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Abstract

In spite of accumulating evidence suggesting that different complex traits share a common

risk basis, namely pleiotropy, effective investigation of pleiotropic architecture still remains

challenging. In order to address this challenge, we developed ShinyGPA, an interactive and

dynamic visualization toolkit to investigate pleiotropic structure. ShinyGPA requires only the

summary statistics from genome-wide association studies (GWAS), which reduces the bur-

den on researchers using this tool. ShinyGPA allows users to effectively investigate genetic

relationships among phenotypes using a flexible low-dimensional visualization and an intui-

tive user interface. In addition, ShinyGPA provides joint association mapping functionality

that can facilitate biological understanding of the pleiotropic architecture. We analyzed

GWAS summary statistics for 12 phenotypes using ShinyGPA and obtained visualization

results and joint association mapping results that are well supported by the literature. The

visualization produced by ShinyGPA can also be used as a hypothesis generating tool for

relationships between phenotypes, which might also be used to improve the design of future

genetic studies. ShinyGPA is currently available at https://dongjunchung.github.io/GPA/.

Introduction

During the last decade, there have been concrete demonstrations of pleiotropy, i.e., a common

genetic basis shared between distinct phenotypes [1]. Moreover, it has been shown that statisti-

cal power can be significantly improved by leveraging pleiotropy [2, 3]. Hence, accurate esti-

mation of pleiotropy and utilizing pleiotropy for genetic data analysis can potentially improve

our knowledge about the genetic basis of various phenotypes and diseases. Traditionally, plei-

otropy has often been evaluated by first identifying genetic variants associated with each trait

at the genome-wide significance level and then checking overlap of identified genetic variants

across traits. However, this approach can often result in biased pleitropy estimates because

uncertainty in association mapping is not properly taken into account in this estimation. This
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is especially the case when there are a large number of associated genetic variants with small

effect sizes [1, 4], which is called polygenecity, becuase these genetic variants might not be

identified via traditional statistical tests based on genetic study for a single phenotype. As a

result, information from a significant number of associated variants is actually ignored in this

approach. Thus, there is an urgent need for a statistically rigorous approach for analyzing

pleiotropy.

In order to address these limitations, multiple statistical approaches to analyze pleiotropy

have been proposed, including the genetic analysis incorporating pleiotropy and annotation

(GPA) framework [3], the degree of surprise (DS) approach [5], the conditional false discovery

rate approach [2], a risk-score profiling method [6], and a correlation-based method [7],

among others. However, most of these methods require researchers to a priori select traits that

might be genetically correlated with each other and are jointly analyzed, which is not a

straightforward task in practice. This problem becomes even more challenging if the pleiotro-

pic architecture among a large number of phenotypes is of interest. Furthermore, most of

these tools also require to use command lines and/or write a code to run analyses of interest

and this can become additional burden for the researchers.

In order to address these challenges, in this paper, we propose ShinyGPA which provides a

flexible and dynamic visualization of pleiotropic architecture using an intuitive user interface,

along with the joint association mapping functionality that allows biological understanding of

the pleiotropic architecture. Notably, ShinyGPA requires that researchers provide only the

summary statistics (genotype-phenotype association p-values) from genome-wide association

studies (GWAS). This reduces researchers’ burden significantly and also allows wider applica-

tion of this tool because summary statistics are often publicly available for various genetic stud-

ies. We believe that ShinyGPA will not only allow more effective analyses of genetic studies,

but also potentially improve the design of future genetic studies.

Materials and methods

Fig 1 shows the workflow of the ShinyGPA framework. Specifically, starting from the summary

statistics of multiple GWAS (pmi, pmj), the GPA algorithm is applied to each phenotype pair

and generates a matrix of pleiotropy test p-values (yij). The resulting matrix of p-values is used

as an input for the ShinyGPA, which utilizes a Box-Cox distance transformation (sðlÞij ) with a

low dimensional visualization using the isometric feature mapping (xl). The end product is a

dynamic, flexible pleiotropy visualization.

Pairwise pleiotropy test using the GPA algorithm

In order to evaluate the pleiotropy between each pair of phenotypes, we utilized the pleiotropy

test in the GPA approach [3]. Here we provide a brief review of this approach. Let pmk repre-

sent the association p-value for the m-th single nucleotide polymorphism (SNP) from the k-th

GWAS. In the two phenotype case, let p11, p21, . . ., pm1, . . ., pM1 be the association p-values for

M SNPs from the first GWAS. Similarly, let p12, p22, . . ., pm2, . . ., pM2 be the association p-val-

ues from the second GWAS. Association p-values can be obtained from a χ2-test or a logistic

regression in the context of a case-control GWAS.

