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Decoding the dynamic 
representation of musical pitch 
from human brain activity
N. Sankaran1,2, W. F. Thompson2,3, S. Carlile1 & T. A. Carlson  2,4

In music, the perception of pitch is governed largely by its tonal function given the preceding harmonic 
structure of the music. While behavioral research has advanced our understanding of the perceptual 
representation of musical pitch, relatively little is known about its representational structure in the 
brain. Using Magnetoencephalography (MEG), we recorded evoked neural responses to different 
tones presented within a tonal context. Multivariate Pattern Analysis (MVPA) was applied to “decode” 
the stimulus that listeners heard based on the underlying neural activity. We then characterized 
the structure of the brain’s representation using decoding accuracy as a proxy for representational 
distance, and compared this structure to several well established perceptual and acoustic models. 
The observed neural representation was best accounted for by a model based on the Standard Tonal 
Hierarchy, whereby differences in the neural encoding of musical pitches correspond to their differences 
in perceived stability. By confirming that perceptual differences honor those in the underlying neuronal 
population coding, our results provide a crucial link in understanding the cognitive foundations of 
musical pitch across psychological and neural domains.

Context is critical to perception. In music, two physically identical tones heard in different contexts may bear little 
resemblance. This distinction arises because the tonality or key of the musical context assigns a unique function 
to each pitch1. The two tones, despite being acoustically identical, differ in their tonal function and are therefore 
perceptually distinct.

More generally, tonality describes the tendency for pitch relationships to be oriented around a central pitch 
termed the tonic2. This organization establishes a hierarchy of perceived stability amongst the pitch-classes. 
The tonic occupies the most stable position, and other classes vary in perceived stability depending on their 
harmonic relationship to the tonic. Krumhansl (1979)3 investigated the mental representation of musical pitch 
by measuring the perceived similarity between different pitch-classes. From this work, a geometric model was 
derived that places each pitch-class on the surface of a cone. By making explicit the perceived relatedness between 
pitch-classes, the conical model forms a cornerstone in our understanding of the cognitive processing of musical 
pitch. The model predicts that in-key and out-of-key classes are distinct from one another, occupying two distant 
regions of the representational space. The in-key classes are situated near the apex of the cone and are thus per-
ceptually similar to one another. Conversely, the out-of-key classes are dispersed around the basal end of the cone, 
and are therefore perceptually distant from one another, and from the in-key classes.

In the neural domain, studies have identified features of pitch-evoked cortical responses4–11, and described 
the anatomical and functional brain regions implicated in the neural processing of tonal structure12–17. Recording 
electroencephalographic (EEG) activity during melodic listening, Brattico et al.4 found that out-of-key pitches 
elicited an early pre-attentive cortical negativity, suggesting that tonal properties of musical pitch are automati-
cally processed in the cortex. Recording EEG from trained musicians, Krohn et al.5 found that the amplitude of 
pitch-evoked response components were modulated based on the perceptual stability of the evoking pitch-class, 
suggesting a stored representation of hierarchical pitch structure in cortex. While these studies flag the presence 
of tonal-schematic processing, relatively little is known about the explicit representational structure of musical 
pitch in the cortex.
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To examine the relatedness of different musical keys in the brain, changes in fMRI activity have been measured 
as a musical passage modulates across multiple tonal regions18. While the relatively slow fMRI responses are sen-
sitive to the gradual accumulation of pitch-distributional information across a musical passage, evidence suggests 
that the cognitive basis of tonality arises from the perception of individual pitches given a tonal context19. We 
therefore measured highly temporally-resolved responses to individual tones presented within a musical context. 
By examining distinctions in the brain’s response to various pitches of differing tonal function, the current study 
provided a neural analogue to prior psychological models and evaluated their specific predictions: how distinctly 
does the brain represent each pitch-class relative to one another, and well do these neural distinctions align with 
perceptual differences between musical pitches?

