captured
by size-tuned units, without reference to any feature-like
properties of the textures. This “feature blindness”
in evaluating regional texture changes is one of
the conceptual strengths of the energy computing
algorithm. To give explanations for oversummative cue
combination effects for the given bandwidth-modulated
textures in terms of feature-processing models requires
muchmore theoretical assumptions. A “feature module”
approach assumes that observers compare feature
content when they discriminate target and reference,
for example, by referring to local differences in saliency
maps for each visual feature separately (Kubovy &
Cohen, 2001; Itti & Koch, 2001; Treisman & Gelade,
1980; Treisman, 1988). To explain cue combination

effects, a rule has to be suggested how the differential
results from different feature maps, or modules, are
combined into a general map that topographically
encodes saliency from different features (Itti & Koch,
2001; Koene & Zhaoping, 2007). Several integration
rules have been proposed, ranging from probability
summation and/or dimensional orthogonality for the
case of feature independence to linear summation for
the case of response integration in the same mechanism
(Kubovy et al., 1999; Machilsen & Wagemans, 2011;
Saarela & Landy, 2012). However, cue summation
effects that are larger than the sum of sensitivities to
the two single cues, as found here, raise problems for
the feature module account, since this requires one to
assume special conjunctive mechanisms tuned to both
features, but not passive summation rules (Koene &
Zhaoping, 2007; Zhaoping & Zhe, 2012). As argued
by these authors, early V1 units specifically tuned to
combinations of features can explain strong saliency
summation effects of double-cue targets, while they
make an early feature channeling – later integration
architecture superfluous (Koene and Zhaoping, 2007,
p. 10). If there are units optimally tuned to feature
combinations, decisions about target presence can
simply be mediated by a max-rule (winner-take-all rule)
among all early coding mechanisms on the same layer,
and no further response integration rules are necessary.
Likewise, the local energy mechanisms modeled here are
better tuned to ω f + ωφ-targets than to the single-cue
targets, so applying the max-rule in ( f , φ)-space is all
that is necessary to explain the oversummative cue
combination effect.

Hypothetical site

The strong local energy increase caused by
combined cues points to improved segregation through
enhancement of local contrast between figure and
background elements as the major effect of cue
combination. Since local energy computation on
different spatial scales with non-Fourier second-order
squaring and pooling could be implemented by
feedforward chains from V1 to V2 (Daugman, 1980;
Lin & Wilson, 1996; von der Heydt et al., 1984;
see Introduction), it is straightforward to presume
these early sites behind the synergy effect in texture
segmentation for orientation and spatial frequency
bandwidth-modulated targets. Indeed, area V2 seems
to be anatomically and functionally ideal for local
segregation processes (Shipp & Zeki, 2002a, 2002b).
An early site is also suggested by electrophysiological
results of Bach et al. (2000), who found that the
“tsVEP,” an early (100–300 ms) electrophysiological
correlate of preattententive and effortless texture
segregation, showed stronger activation by combined
spatial frequency and orientation cues, albeit the cue
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combination effect was not impressive in the tsVEP
amplitude.

However, nature of stimuli and psychophysical tasks
imply that local segregation of texture regions is only
an initial processing step to more global processes of
shape and object coding, whereby cue combination
might be functionally involved. In Gabor random fields,
strong cue combination effects were observed only when
the stimulus elements together formed simple shapes
(rectangles, squares, or lozenges) but not for randomly
positioned feature contrast targets that could not be
spatially grouped (Meinhardt et al., 2004; Persike &
Meinhardt, 2006, 2006). Further, the cue combination
effect is generally strong for barely detectable targets
and declines rapidly as target detectability increases
(Meinhardt & Persike, 2003; Meinhardt et al., 2004).
These results indicate that cue combination could be a
mechanism that augments figure-ground segregation,
serving to enable and to stabilize object identification
in cluttered images and noisy surrounds (Persike
& Meinhardt, 2006; Straube et al., 2010). Such an
enhancement of figure-ground segregation could
potentially be mediated by early sites (Lee et al., 1998).
However, results from psychophysics and neuroimaging
indicate that, despite a strong coupling, local target
detection and form identification are distinct processes
that differentially activate cortical areas (Straube &
Fahle, 2011). Using Gabor texture figures with adjusted
feature contrast to equate sensory performance across
tasks, the authors found that figure detection and
identification equally activated V1 and V2, but the
identification task led to much stronger activation in
the lateral occipital complex and posterior fusiform
gyrus, which are known to be object-selective areas with
relatively feature-invariant shape coding (Grill-Spector
et al., 1998, 2000).