Next we define a latent variable Zm = {Zm00, Zm10, Zm01, Zm11} to indicate the association

between the m-th SNP and the two phenotypes of interest. Specifically, Zm00 = 1 denotes the

case where the m-th SNP is not associated with either of the phenotypes, Zm10 denotes the case

where the m-th SNP is associated with only the first phenotype, Zm01 denotes the case where

the m-th SNP is associated with only the second phenotype, and lastly, Zm11 denotes the case
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where the m-th SNP is associated with both phenotypes of interest. Here we assume that a SNP

can only be in one of these states.

Given Zm, we assume the following emission distributions for GWAS association p-values:

p00 ¼ PrðZm00 ¼ 1Þ :

ðpm1jZm00 ¼ 1Þ � U½0; 1�;

ðpm2jZm00 ¼ 1Þ � U½0; 1�:

p10 ¼ PrðZm10 ¼ 1Þ :

ðpm1jZm10 ¼ 1Þ � Betaða1; 1Þ;

ðpm2jZm10 ¼ 1Þ � U½0; 1�:

p01 ¼ PrðZm01 ¼ 1Þ :

ðpm1jZm01 ¼ 1Þ � U½0; 1�;

ðpm2jZm01 ¼ 1Þ � Betaða2; 1Þ:

p11 ¼ PrðZm11 ¼ 1Þ :

ðpm1jZm11 ¼ 1Þ � Betaða1; 1Þ;

ðpm2jZm11 ¼ 1Þ � Betaða2; 1Þ;

where 0< α1 < 1 and 0< α2 < 1. Here, the null p-values are assumed to follow the Uniform

distribution based on the Inverse Transform Theorem. Beta distribution was used to model

associated p-values because it has the same range as the Uniform distribution, i.e., [0, 1]. Spe-

cifically, Beta(α, 1), 0< α< 1, was considered here because its density monotonically

decreases from 0 to 1 and this ensures that a smaller p-value is more likely than a larger p-value

when it is from an associated group. In addition, Beta(α, 1) allows us to easily control the mass

around zero using a single parameter α. Specifically, the smaller α is, the more mass we have

around zero. Hence, the smaller α is often estimated for genetic studies with stronger signals,

e.g., those with a larger sample size. Finally, as α! 1, Beta(α, 1) becomes the Uniform

distribution.

Then, a likelihood ratio test is used to evaluate pleiotropy based on the null hypothesis

H0 : p11 ¼ ðp10 þ p11Þðp01 þ p11Þ:

Essentially, this null hypothesis implies that the signals from two GWAS are independent of

each other. Hence, under the alternative hypothesis, the signals from two GWAS are not ran-

domly distributed but there is statistical significant sharing of the signals between two GWAS

datasets. Finally, a pleiotropy p-value for the pair of i-th and j-th phenotypes (yij) is obtained

based on the asymptotic null distribution of a χ2 distribution with 1 degree of freedom. Note

that this asymptotic null distribution might be accurate only for a large number of SNPs.

Fig 1. Summary of work flow for the ShinyGPA visualization approach.

https://doi.org/10.1371/journal.pone.0190949.g001
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However, in our setting, we often consider 200K * 10M SNPs, which is sufficient to use an

asymptotic distribution to evaluate the likelihood ratio test statistic.

Box-Cox distance transformation

The pleiotropy test described in the previous section returns a p-value for each pair of pheno-

types. In the ShinyGPA framework, this p-value is considered as a distance measure between

phenotypes. Specifically, a smaller p-value indicates stronger evidence for pleiotropy among

that pair of phenotypes, i.e., closer distance. However, it might not be optimal to use this dis-

tance measure directly for visualization purposes, because while p-values can range from 0 to

1, the information is not equally distributed over this range. Specifically, in terms of p-values

in general, the important information is concentrated around zero, and thus we are more

interested in the values close to zero, compared to those farther away from zero. Since most

visualization and clustering techniques do not take into account this skewed distance struc-

ture, we modified the distance measure so that it can perform effectively with most popular

visualization and clustering algorithms.

While the log10 transformation is often used in the literature to expand the information

around zero (e.g., [8]), we found that it is too rigid for what we are trying to accomplish in the

ShinyGPA framework. So, in order to create a more flexible visualization, we decided to use a

Box-Cox transformation:

sðlÞij ¼

yl
ij � 1

l
if l 6¼ 0;

ln ðyijÞ if l ¼ 0;

ð1Þ

8
><

>:

where yij is the original pleiotropy test p-value for the pair of i-th and j-th phenotypes and λ is

a tuning parameter. In the ShinyGPA framework, instead of using a specific λ value, we have

left the choice of λ up to the user, which allows for a dynamic, zoom-in/zoom-out functional-

ity. Fig A in S1 Text illustrates the consequence of different λ choice for the Box-Cox transfor-

mation. The plots have the original p-values (yij) on the x-axis and the transformed p-values

(sðlÞij ) on the y-axis. Thus, the diagonal line produced with λ = 1 represents no transformation.