To answer these questions, we focused on a set of four pitch-classes whose harmonic and perceptual properties 
make them strong candidates for observing a clear representational structure in the brain20,21. Two pitch-classes 
(the tonic and dominant) were highly stable scale notes within the prevailing key, while the other two pitch-classes 
(the minor 2nd and augmented 4th) were out-of-key and highly unstable. Each tone was presented within a tonal 
context to trained musicians (Fig. 1). Magnetoencephalography (MEG) was used to measure the neural response 
patterns evoked by each class. We then used Multivariate Pattern Analysis (MVPA) to “decode” the pitch that 
listeners heard based on the underlying neural activity. Using decoding accuracy as a proxy for representational 
distance, we characterized the structure of the neural representation of musical pitch and compared this structure 
to several perceptual and acoustic candidate models. The observed neural representation was best accounted for 
by a model derived from the Standard Tonal Hierarchy20, indicating that differences in the neural encoding of 
musical pitch correspond to differences in their perceived stability.

Results
Decoding pitch-class from neural activity. Our goal was to map a set of pitches to points in rep-
resentational space based on the similarity of their neuronal population activity. To achieve this, we trained a 
machine-learning classifier to measure the neural discriminability between all pairwise combination of tones 
at each time-point in the MEG data. The accuracy with which the classifier could discriminate between neural 
responses for a given pair of tones provided a measure of their neural representational distance; and the com-
plete set of pairwise distances defined the geometry of the stimulus’ representational structure in the brain22,23. 
This approach affords greater power over straightforward activation-based measures (such as ERPs) because it 
preserves the rich dimensionality of the measured cortical response patterns, allowing a more fine-grained char-
acterization of neural activity. Moreover, the MEG data was sampled at 200 Hz (see methods), and by applying the 
analysis to each time point, we were able to track the emergence of the brain’s representational structure across 
time.

Perceptually, in-key pitches sound stable with respect to the tonal context, while out-of-key pitches sound 
unstable19,21. Is this psychological distinction evident neurally? To answer this question, we sought to dis-
criminate between responses corresponding to in-key tones from that of out-of-key tones. Figure 2A displays 
the time-varying decoding performance averaged across subjects, tonal contexts, and pairwise combina-
tions of in-key/out-of-key tones. As expected, classification performance at onset (t = 0) was at chance (50%) 
because stimulus-related information was yet to activate the cortex. However, by 150 ms we could successfully 

Figure 1. Experimental Paradigm. Each trial consisted of a four-chord tonal context followed by a single probe-
tone. Stimuli were piano tones. Each chord and tone was 650 ms in duration and a silent interval of 650 ms 
separated the last chord and probe-tone. Contexts were either in the key of C major (top) or F# major (bottom). 
Subsequent probe-tones were C4, G4, F#4 or C#4. When the context was in the key of C major, the former two 
probe-tones were “in-key” (tonic & dominant), while the latter two probe-tones were “out-of-key” (augmented 
4th & minor 2nd). When the context was in the key of F# major, this mapping reversed.
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discriminate between the neural activity corresponding to in-key and out-of-key pitches, with maxima in classi-
fication accuracy occurring at 350 ms.

We next considered the brain’s distinction between the two in-key tones by evaluating the classifiers ability to 
discriminate between evoked responses corresponding to the tonic and dominant. To this end, we significantly 
decoded the tonic-dominant distinction from 150 ms onwards (Fig. 2B). In this case however, the peak accuracy 
was lower than when discriminating between in-key/out-of-key tones, suggesting that the in-key tones are more 
similar to each other than they are to out-of-key tones. Lastly, we attempted to decode activity corresponding to 
the two out-of-key tones (augmented 4th/minor 2nd). Here, decoding performance failed to rise above chance 
classification for any sustained period (Fig. 2C), suggesting that the neural distinction between the out-of-key 
tones is relatively weak. Indeed, when examining the time-averaged decoding performance (Fig. 2D), we found 
that the neural distinction between the out-of-key tones was significantly weaker than both the in-key/out-of-key 
(Z = 2.97, p = 0.006) and the tonic/dominant (Z = 2.41, p = 0.03) distinctions.