Because enhancement of local contrast between
figure and background elements improves both
target detection as well as identification of texture
figure shape, the cue combination effect of spatial
frequency and orientation-defined textures should
have correlates on early retinotopic sites, as well as on
higher object-related areas. Disappointingly, current
electrophysiological and neuroimaging studies could
yet not clearly localize the cue combination effect
in texture figure perception. Single-unit recordings
from V1 showed no further enhancement of firing
rates when texture disks were redundantly defined
by feature contrast in several dimensions (Zipser
et al., 1996). However, authors used high feature
contrasts for the single-feature disks, which does not
take into account the nonlinear gain characteristic of
cue summation effects (Meinhardt & Persike, 2003;
Meinhardt et al., 2004). The same applies to a study
on feature summation effects in V1 and V2 neurons
(Kastner & Pigarev, 1999). Also, Bach et al. (2000) used
quite high feature contrast levels for spatial frequency
and orientation-defined texture checkerboards but

observed an at least modest cue summation effect at
mid-occipital electrodes, which points to generators in
V1 and V2. The only electrophysiological studies that
used small feature contrast levels for the single-cue
targets were contributed by Straube et al. (2010) and
Kida et al. (2011). Recording EEG from 26 standard
electrode positions, Straube et al. (2010) found that
single- and double-cue conditions elicited a negative
amplitude shift, influencing mainly the peak amplitude
of the posterior P2 component at about 200 ms, which
all signaled target presence, but unspecific for the cue
conditions. Psychophysical data showed very strong
cue summation effects at two different feature contrast
levels. Kida et al. (2011) recorded from 62 locations
and found a long-lasting negative deflecting starting
at 130 ms, which was specific for double-cue targets,
at electrodes around the inferior temporal region. At
central occipital electrodes, no double-cue specific
potentials were found. These results indicated a cue
summation effect in object-related areas of the ventral
visual stream but not in striate cortex and V2. Control
experiments at different feature contrast levels showed
that the long-lasting enhancement at inferior temporal
electrodes was not directly related to discriminability
but appeared as a specific double-cue marker. Hence,
current attempts to localize cue combination effects
just revealed correlates of enhanced shape and figure
perception in higher object-related areas, while there is
currently no evidence for correlates in retinotopic areas,
which have been shown to identify texture borders
(Zipser et al., 1996; Kastner & Pigarev, 1999; Zhaoping,
2003), discriminate figure and ground (Lee et al., 1998),
and encode object ownership (Zhou et al., 2000).

Keywords: cue combination, spatial frequency
bandwidth, orientation bandwidth, texture segregation,
local energy
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Footnotes
1We calculated amplitude spectra values for a dense sampling of spatial
frequency and orientation components instead of the usual |F (u, v)|
amplitudes to achieve a representation that matches the dimensions of
stimulus parameter manipulation.
2While the detection task has the standard 2AFC format, the
discrimination task does not. Discrimination performance does not rest
on stimulus mappings from two stimulus frames, but just from one, so
it is a yes-no task by structure. Hence, we treated the detection task as
2AFC in the signal detection framework (MacMillan & Creelman, 2009,
Chapter 7), but handled d ′ calculation for the discrimination task with the
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standard formulae derived for the single-frame yes-no task (MacMillan &
Creelman, 2009, Chapter 1).
3Applying the p-norm in multidimensional scaling, Micko and Fischer
(1970) showed that increasing the exponent pmore and more narrows the
focus on a specific direction in perceptual space (see Micko & Fischer,
1970, Figure 1). Mathematically, the maximum of a set is obtained

by letting p → ∞. Define lp(x) =
(∑

i
|xi|p

)1/p

. Let X ⊂ R+ and

xj = max{X }. Since lim
p→∞

(
|xi |
|xj |

)p
= 0 for i �= j, it follows lim

p→∞ lp
(

x
xj

)
= 1,

that is, lim
p→∞ lp(x) = xj .