A curve above the diagonal represents expanding the information around zero and the higher

the point of inflection of the curve the more the small p-values are being expanded. Hence,

decreasing the λ parameter will create a zoomed-out, bird’s eye view visualization while

increasing the λ parameter will create a zoomed-in, detailed look at the pleiotropic structures.

Note that λ = 0 is equivalent to a log10 distance transformation.

Low dimensional visualization

After applying a Box-Cox transformation to the pleiotropy distance matrix (yij), we apply iso-

metric feature mapping (isomap) [9] to map phenotypes onto a two dimensional space based

on their pleiotropic architecture. We chose isomap over more classic multi-dimensional scal-

ing (MDS) algorithms to avoid the coordinates flipping on successive iterations of the algo-

rithm. The isomap algorithm works in three steps. First, a neighborhood graph G is

constructed over all the data points by connecting points i and j if either they are closer than

some defined �, or if i is one of the k (pre-defined) nearest neighbors of j. Then, it sets edge

lengths to dx(i, j). The next step is to compute the shortest paths. This is done by initializing

dG(i, j) = dx(i, j) if i and j are linked by an edge, and set dG(i, j) =1 otherwise. Then for each

value of k, replace all entries of dG(i, j) with min{dG(i, j), dG(i, k) + dG(k, j)}. The resulting

matrix of final values DG = {dG(i, j)} will contain the shortest path distances between all pairs of

ShinyGPA
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points in G. The third step is to apply classical MDS to DG. This constructs an embedding of

the data in a P-dimensional space that best preserves the geometry. The coordinate vectors xi

for points in X are chosen to minimize the objective function:

E ¼ k tðDGÞ � tðDXÞ kL2 ;

where DX indicates matrix of Euclidean distances {dX(i, j) = kxi − xjk} and kAkL2 is the L2

matrix norm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;jA2
i;j

q
. The τ operator converts distance to inner products. The global mini-

mum of the objective function is achieved by setting the coordinates xi to the top d eigenvec-

tors of the matrix τ(DG). In this way, we are able to graph the phenotypic relationships in a two

dimensional plot. We used the isomap() function in R with epsilon = 0.15 and

ndim = 2 to implement the isomap algorithm. Note that we chose epsilon = 0.15
because this is the smallest value that does not introduce the error of fragmented data.

Phenotype clustering

In order to further facilitate interpretation of the visualization results for pleiotropic architec-

ture described above, we apply a clustering algorithm to the coordinates generated from iso-

map that are already Box-Cox transformed. In the ShinyGPA framework, the user is able to

determine the number of clusters and choose different clustering algorithms, including k-

means and hierarchical clustering. We used the kmeans() and hclust() functions in R to

implement the k-means and hierarchical clustering algorithms, respectively.

Joint association mapping

While the phenotype plot generated by ShinyGPA provides an intuitive visualization of pleio-

tropic architecture, it still does not provide direct interpretation about why we obtain certain

visualization results. In order to address this issue, we incorporate joint association mapping

for each pair of phenotypes, which allows SNP-level explanation of the visualization results.

Specifically, we utilized the joint association mapping functionality of the GPA algorithm,

which is based on the local false discovery rate (FDR) that a SNP is shared between two pheno-

types,

locfdrm ¼ 1 � PrðZm11 ¼ 1jpm1; pm2Þ:

We used the assoc() function in the GPA package to implement the joint association map-

ping. This helps elucidate which SNPs are driving the visualization, causing the pleiotropic

structure.

User interface

We implemented the ShinyGPA framework using the Shiny technology (https://shiny.rstudio.

com/), which provides a dynamic and interactive user interface. Specifically, the user is able to

choose visualization characteristics like which phenotypes are plotted, the number of clusters

the phenotypes are partitioned into, and how far zoomed in or zoomed out they want to view

the data. After the user specifies a setting, the plot is automatically updated, making this tool

ideal for exploring pleiotropic relationships within the data. The interactive nature of the app

allows the user to interact with the data and see how different choices (clustering methods or λ
value for example) affect the interpretation of the degree of pleiotropy present.

In order to attain the portability of ShinyGPA, we implemented ShinyGPA as an R function

and incorporated it as a part of the R package GPA (https://dongjunchung.github.io/GPA/).

Specifically, there are two main functions to run ShinyGPA, namely fitAll() and

ShinyGPA
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shinyGPA(). It takes the GWAS association p-value matrix, namely pmat, as an input,

where its rows and columns correspond to SNPs and phenotypes, respectively. If their row and

column names are provided, these functions extract them automatically and use them in the

Shiny app for easier interpretation. First, the following one-line command generates all the

intermediate results required for the visualization.