Characterizing the neural representational structure of pitch-class. We next examined the brain’s 
collective representation for all four pitch-classes. The decoding performance for all pairwise combinations of 
tones defines a multidimensional geometrical structure in neural representational space, which can be summa-
rized in a Representational Dissimilarity Matrix (RDM)22,24. The four different pitches are indexed along the rows 
and columns of the RDM, with each cell of the matrix indicating the measured neural dissimilarity. Figure 3a 
shows the RDM for the data time-averaged across 250–600 ms, a period chosen based on the period of maximal 
context-related information in the brain (see section 2.4).

We used multidimensional scaling (MDS) to visualize the structure of the RDM in two dimensions (Fig. 3b; 
see methods for details). In this arrangement, the distances between different pitch-classes directly relate to the 
measured neural dissimilarities, providing an intuitive and data-driven illustration of the representational struc-
ture. Most evident within this geometry is the brain’s distinction between the in-key and out-of-key tones, indi-
cated by their locations to the right and left of the structure respectively. The geometry of the MDS solution 
also makes evident the neural distinction between the two in-key tones (tonic and dominant), while the two 
out-of-key classes are more similarly represented in the brain.

Comparing neural dissimilarities with perceptual and acoustic models. We next tested several 
candidate models that might explain the currently observed neural representation. Two models were derived 
from behavioral data; one based on inter-class Euclidean distances in the Conical model, thus reflecting the per-
ceived similarity between pitch-classes2 and another derived from the Standard Tonal Hierarchy21, where dissimi-
larities correspond to the difference in perceived tonal stability between all pairs of pitches. To assess the extent to 
which sensory differences might account for current neural dissimilarities, we tested a model of Spectral Distance. 
Specifically, spectrograms for each probe-tone were first extracted using a biologically inspired model of the audi-
tory periphery25. We then computed the Euclidean distance between each pairwise combination of spectrograms. 
Next, we tested a candidate model based on the Spectral Overlap between the tonal context and each probe-tone. 
Although the context and probe-tones were separated by a 650 ms silent period in the current study, models of 

Figure 2. Decoding pitch-class from MEG activity. Neural distinctions were probed at each time-point from 
−100 ms to 1000 ms relative to onset of each probe-tone. Performance is averaged across both tonal contexts 
(C major and F# major) and all subjects. Statistically significant time points are indicated by the black points 
underneath each curve (p < 0.01; Wilcoxon sign-rank test, corrected by controlling the false discovery rate). 
Shaded regions indicate standard errors. (A) Classification accuracy for discriminating between in-key and 
out-of-key tones. (B) Accuracy for decoding the two in-key tones (tonic/dominant). (C) Accuracy for decoding 
the two out-of-key tones (minor 2nd/augmented 4th). (D) Time-averaged decoding performance for each of the 
distinctions assessed in (A–C) over 250–600 ms (the period of maximal context-related effects; see section 2.4). 
Significance is indicated by asterisks where *p < 0.05; **p < 0.01 (Bonferroni corrected Wilcoxon sign-rank 
test).
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auditory short-term memory involve time constants of up to 4 seconds26,27. Thus, the neural distinctions between 
probe-tones may have been driven by the sensory memory of the context. Spectral overlap was computed by 
finding the reciprocal of the Euclidean distance between spectrograms corresponding to the context and each 
probe-tone. Dissimilarities were then determined by calculating the difference in spectral overlap for each com-
bination of context and probe-tone, averaged across the two tonal contexts. Finally, we evaluated the hypothesis 
that listeners may simply be representing each probe-tone in terms of its pitch-value alone (i.e. fundamental 
frequency). We therefore tested a model - termed Proximity - that was based solely on the differences in semi-tone 
pitch-height between each pair of probe-tones. Each model makes explicit predictions about the structure of the 
brain’s representation of pitch-class and can be expressed as a candidate RDM (Fig. 3c).