4To achieve this, the spatial frequency bandwidth of the Gabor filter array
was modulated accordingly. See Appendix B.
5Energy distributions could be indexed to distinguish the FR and the full
FRF model (see Appendix B). We resign from doing so here and consider
only the full FRF model, since it turned out in the simulations that an FR
model could not adequately describe the detection data in the context of
noise.
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Appendix A

Conditioning discrimination on detection

Behavioral results showed lower baseline sensitivity
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detection has only little effect on the different feature
sensitivities. It slightly raises sensitivity to spatial
frequency bandwidth, thus stabilizing the baseline

10.1111/j.1467-9280.1994.tb00500.x
http://doi.org/10.1017/s0952523802191176
http://doi.org/10.1017/s0952523802191164
http://doi.org/10.1016/j.bandc.2010.10.004
http://doi.org/10.1016/j.visres.2009.12.013
http://doi.org/https://doi.org/10.1121/1.1908504
http://doi.org/10.1038/381520a0
http://doi.org/10.1016/0042-6989(83)90200-6
http://doi.org/10.1080/02724988843000104
http://doi.org/10.1016/0010-0285(80)90005-5
http://doi.org/10.1016/j.visres.2005.07.009
http://doi.org/10.1523/JNEUROSCI.09-05-01731.1989
http://doi.org/10.1126/science.6539501
http://doi.org/https://doi.org/10.1016/j.visres.2012.09.019
https://doi.org/10.1016/0042-6989(82)90162-6
http://doi.org/10.1016/j.visres.2005.11.008
http://doi.org/10.1364/josaa.1.001091
http://doi.org/10.1016/S0042-6989(97)00153-3
http://doi.org/10.1016/j.jphysparis.2004.01.008
http://doi.org/10.1371/journal.pone.0036223
http://doi.org/10.1523/JNEUROSCI.20-17-06594.2000
http://doi.org/10.1523/JNEUROSCI.16-22-07376.1996


Journal of Vision (2021) 21(2):5, 1–25 Hunt & Meinhardt 23

Figure 14. Display analogous to Figure 7 but discrimination data were only included if the previous detection was successful. This
reduces data on the level of individual trials; hence, included trials are also indicated (maximum number of trials is participants ×
number of repetitions × trials in main experiment, that is, 19 × 3 × 96 = 5, 472). As a measure of cue summation, qdiscr is given for
detection q is identical to the values shown in Table 1. For better overview, only solid lines indicating the most conservative prediction
of linear summation are included.

at slightly above d ′ = 0.5, and marginally reduces
sensitivity for the feature conjunction. This leads to
a reduction of the q-ratio, but its value nevertheless
remains markedly larger for discrimination than for
detection (compare Figure 14).

Appendix B

Specific modeling of the Filter-Rectify-Filter
process

We defined the primary filtering stage by a bank of
even and odd Gabor filters, each described by

hs; f ,θ (x0, y0) = exp
(

− (x − x0)2 + (y − y0)2

2σ 2( f )

)

×

⎧⎪⎨
⎪⎩
cos (2π f ((x − x0)cos θ

− (y − y0)sin θ )) , s = even
sin (2π f ((x − x0)cos θ

− (y − y0)sin θ )) , s = odd
(13)

In Equation 13, f is the filter spatial frequency; θ the
orientation in radiants, that is, θ = φ

180π , with φ the
rotation angle in degrees, and x0, y0 the spatial filter
coordinates. We implemented a flexible scaling scheme

Figure 15. Half-amplitude spatial frequency bandwidth, ω f ,
measured in octaves, of the quadrature filter pairs as a function
of carrier spatial frequency f across the spectrum of
frequencies used in the model.

to keep filter bandwidth narrow (� 0.5 octaves) and
thereby frequency information precisely localized for
medium frequencies between 2.5 and 5 cpd. For extreme
frequencies at both ends of our tested frequency
range, filter bandwidth approached one octave; thus,
frequency information was less certain for lower and
higher frequencies (compare Table 3 and Figure 15).
Channels are typically thought to be broader for lower
spatial frequencies (Sachs et al., 1971), but it is less clear
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if their bandwidths increase again for higher spatial
frequencies. A study by Ellemberg et al. (2006) might
indicate as much for second-order channels, but a
dipped relationship between spatial frequency channel
and its bandwidth or a monotonically decreasing one
is biologically plausible. We decided on the former
scheme because it worked slightly better within our
architecture, and it also predicted the same slight
instability of the baseline as in the behavioral results.
The scheme was implemented by applying a normal
scaling principle (Du Buf, 1993)

σ ( f ) = a
f
, (14)

while controlling the parameter a via a Weibull function

y(u) = 0.2 · 1.75 · (0.2 · (u − 0.5))(1.75−1)

· e−(0.2·(u−0.5))1.75 (15)

a(u) = 0.67 · y(u)
max(y(u))

+ 0.5. (16)

The spacing along the spatial frequency continuum
was such that each new filter was centered at the
half-amplitude frequency of the previous filter.
Since spatial filter bandwidths were narrow in the
range from about one octave below and one octave
above the texture carrier frequency of 3.5 cpd, this
maintained dense spacing in this range, allowing us
to localize the maximally responding local energy
mechanisms with good precision. Table 3 lists the center
spatial frequencies and corresponding wavelengths.
Orientations were sampled from the [0,180[ interval in
3.5◦ steps.