R> out <- fitAll(pmat)
Next, the following command line takes the output of fitAll() as an input and opens

the Shiny app, which will be illustrated in detail in the following subsections.

R> shinyGPA(out)

Plot tab: Visualization of phenotype map

Fig 2A shows the layout of ShinyGPA, where the “Plot” tab is open by default. On the left side

of the screen, the user input options begin with the plot title input field. Below the title input is

the download button. This allows the user to download the main phenotype plot as a Portable

Document Format (PDF) file, which is automatically named YourPlotTitle-Shinyplo t.pdf.

Next, there is a group of phenotype check boxes. By unchecking the boxes, the user is able to

customize the pleitropy visualization to the specific phenotypes of interest. This feature is help-

ful for exploring pleiotropic relationships as phenotypes can easily be removed and added

back in with a simple click. Next, the user is able to choose the number of clusters applied to

the phenotypes. The phenotypes are clustered by shape as well as by color, so that the results

are clear even if the plot is eventually printed in gray scale. Below the clustering options, there

are the distance transformation controls. This includes the λ slider bar which provides zoom-

in / zoom-out functionality as well as a small plot to show how the λ choice is transforming the

p-values. Near the bottom of the control panel are fields that adjust the font size of both the

phenotype labels on the graph and the coordinate labels. This allows the user to optimize the

visualization results so that they can be easily utilized for research article and grant proposal

purposes. Lastly, at the bottom of the input options, there are fields to customize the λ slider

bar itself, as well as the clustering algorithm if the user desires.

Info tab: Joint association mapping

Next, if the user clicks the “Info” tab, it will open the user interface for joint association map-

ping as seen in Fig 2B. Here, the user can find more information on the specific SNPs that are

driving the visualization. The user is able to select the two phenotypes of specific interest as

well as the global false discovery rate (FDR) and the joint association mapping results are auto-

matically updated. The resulting table shows the list of SNPs that are associated with the speci-

fied pair of phenotypes at the specified global FDR level, along with their local FDR values.

The user can also download the result table as a Microsoft Excel comma separated values

(CSV) file.

Data description

We considered the summary statistics from 12 GWAS datasets as input for ShinyGPA, includ-

ing neuropsychiatric disorders: attention deficit-hyperactivity disorder (ADHD), autism spec-

trum disorder (ASD), bipolar disorder (BPD), major depressive disorder (MDD),

schizophrenia (SCZ) [7, 10]; autoimmune diseases: Crohn’s disease (CD) [11], ulcerative coli-

tis (UC) [12], rheumatiod arthritis (RA) [13]; lipid-related phenotypes: high-density lipopro-

tein (HDL) [14], type 2 diabetes (T2D) [15]; cardiovascular phenotypes: coronary artery

disease (CAD) [16], and systolic blood pressure (SBP) [17]. More details about these GWAS

datasets can be found in Table A in S1 Text.

ShinyGPA
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Results

Simulation studies

We first evaluated ShinyGPA using simulation studies. First, we considered five phenotypes

such that each phenotype has 20% associated SNPs and 80% background SNPs. We set the

Fig 2. ShinyGPA screenshot with the “Plot” tab open (A) and the “Info” tab open (B).

https://doi.org/10.1371/journal.pone.0190949.g002
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associated SNPs of all five phenotypes to have a 4% overlap, which is what is expected by

chance assuming no pleiotropy (0.2 � 0.2 = 0.04). In addition, we set the pair of phenotype

1 (GWAS 1) and phenotype 2 (GWAS 2) and the pair of phenotype 3 (GWAS 3) and pheno-

type 4 (GWAS 4) to have 75% extra overlap. As a negative control, phenotype 5 (GWAS 5)

was set to be independent and not have any extra overlap with any other phenotype. Fig 3A

provides a visual for the simulation setting, specifically how we designed the five phenotypes

to overlap. Using the GPA generative model [3], the p-values of the associated SNPs were gen-

erated from Beta(0.4, 1) while the p-values of the background SNPs were generated from a uni-

form distribution. Fig 4A provides the corresponding ShinyGPA plot. As expected, GWAS 1

is clustered with GWAS 2 and GWAS 3 makes a cluster with GWAS 4 while GWAS 5 is

located away from all of them.