To evaluate each model’s capacity to predict the observed neural representation, we constructed a set of 
time-varying RDMs from the MEG decoding accuracies and compared this time-evolving representation to each 
model’s prediction using Representational Similarity Analysis22,28,29. Figure 3d shows the time varying correla-
tion between each candidate RDM and the time varying neural RDMs, averaged across both tonal contexts. We 
found that neural dissimilarities were significantly correlated with the Tonal Hierarchy model during a period 
starting around 250 ms, suggesting that the brain’s representation of the stimuli is best explained by differences 
in perceived stability between the four classes. Conversely, the all other RDMs provided little to no explanatory 
power. Tonal Hierarchy model correlations closely tracked the noise ceiling24, indicating that the model provided 
a good fit despite inherent noise in the MEG data. Finally, to summarize the modelling, we computed average 
correlations over the putative period of maximal context-processing (250–600 ms; see section 2.4). Again, the 
Tonal Hierarchy model was the best fit for the data (Fig. 3e); the average correlation is both significant and close 
to the noise ceiling.

Dissociating tonal schema from acoustics. In addition to modelling, we wished to verify that the cur-
rently observed representation of pitch-class was based upon the neural processing of tonal-schema rather than 

Figure 3. Representational similarity analysis of pitch-class. (a) Neural dissimilarities summarized in a time-
averaged Representational Dissimilarity Matrix (RDM). (b) Multidimensional scaling (MDS) applied to the 
time-averaged neural RDM provides an intuitive visualization of the representational structure of musical pitch 
in the brain. (c) The time-varying neural structure is indexed with a new RDM at each time-point and compared 
with three candidate models. (d) Time-varying correlation (Kendall’s TauA rank-order) between the observed 
neural structure and each of the candidate models. Significance is indicated by the points below the curves 
(p < 0.05; randomization test; FDR corrected). Shaded regions indicate standard errors. (e) Time-averaging the 
neural-to-candidate correlations over 250–600 ms reveals that neural dissimilarities are significantly correlated 
with the Tonal Hierarchy (p < 0.05; randomization test), with the average correlation closely tracking the noise-
ceiling (indicated by the shaded region). Bars indicate standard errors.
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afferent acoustic information. Our experimental paradigm deliberately included two different tonal contexts to 
re-map the harmonic function of each given probe-tone (see Fig. 1). Specifically, tones that were in-key in C 
major were out-of-key in F# major (and vice-versa). This enabled us to examine the brain’s distinction between 
two acoustically identical tones that were preceded by different contexts (thus differing solely in their pitch-class). 
Decoding ‘across-context’ in this fashion allowed us to examine neural distinctions between stimuli with identical 
sensory features, thereby isolating the effects of tonality.

The results, averaged across the four probe-tones, are shown in Fig. 4. The tonal function could clearly be 
decoded from the neural response patterns of two acoustically identical tones. This distinction in the brain first 
emerged at 160 ms, with performance peaking at 58% correct for a sustained period from 250–600 ms. Crucially, 
performance was similar or better than when decoding pitch in the presence of acoustical differences (section 
2.1). This result, in addition to the failure of spectral distance and proximity models to account for neural dis-
similarities (Fig. 3d,e), suggests that the representation of pitch-class (Fig. 3a) reflects primarily the processing of 
tonal schema in the brain.