In the modeling sequence, a stimulus was first
convolved with each of the even and odd filters tuned
to a specific pair of spatial frequency f and orientation
φ. The stimulus was coded as a luminance distribution
L(x, y), and thus the first stage filter output was

us; f ,φ (x, y) = L(x, y) ∗ hs; f ,φ (x, y). (17)

In the next stage, the outputs of the even and odd
filter were rectified to one response by a local energy
computation

Lf ,φ (x, y) = u2even; f ,φ (x, y) + u2odd; f ,φ (x, y) (18)

followed by a logarithmic, compressive nonlinear
transducer

Ef ,φ (x, y) =
(
log

[√
Lf ,φ (x, y) + 1

])0.5
. (19)

The typical nonlinear transducer in local energy models
is a simple logarithmic. Here, we implemented a

slightly stronger transducer because it proved useful
to put further constraint on spurious responses in
nonoptimal channels of our model architecture. The
energy distributions Ef ,φ (x, y) are the result of the
FR stages of the model. In the full FRF model, these
energy distributions are convolved with a second-stage,
large-scale isotropic Gaussian filter. We used an
isotropic Gaussian G(x, y) with a standard deviation of
σ = 0.713◦. Hence, the final local energy distributions
were obtained by

Ê f ,φ (x, y) = Ef ,φ (x, y) ∗ G(x, y). (20)

To model texture segmentation, contrast energy
was computed by taking the mean μ of each local
energy distribution (Groen et al., 2013; Scholte et al.,
2009), which was compared for target and reference
and integrated across the parameter space using a
winner-take-all rule (see modeling section and Figure 8).

Appendix C

The variation coefficient for a Weibull
approximation to Normal distributions

If x is a N(μ, σ ) distributed random variable with
distribution function

F (x) = 1√
2πσ

∫ x

−∞
exp

(
−1
2

(
v − μ

σ

)2
)
dv, (21)

the slope of F at μ is proportional to (σ )−1

δ = dF
dx

∣∣∣∣
μ

=
(√

2πσ
)−1

, (22)

that is, σ is

σ =
(
δ
√
2π

)−1
. (23)

The ratio of σ to μ

cv = σ

μ
= δ−1

μ

(√
2π

)−1
(24)

is called the variation coefficient. Since σ is inversely
proportional to the slope at μ, the variation coefficient
reflects the spread of the density f (x) relative to the
location on the scale.

It is possible to define a generalized variation
coefficient (Mortensen & Suhl, 1991) by evaluating the
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ratio of the reciprocal of slope in a particular quantile
x0 relative to this quantile of a distribution function.
The ratio

q0 = δ−1

x0
= (δx0)−1 (25)

with x0 = F−1(p0) and δ = dF/dx|x0 is proportional to
the variation coefficient for a normal distribution with
p0 = 0.5 (see Equation 24) and can be used with other
distribution functions, as the Weibull. For a Weibull
distribution

F (x) = 1 − exp
(−αxβ

)
(26)

with density

f (x) = dF
dx

= αβ exp
(−αxβ

)
xβ−1, (27)

the generalized variation coefficient takes the form

q0 = (δx0)−1 = e
β

(28)

for p0 = 1 − 1/e (≈ 0.632). Equations 28 and 32
show that the variation coefficient taken from Weibull
functions is independent of the scale parameter; just the
slope parameter β enters.

For the quantile corresponding to p0 = 0.5, one
obtains from (26)

x0 = ln(2)1/βα−1/β (29)

and the value of f (x) in x0 is

δ = αβ exp
(
−α

(
ln(2)1/βα−1/β)β

)
xβ

0x
−1
0

= αβe− ln(2) ln(2)α−1x−1
0

= βe− ln(2) ln(2)x−1
0 (30)

(31)
and q0 = (δx0)−1 becomes

q0 = eln(2)

β ln(2)
. (32)

Finally, in view of (24),

cv = q0√
2π

(33)

one obtains the variation coefficient cv from an
approximation with the Weibull distribution if the slope
parameter β is known.