Second, in order to see the effects of varying degrees of pleiotropy, we considered various

degrees of extra overlap among phenotypes. Specifically, when we make the degree of extra

overlap lower as 25% instead of 75% (Fig 3B), the distance between the points on the plot

increases for a fixed λ (Fig 4B). Next, we set GWAS 3 and GWAS 4 to have higher degree of

extra overlap (75%) compared to GWAS 1 and GWAS 2 (25%), as depicted in Fig 3C. In this

case of the mixed overlap, ShinyGPA correctly plots GWAS 3 and GWAS 4 nearer to each

other than GWAS 1 and GWAS 2, with GWAS 5 being furthest away of all (Fig 4C). Third,

one of the key features of the proposed ShinyGPA framework is that it is not affected by the

Fig 3. Simulation settings. (A) 20% associated SNPs for each phenotype and 75% extra overlaps between GWAS 1 and GWAS 2 and between GWAS 3 and GWAS 4;

(B) 20% associated SNPs and 25% extra overlaps; (C) 20% associated SNPs with varying extra overlaps (25% between GWAS 1 and GWAS 2 and 75% between GWAS 3

and GWAS 4); and (D) Varying proportion of associated SNPs (20% for GWAS 1 and GWAS 2 and 5% for GWAS 3 and GWAS 4) with 75% extra overlaps.

https://doi.org/10.1371/journal.pone.0190949.g003
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proportion of associated SNPs as long as the degree of pleiotropy remains the same. In order

to confirm this property, we made each of GWAS 3 and GWAS 4 has only 5% associated

SNPs while the degree of extra overlap between GWAS 3 and GWAS 4 remains as 75% (Fig

3D) as Fig 3A. As expected, the resulting phenotype map (Fig 4D) essentially remains similar

to Fig 4A.

Finally, in order to evaluate the visualization flexibility provided by the λ parameter, we

generated phenotype maps for the simulation data of Fig 3B (extra 25% overlap) but with vary-

ing λ values. When λ = 0 (Fig 4B), we have a classic log10 transformation. When λ is negative

(Fig 4E), it acts as a “zoom-out” transformation, allowing the overall relationships among the

phenotypes to be visualized. On the other hand, when λ is positive (Fig 4F), it acts as a “zoom-

in” transformation, allowing a more detailed look into the pleiotropic relationships. In sum-

mary, this simulation study showed that ShinyGPA can potentially recover true genetic rela-

tionships among phenotypes and provide desirable flexibility using the λ parameter.

Joint analysis of GWAS datasets for 12 phenotypes

Fig 5A shows the ShinyGPA visualization of the 12 enumerated phenotypes, with 3 clusters

and λ = 0 defined. We see that the neuropsychiatric phenotypes make a cluster, the autoim-

mune diseases make a cluster, and the lipid-related and cardiovascular phenotypes make a

third cluster. Specifically, the cluster made of up RA, UC, and CD is supported in the literature

as they are all three autoimmune diseases [18]. There is also evidence of pleiotropy among the

five neuropsychiatric disorders, which supports the cluster made up of ASD, MDD, ADHD,

SCZ, and BPD [2, 6, 7, 19]. The pleiotropy between T2D and CAD has been reported in multi-

ple studies [20–25]. When we increase the number of clusters to 5 and keep λ = 0 (Fig B2 in S1

Text), we see that UC and CD make a cluster, RA stands alone, the five neuropsychiatric phe-

notypes make the third cluster, SBP has its own cluster, and the rest of the lipid-related and

cardiovascular phenotypes make the fifth cluster. In comparing the plots with different λ val-

ues, we see that when λ is very negative (-0.04) (Fig C1 in S1 Text), all the phenotypes converge

to one point, except the three autoimmune diseases. When λ = −0.02 (Fig C2 in S1 Text) we

see the neuropsychiatric disease getting closer to each other. Lastly, when λ is positive (0.02)

(Fig C3 in S1 Text) we see a spreading out of the phenotypes, allowing a closer look into each

group.

In order to further validate this visualization result, we evaluated whether more SNPs are

shared between pairs of phenotypes that are located more closely in the map. Specifically, for

each pair of phenotypes, we identified SNPs shared between two phenotypes using the joint

association mapping functionality of the R package GPA (function assoc()with the argu-

ment pattern = “11”). When the set of phenotypes BPD, MDD, and UC are considered

(Fig 5B), BPD and MDD that are located very close from each other share a larger number of

SNPs compared to those between BPD-UC or MDD-UC. Among the three autoimmune dis-

eases (RA, UC, and CD), two inflammatory bowel diseases, UC and CD, again share a much

larger number of SNPs than UC-RA and CD-RA (Fig 5C). Finally, in the phenotype map, T2D

and CAD are located closer from each other compared to SBP and HDL (Fig 5A). Consistently

with the visualization result, T2D and CAD actually also share a larger number of SNPs com-

pared to CAD-SBP and T2D-SBP (Fig 5D).