Note that stimuli in Fig. 4 were preceded by acoustically different contexts. As a result, there are indications 
of significant decoding before the onset of the probe-tone (i.e. at time-points less than zero). Crucially however, 
decoding accuracy is around chance at time zero. This result, in addition to the failure of the spectral overlap 
model to explain neural distinctions (Fig. 3d,e), suggests that the silent period separating context and probe-tone 
(650 ms) was sufficiently long enough to ensure that the sensory processing of the context did not influence 
the subsequent evoked response to probe-tone. As such, we believe that current neural distinctions between 
pitch-classes were driven by the processing of probe-tones within the tonal framework imparted by the context.

Discussion
We characterized the brain’s representation for a set of four pitches that differed in their tonal function by exam-
ining differences in their evoked MEG response patterns using multivariate pattern analysis (MVPA). Consistent 
with prior Event Related Potential (ERP) research examining the cortical processing of tonal structure, these neu-
ral distinctions first emerged from 150 ms and were maximal from approximately 250–600 ms7,30. We uncovered 
a neural representation that placed in-key and out-of-key classes in distant regions of representational space. The 
in-key classes were also distant from one another. Conversely, the out-of-key classes were closely related. Because 
the collective representation was based on dissimilarities between classes, we could directly compare the observed 
neural structure with prior behavioral and acoustic models without the need for a direct correspondence mapping 
(Fig. 3c). Our principal finding was that neural dissimilarities were correlated with differences in the Standard 
Tonal Hierarchy19,21, suggesting that the difference in perceived stability between two pitch-classes can be concep-
tualized in terms of representational distance in the brain.

At a fundamental level, a common finding across behavioral and neural domains is that the representational 
distance between two tones forming an acoustically fixed interval varies depending on their respective classes 
within the tonal context. However, the nature of this variation is corroborated somewhat differently. The conical 
model3 suggests that in-key tones are proximate and out-of-key tones are distant from one another, whereas the 
current results suggest the opposite. Though seemingly contradictory, the two findings may not be mutually 
exclusive. The current method models the ‘distinctiveness’ of pitch-classes based on the dissimilarity of their 
evoked neural features. Because the dominant has a distinctive harmonic function relative to the tonic, it is likely 
that trained listeners possess a schema with which to separate the two pitches. In contrast, the augmented 4th 
and minor 2nd have no such functional harmonic relationship. It seems, therefore, that in the absence of a clear 
schema, the brain’s representation of the two out-of-key pitches converges. In the conical model however, distance 
reflects the degree to which two tones are perceived to be musically associated. In such a framework, the tonic 
and dominant may indeed be related. Both classes have a high probability of joint occurrence within tonal pas-
sages or as constituent pitches of chords31. Conversely, out-of-key classes may be considered musically unrelated; 
the occurrence of an out-of-key tone is likely to be followed by a resolution to the nearest in-key (rather than 

Figure 4. Decoding acoustically identical probe-tones. Applying MVPA to decode the pitch-class from 
physically identical tones that were preceded by different tonal contexts.
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another out-of-key) pitch-class. By distinguishing between these two concepts – the distinctiveness of two pitches 
as opposed to how well they musically fit – the current study helps to clarify the complex nature of representa-
tional distance.

It should also be noted that the current investigation presented single tones following a tonal context, whereas 
the conical model arose from similarity ratings of tone pairs presented within a tonal context. Nonetheless, the 
conical model provides a general account of the psychological similarity of pitch-classes. Therefore, it is valuable 
to assess the extent to which this model can be generalized beyond the specific behavioral methodology from 
which it arises. As such, we tested the hypothesis that perceptually dissimilar tones (as described by the conical 
model) also have dissimilar patterns of brain activation when presented in isolation.

In order to further understand the neural basis of tonality, future work should extend the stimulus set to 
include all twelve pitch-classes so that more precise modelling may begin to establish the optimal combination 
of perceptual, sensory and acoustic features that explain the brain’s response to tonal pitch. For example, it may 
be the case that when all pitch-classes are considered, a mixed model of sensory and schematic features may be 
needed to account for neural distinctions.

We assessed the ability of classifiers to discriminate between MEG responses evoked by tones differing in 
their tonal functions. Using classification accuracy as a measure of representational distance, we characterized a 
representation for a set of musical pitches and showed that their collective representational structure correlates 
with the respective differences in their perceived tonal stability. Our results provide a crucial link between musical 
pitch perception and the underlying neural activity from which it materializes. Music psychology has long held 
that the cognitive basis of tonality can be derived from the “Tonal Hierarchy” – the pattern of stability across dif-
ferent pitches within a musical context. The current results strengthen this notion by showing consistency in the 
relations between tones across neural and perceptual domains.

Materials and Methods
Experimental Design. Thirteen trained musicians with a minimum of 5 years of formal training 
(Mean = 11.8 years, SD = 3.0) were recruited from the Sydney Conservatorium of Music, the Australian Institute 
of Music and Macquarie University. The sample size was not pre-determined, but rather testing was terminated 
once trends in the decoding analyses displayed sufficient statistical power (see statistical analysis below). All sub-
jects reported having no known hearing loss or brain abnormalities, and did not possess absolute pitch. The study 
was approved beforehand by the Human Research Ethics Committee at Macquarie University (REF 5201300804) 
and all methods were carried out in accordance with the stated guidelines. Informed consent was obtained prior 
to testing, after all experimental details and potential risks were explained.

Each trial consisted of a tonal context followed by a probe-tone. Contexts were either in the key of C major 
or F# major, and consisted of four major chords written in four-part harmony outlining an I-IV-V-I harmonic 
progression. Subsequent probe-tones were either C4 (261.6 Hz), G4 (392.0 Hz), F#4 (370.0 Hz) or C#4 (277.2 Hz). 
Within each key, two versions of the tonal context were presented: one in which chords contained tones that were 
also probe-tones (for example, in a C major context the C4 and G4 were both physically present in the preceding 
chords), and an alternate version in which these constituent tones were transposed an octave above or below their 
original position in the chords (i.e. a chord inversion). The inclusion of this alternate tonal context enabled us to 
assess the effect, if any, of the acoustic spectral overlap between context and probe. We found no significant differ-
ence in classification performance when the data were divided into the ‘f0-overlap’ and ‘no-f0-overlap’ conditions 
(Wilcoxon sign rank test, False Discovery Rate corrected p > 0.05). All reported results are therefore based on an 
analysis of trials grouped across the two versions of the tonal context.

Stimuli were piano tones recorded at 44.1 kHz. Tones were sampled in Max/MSP (Cycling’74, San Francisco, 
CA) to form chords and probe-tones that were 500 ms in duration with an additional 150 ms decay. Following 
the last chord of the context, a silent period equivalent to one beat in the tempo of the passage (650 ms; roughly 
92 beats per minute) was inserted. This temporal separation was intended to prevent the sensory processing 
of the context from influencing the evoked response to probe-tones (see Fig. 4), while also maintaining metric 
regularity. Prior to testing, all probe-tones were passed through a time varying loudness model32 to normalize 
for differences in perceived loudness. For each tone, the maximum short-term-loudness (STLmax) was computed 
and normalized to the mean value of all four tones. Differences in STLmax between the four probe-tones did not 
exceed 3 phones.