Next, when we investigate only the five neuropsychiatric disorders together (Fig 5E), BPD

and SCZ make one cluster, ADHD and ASD make another cluster, and MDD is off by itself.

Note that the strong pleiotropy between BPD and SCZ is well supported by the literature [6].

We again checked numbers of SNPs shared between each pair of these neuropsychiatric disor-

ders (Fig 5F; we did not include ADHD in this plot because the number of SNPs associated
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Fig 4. ShinyGPA plots. (A)—(D) correspond to the simulation settings of Fig 3A-3D when λ = 0. (E) and (F) show the plots of

Fig 3B for λ = −0.25 and λ = 0.25, respectively.

https://doi.org/10.1371/journal.pone.0190949.g004
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Fig 5. Joint analysis of GWAS datasets for 12 phenotypes. (A) ShinyGPA plot for the 12 phenotypes. (B—D) Numbers of SNPs

shared between various pairs of phenotypes (B: BPD-MDD-UC; C: RA-UC-CD, D: T2D-CAD-SBP) under various nominal local

ShinyGPA
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with ADHD is too small for this analysis). As expected, BPD and SCZ share the largest number

of SNPs among all the possible pairs, followed by pairs involving MDD and then by pairs

involving ASD. Also note that SCZ that is located closer to MDD also shares more SNPs with

MDD, compared to BPD that is located farther from MDD in this visualization map. We fur-

ther checked the SNPs that are shared between BPD and SCZ in order to determine whether

the SNP sharing is biologically meaningful. We found that the top ranking SNPs include

rs9951150 (local FDR = 0.042) and rs7096169 (local FDR = 0.057), which were previously

reported to be potentially shared among five psychiatric disorders [10].

SNPs shared among autoimmune diseases

Given the closeness among UC, CD, and RA in our visualization map, we sought to under-

stand the potential biological mechanisms explaining the SNPs identified as shared between

each pair of phenotypes. Specifically, we ranked the SNPs identified as shared between each

pair of phenotypes using the GPA algorithm according to their nominal global FDR levels, and

considered SNPs with a nominal global FDR level under 0.05 or 0.1. For the SNPs shared

between 1) RA and CD, 2) RA and UC, and 3) CD and UC, we obtained their positions and

reported GWAS associations from the NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/

gwas/) accessed on August 25th, 2017. The top ranked shared SNPs were then evaluated based

on their location relative to current GWAS associations.

Top SNPs shared between RA and CD, as well as RA and UC or UC and CD, lie in regions

well-known to be shared across multiple autoimmune diseases, such as the HLA, IL23R,

TNFAIP3, and IL2RA [26]. RA and CD shared 576 SNPs with FDR<0.1 and 497 SNPs with

FDR< 0.05, with the majority of these (61% of all SNPs with FDR< 0.1, and 67% of all SNPs

with FDR< 0.05) mapping to the extended major histocompatibility (MHC) region, also

known as the human leukocyte antigen (HLA) complex. This region encompasses approxi-

mately 7.6 Mb and 421 annotated gene loci at 6p22.1-6p21.32 [27], and is in high linkage dis-

equilibrium and strongly associated with all autoimmune diseases and many inflammatory

traits. We observed top shared SNPs located in the HLA classical class III, class II, and class I

regions (e.g., NOTCH4,HLA-DR, and HLA-B, respectively). Given its strong association sig-

nals and sharing among all autoimmune diseases, the sharing of SNPs between RA and CD is

thus unsurprising.

Multiple strongly shared SNPs between RA and CD were also observed in the

MAGI3-PTPN22 region at 1p13.2 (31 SNPs with FDR < 0.1; 24 SNPs with FDR< 0.05). Top

shared SNPs in this region are associated with multiple autoimmune diseases, including RA,

CD, systemic lupus erythematosus (SLE), T1D, vitiligo and myasthenia gravis. Interestingly,

other SNPs in this region have been associated with multiple other traits (e.g., leprosy, bacter-

emia, thyroid peroxidase antibody levels, and hypothyroidism), supporting the value of Shi-

nyGPA to unveil novel pleiotropic relationships. The next strongest shared SNPs (FDR<

0.05) also map to shared immune loci. The top SNP near CD40 (20q13.12) has been associated

with IBD, CD and Kawasaki disease; this regions is associated with RA, multiple sclerosis, ton-

sillectomy, and chronic hepatitis B infection. Five SNPs near TAGAP (6q25.3) have been asso-

ciated with IBD, CD, celiac disease and multiple sclerosis. This region’s association with

lipoprotein (a) levels corroborates the value of ShinyGPA in unveiling novel pleiotropic effects.

FDR levels. (E) ShinyGPA plot for the five neuropsychiatric disorders. (F) Numbers of SNPs shared between each pair of

neuropsychiatric disorders under different nominal local FDR levels. ADHD is excluded in this plot because too few SNPs were

identified to be associated with ADHD regardless of FDR levels.

https://doi.org/10.1371/journal.pone.0190949.g005
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Two SNPs near TNFAIP3 (6q23.3) have been reported as associated with celiac disease, with

other SNPs in the region being associated with other autoimmune diseases (UC, SLE, RA, pso-

riasis, multiple sclerosis, Sjögren’s syndrome, primary sclerosing cholangitis). Finally, seven

SNPs near IL2RA (10p15.1) have been reported as associated with RA, T1D, multiple sclerosis,

alopecia areata, primary sclerosing cholangitis, and plasma t-tau levels, with other SNPs in the

region being associated with several immune-related traits.

Similarly to the sharing between RA and CD, RA and UC shared 576 SNPs with FDR< 0.1

and 369 SNPs with FDR< 0.05, with the majority of these (60% of all SNPs with FDR< 0.1,

and 76% of all SNPs with FDR < 0.05) mapping to the extended MHC region. Several top

SNPs (FDR< 0.05) also map to the region adjacent to the classical HLA class II region (e.g.,

IP6K3 (associated with educational attainment and phosphorus levels) and BAK1 (associated

with platelet count, chronic lymphocytic leukemia, and testicular germ cell tumor)). Strongly

shared SNPs were observed in multiple regions, including near TNFAIP3 (2 SNPs with FDR <

0.05), CD40 (one SNP with FDR< 0.05), MAGI3-PTPN22 (16 SNPs with FDR < 0.05), and

IL2RA (6 SNPs with FDR< 0.05).

Since they are both chronic inflammatory bowel diseases (IBDs), CD and UC shared the

most SNPs (1,556 with FDR < 0.1; 1,013 with FDR< 0.05). In contrast to the aforementioned

SNPs shared between the IBDs and RA, only up to 7% of the top shared SNPs between the

IBDs map to the HLA region. The most strongly associated SNPs map to the IL23R region at

1p31.3 (31 SNPs with FDR< 0.1, 23 SNPs with FDR< 0.05). These SNPs are associated with

autoimmune diseases (CD, UC, psoriasis, Behçet’s disease, primary biliary cholangitis) as well

as other traits (leprosy, linoleic acid levels). The sharing of this region extends to other autoim-

mune diseases (e.g., ankylosing spondylitis, psoriatic arthritis). The next strongest shared

SNPs (six SNPs with FDR < 0.1) map near NKX2-1 (10q24.2). In addition to their associations

with CD and UC, the shared SNPs have also been associated with dental caries, and other

SNPs in this region are associated with multiple other traits (e.g., red blood cell traits, blood

protein levels, or colorectal cancer), supporting the value of ShinyGPA in discovering novel

pleiotropic effects. One of the most explicit examples of the utility of ShinyGPA to uncover

novel pleiotropic effects is that of the MST1-CAMKV region at 3p21.31; while the region is

associated with CD, UC, primary sclerosing cholangitis, blood protein levels, and educational

attainment, the top 21 shared SNPs (FDR < 0.1) are associated with two new traits: resting

heart rate and age at first birth. Fifteen SNPs (FDR< 0.1) near JAK2 (9p24) are associated

with IBD, CD, UC, and several red blood cell traits; SLE, psoriatic arthritis and myeloprolifera-

tive neoplasms are other associations in the region. Thirteen SNPs near IL12B (5q33.3) are

associated with multiple sclerosis, psoriasis, primary biliary cholangitis, while the region’s

associations extend to other autoimmune diseases (CD, UC, psoriatic arthritis, and ankylosing

spondylitis). Ten shared SNPs near TNFRSF6B (20q13.33) are associated with IBD, CD, glioma

and atopic dermatitis; this regions is associated with UC, glioblastoma, prostate cancer and

lung function. Finally, 28 top shared SNPs near PTGER4 (5p13.1) are associated with CD, mul-

tiple sclerosis, and self-reported allergy, with other SNPs in the region being associated with

immune-related traits (UC, psoriasis, selective IgA deficiency, ankylosing spondylitis, and

blood protein levels).

SNPs shared between type II diabetes and coronary artery disease

Elevated cardiovascular risk factors in pre-diabetic individuals [20–23], elevated cardiovascu-

lar risk prior to a clinical diagnosis of T2D in the Nurses’ Health Study [24], and elevated

carotid artery intima-media thickness in pre-diabetic individuals in our Mexico City study

[25], each suggest an atherogenic state prior to the onset of clinical diabetes that is consistent
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with a common etiology underlying T2D and cardiovascular disease. Moreover, diabetes is

considered a CAD risk equivalent in that individuals with diabetes are at similar risk of having

an incident CAD event as individuals who have had a prior myocardial infarction [28]. How-

ever, despite evidence of underlying common etiology between T2D and cardiovascular dis-

ease, the mechanistic link between the diseases remains poorly understood [29–31].