Each participant’s MEG data were collected in a single hour-long session. The session was sub-divided into 
8 testing blocks separated by one-minute breaks, during which subjects watched and listened to a movie. Each 
block consisted of 80 trials in a single tonal context (C major or F# major), with adjacent blocks alternating 
between the two keys. The two versions of each tonal context (with and without shared probe-tone pitches) were 
presented in randomized fashion with equal probability within a block. ERP studies indicate that increases in the 
probability of syntactically irregular trials results in decreased effect sizes7. We therefore opted for an in-key to 
out-of-key presentation ratio of 6:4, resulting in a total of 192 in-key and 128 out-of-key observations within each 
tonal context. After each trial, participants responded as to whether the probe-tone was ‘in-key’ or ‘out-of-key’, 
registering their response by pressing one of two buttons. This was done to ensure participants were attending 
to the stimuli33. Participants used their left and right thumbs to register the two different responses. The assign-
ment of in-key/out-of-key to left/right button was interchanged every two blocks to control for the effect, if any, 
of motor activity on the measured neural responses. Once the response was registered, inter-trial-intervals were 
randomly jittered between 0.5–1 seconds. Before testing, subjects completed a training session consisting of 20 
trials with an identical behavioral task to that of the MEG recording session. Feedback was provided after each 
training trial and the experimenter ensured that subjects could perform the task (using a threshold of ≥90% cor-
rect) before proceeding to the MEG recording session. No trial-by-trial feedback was provided during the MEG 
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recording; however, subjects were informed of their accuracy after each block. On average, subjects responded 
correctly on 96% of the trials (SD = 5.9%).

Apparatus. Data were collected with a whole-head MEG system (Model PQ1160R-N2; KIT, Kanazawa, 
Japan) consisting of 160 coaxial first-order gradiometers with a 50 mm baseline34,35. Prior to recording, five 
marker coils were placed on the participant’s head, their positions were registered and the participant’s head shape 
were measured with a pen digitizer (Polhemus Fastrack, Colchester, VT, USA). MEG data was bandpass filtered 
online from 0.1–200 Hz using first-order RC filters and digitized at 1000 Hz. Participants were in a supine position 
in the scanner and were instructed to direct their gaze at a fixation cross. Both the fixation cross and experimen-
tal instructions were projected by an InFocus IN5108 LCD back projection system (InFocus, Portland, Oregon, 
USA) to a screen located above the participant at a viewing distance of 113 cm. Sound stimuli were delivered via 
Etymonic ER-30 insert headphones at a sampling frequency of 44.1 kHz.

MEG Pre-processing. All pre-processing was performed in MATLAB. Data was epoched from 0.1 s before 
to 1 s after onset of probe-tones. To improve the signal to noise ratio while still retaining temporal resolution, the 
MEG data was downsampled to 200 Hz with a low-pass Chebyshev Type 1 filter. Applying Principal Components 
Analysis (PCA) has been found to be an efficient pre-processing step for optimizing (or near- optimizing) data 
for MEG decoding analyses. In a single step PCA reduces the dimensionality of the data, and obviates the need for 
additional artefact rejection or de-noising procedures, as the classifiers can “learn” to suppress nuisance variables 
isolated by PCA, e.g. eye-blinks and environmental noise36. In the present study, PCA was applied to each par-
ticipant’s dataset of [640 trials × 160 channels × 1100 ms] and the first n components accounting for 99% of the 
variance for each subject were retained for the decoding analysis. On average, PCA reduced the dimensionality of 
the dataset from 160 sensor channels to 26 principle components.

Time-series Decoding Analysis. Multivariate pattern analysis (MVPA) of MEG data was performed in 
MATLAB. For each set of pre-processed data, we used a naïve Bayes implementation of linear discriminate analy-
sis (LDA)37 to perform single-trial classification for each pairwise combination of pitch-classes at each time-point. 
Generalization of the classifier was evaluate using k-fold cross validation with a 9:1 training to test ratio. In this 
procedure, the MEG data for all trials corresponding to the two classes being decoded were randomly assigned 
into 10 bins of equal size, with matched numbers of observations across the two classes in each bin. Nine of the 
bins were pooled to train the classifier, and the trials in the remaining bin were used to test the classifier. This 
procedure was repeated 10 times such that each trial was included in the test bin exactly once. Decoding was 
performed with a sliding time-window to assess the time-varying ability of classifiers to discriminate between 
neural activity corresponding to two given pitch-classes. To provide more observations in each classification run, 
we used a window size of 25 ms and a step-size of 5 ms. This meant that each classification run was based on data 
from the 5 most recent points in the timeseries. Because of the temporal ‘smearing’ associated with such window-
ing, the reported onset times for significant decoding are conservative estimates.