Examining the pleiotropic architecture underlying T2D and CAD may provide mechanistic

insight into the common etiology of these diseases. Similar to what is described for the SNPs

shared among autoimmune diseases, we selected the SNPs shared between T2D and CAD

with a global FDR level under 0.05 and 0.1, and obtained their positions, as well as reported

GWAS associations. The top ranked shared SNPs were then evaluated based on their location

and reported association in the GWAS Catalog.

In our analysis, T2D and CAD shared 43 SNPs with FDR < 0.1 and 19 SNPs with a FDR <

0.05. Of the top 19 SNPs shared between T2D and CAD, the insulin receptor substrate 1 (IRS1)

region (2q36.3) is one of the most interesting, with the four shared top SNPs being associated

with T2D, insulin resistance, hyperinsulinemia, tryglicerides, and HDL cholesterol levels.

Other variants in this region have been associated with CAD, fasting insulin-related traits, adi-

posity, body fat percentage, adiponectin levels, body mass index, waist circumference, and

waist-hip ratio. Collectively, these associations support the hypothesis that shared metabolic

dysfunction mechanisms underlie the etiology of these traits.

Also revealing is the region of the non-coding RNA CDKN2B-AS1 (9p21.3), which in addi-

tion to association with CAD and T2D, has eight top shared SNPs (FDR< 0.05) showing asso-

ciations with glaucoma and multiple cancers, unveiling novel pleiotropy. The last cluster of

three shared SNPs map to the SNF8-GIP region (17q21.32); although the shared SNPs have not

been reported in GWAS, other SNPs in this region are associated with CAD and myocardial

infarction. In summary, systemically examining pleiotropy between diseases believed to share

common antecedents can be used as a hypothesis generating tool to identify potentially novel

mechanistic targets of shared disease etiology.

Discussion

Here we presented a novel approach to investigate pleiotropy, namely ShinyGPA, which pro-

vides a flexible and interactively dynamic visualization that has guidance for interpretation.

Key features include a flexible distance transformation, an interactive experience, and a pheno-

type clustering to guide interpretation. In addition, ShinyGPA provides various options to

improve user experience, such as a control of title and font sizes; a downloading function to

save the visualization results as a PDF file; and the joint association mapping results as a CSV

file, all of which can be useful for various publication purposes. In order to guarantee biologi-

cally meaningful results, we note that users need to confirm the following key assumptions

made in ShinyGPA:

• It is critical to provide ShinyGPA a valid set of genotype-phenotype association p-values

from upstream GWAS analyses. Specifically, in order to evaluate the pleiotropy, ShinyGPA

utilizes the GPA model, which is based on a Beta-Uniform mixture model. For example, if

population stratification and cryptic relatedness are not properly taken into account or

incorrect genetic association models are used in the GWAS analysis step, the obtained p-val-

ues for null SNPs might not follow the Uniform distribution and this can affect accuracy of

the phenotype map generated by ShinyGPA.

• As the ShinyGPA framework utilizes the GPA model to evaluate the pleiotropy for each pair

of phenotypes, ShinyGPA outputs are affected by the assumptions made in the GPA model.
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Specifically, the GPA model assumes independence between SNPs and hence, the presence

of linkage disequilibrium (LD) may affect the ShinyGPA output. For example, if there is a

wide region with strong LD and a large number of SNPs within this LD region are shared

between two phenotypes, the pleiotropy test p-value can become smaller for this pair of phe-

notypes. However, we believe that this issue will usually not distort the ShinyGPA output sig-

nificantly because of the following reasons. First, in the original GPA paper, we investigated

the impact of LD on the GPA approach using simulation studies and showed that while LD

does impact the measure of pleiotropy, the GPA results are still robust to a moderate degree

of LD [3]. Second, we note that ShinyGPA takes into account all possible combinations of

phenotypes when generating a phenotype map. Hence, while LD can affect pleiotropy p-val-

ues for few pair of phenotypes, its effect might still be relatively local and can be further

weakened during the aggregation and dimension reduction steps of ShinyGPA. In general,

this issue can be addressed by preprocessing the GWAS data using LD pruning approaches.

However, ideally this issue would be addressed within the statistical framework; hence, we

plan to address this issue in our future work.

ShinyGPA is currently publicly available as a part of the R package GPA (http://

dongjunchung.github.io/GPA/) providing seamless integration. Overall, we believe that Shi-

nyGPA will be an important tool in the broader context of therapeutic development by provid-

ing deeper understanding of the genetic basis of diseases.
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