Representational Similarity Analysis (RSA). Decoding every pairwise combination of the four 
pitch-classes occurring within the two tonal contexts resulted in an 8 × 8 Representational Dissimilarity Matrix 
(RDM) for each subject at each time point. From this, we created a single 4 × 4 RDM (Fig. 3a) that was averaged 
across subjects, the two tonal contexts, and time-points from 250–600 ms (the period of maximal context decod-
ing - see Fig. 4). Multidimensional Scaling (MDS; Kruskal’s normalized stress1 criterion) was used to illustrate the 
structure of the RDM in two dimensions. MDS aims to spatially represent the RDM whilst preserving the original 
distances as much as possible. The loss function or stress of the solution indicates how faithfully MDS preserves 
the distances. Typically, the stress is minimized with higher-dimensional solutions. In our case however, the 2-D 
solution produced negligible stress (stress = 8.5819 × 10−7), indicating that the dimensionality was sufficient to 
visually depict the RDM. We constructed five model RDMs based on perceptual and acoustic properties that may 
account for the neural dissimilarities observed. The Conical RDM was based on the Euclidean distances between 
pitch-classes in Krumhansl3. The Tonal Hierarchy RDM was based on the difference in stability ratings reported 
in Krumhansl & Kessler21. Stimulus spectrograms were computed by passing the raw audio through a model of 
the auditory periphery25. The model consisted of three main stages: (1) a cochlear filter bank comprised of 128 
asymmetric filters uniformly distributed along a logarithmic frequency axis (2), a hair cell stage consisting of 
a low-pass filter and a nonlinear compression function, and (3) a lateral inhibitory network approximated by 
a first-order derivative along the tonotopic axis followed by a half-wave rectifier. We constructed an RDM of 
Spectral Distance between probe-tones by calculating the Euclidean distance between the respective spectrograms 
across all 128 frequency bands. For each context, a Spectral Overlap RDM was computed by calculating the dif-
ferences in the Euclidean distance between the context spectrogram and each of the probe-tone spectrograms. 
The resultant RDM had similar patterns of dissimilarity for both tonal contexts (C major and F# major). For this 
reason, we averaged the Spectral Overlap RDM across both contexts for further analysis. Finally, the Proximity 
RDM was based on the semitone difference in pitch-height between probe-tones. Using the RSA framework22,24, 
we studied the brain’s emerging representation by comparing each model RDM with our empirical time-varying 
MEG RDM.

Statistical Analysis. All statistical analyses were performed on all subjects (N = 13). Decoding perfor-
mance is reported in terms of balanced accuracy (the mean of percent-correct in class A and percent-correct 
in class B). Time-series and time-averaged decoding performance was tested for significance using a two-sided 
Wilcoxon signed rank test. To correct for multiple comparisons, we controlled the false discovery rate (FDR)38,39 
with α = 0.05. Correspondence between neural and model RDMs was assessed by computing Kendall’s TauA (i.e., 
a rank-order correlation)24 for each time point and each subject, producing a time-varying correlation between 
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each model and MEG data. Significance of model correlations at each time-point was assessed using randomiza-
tion testing. Briefly, the class labels on RDMs being compared were randomly re-assigned before computing cor-
relation, and this process was repeated 10,000 times to define the null distribution at each time-point. Significant 
time-points were identified as those whose correlation values lay outside the 95% confidence intervals of the null 
distribution. Multiple comparisons were accounted for by controlling the false discovery rate (α = 0.05). We used 
the ‘noise ceiling’ as a benchmark for testing model performance24. The noise ceiling estimates the magnitude of 
the expected correlation between the “true” model RDM and the empirical RDM given the noise inherent in the 
measurement.

Data Availability. The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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