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Validation of deep learning 
natural language processing 
algorithm for keyword extraction 
from pathology reports 
in electronic health records
Yoojoong Kim1,5, Jeong Hyeon Lee2,3,5, Sunho Choi1, Jeong Moon Lee3, Jong‑Ho Kim3,4, 
Junhee Seok1,5 & Hyung Joon Joo3,4,5*

Pathology reports contain the essential data for both clinical and research purposes. However, the 
extraction of meaningful, qualitative data from the original document is difficult due to the narrative 
and complex nature of such reports. Keyword extraction for pathology reports is necessary to 
summarize the informative text and reduce intensive time consumption. In this study, we employed a 
deep learning model for the natural language process to extract keywords from pathology reports and 
presented the supervised keyword extraction algorithm. We considered three types of pathological 
keywords, namely specimen, procedure, and pathology types. We compared the performance of 
the present algorithm with the conventional keyword extraction methods on the 3115 pathology 
reports that were manually labeled by professional pathologists. Additionally, we applied the 
present algorithm to 36,014 unlabeled pathology reports and analysed the extracted keywords 
with biomedical vocabulary sets. The results demonstrated the suitability of our model for practical 
application in extracting important data from pathology reports.

The pathology report is the fundamental evidence for the diagnosis of a patient. All kinds of specimens from all 
operations and biopsy procedures are examined and described in the pathology report by the pathologist. As a 
document that contains detailed pathological information, the pathology report is required in all clinical depart-
ments of the hospital. However, the extraction and generation of research data from the original document are 
extremely challenging mainly due to the narrative nature of the pathology report. As such, the data management 
of pathology reports tends to be excessively time consuming and requires tremendous effort and cost owing to 
its presentation as a narrative document.

Several conventional keyword extraction algorithms were carried out based on the feature of a text such as 
term frequency-inverse document frequency, word offset1,2. This approach is straightforward but not suitable 
for analysing the complex structure of a text and achieving high extraction performance.

Rule-based algorithms have been selectively adopted for automated data extraction from highly structured 
text data3. However, this kind of approach is difficult to apply to complex data such as those in the pathology 
report and hardly used in hospitals. The advances in machine learning (ML) algorithms bring a new vision for 
more accurate and concise processing of complex data. ML algorithms can be applied to text, images, audio, 
and any other types of data.

The most widely used ML approach is the support-vector machine, followed by naïve Bayes, conditional 
random fields, and random forests4. Deep learning approaches are increasingly adopted in medical research. 
For example, long short-term memory (LSTM) and convolutional neural networks (CNN) were carried out for 
named entity recognition in biomedical context5,6.
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There have been many studies for word embeddings to deal with natural language in terms of numeric 
computation. In conventional word embedding, a word can be represented by the numeric vector designed to 
consider relative word meaning as known as word2vec7. In other aspects, the word tokenizing technique is used 
to handle rarely observed words in the corpus8. Also, the pre-trained word representation is widely conducted 
for deep learning model such as contextual embedding9, positional embedding, and segment embedding10.

The bidirectional encoder representations from transformers (BERT) model is one of the latest deep learn-
ing language models based on attention mechanisms10. It has been applied in many kinds of biomedical natural 
language processing (NLP) research, including clinical entity normalization, text mining (i.e., BioBERT), breast 
cancer concept extraction, and discharge summary diagnosis extraction11–14.

The present study aimed to develop a keyword (specimen, procedure, pathologic diagnosis) extraction model 
for free-text pathology reports from all clinical departments.

Results
Experimental setup.  We employed a pre-trained BERT that consisted of 12 layers, 768 hidden sizes, 12 
self-attention heads, and an output layer with four nodes for extracting keywords from pathology reports. BERT 
followed two types of pre-training methods that consist of the masked language model and the next sentence 
prediction problems10. In the masked language model, 15% of the masked word was applied on an optimized 
strategy. In the next sentence prediction, two sentences are given, and then the model learns to classify whether 
the sentences are precedent relation. The BooksCorpus dataset15 and English Wikipedia were used to apply these 
pre-training methods. In our experiment, we used Adam with a learning rate of 2e-5 and a batch size of 16.

A total of 6771 pathology reports were analysed for keyword extraction. Each report included the three types 
of keywords that professional pathologists manually extracted: specimen, procedure, and pathology. Specimen 
indicated the organ and region to test; procedure, the procedure used to test; and pathology, the pathological 
result. The keywords were included in the original text but did not necessarily appear in adjacent phrases.

Of the 6771 pathology reports, 6093 were used to train the model, and 678 were used to evaluate the model 
for pathological keyword extraction. The training set and test set were randomly split from 6771 pathology 
reports after paragraph separation. Each dataset included the original text that represented the results of the 
pathological tests and corresponding keywords. Table 1 shows the number of unique keywords for each type 
in the training and test sets. Compared with conventional keyword extraction, both datasets had fewer unique 
keywords, which we presumed to be due to the redundancy in keywords for patients who had similar symptoms, 
leading to an over-estimated performance.

Fine‑tuning.  We investigated the optimization process of the model in the training procedure, which is 
shown in Fig. 1. Figure 1A shows the training/test loss. Training loss was calculated by accumulating the cross-
entropy in the training process for a single mini-batch. Meanwhile, test loss was calculated after completing the 
training. Both losses were rapidly reduced until the 10th epoch, after which the loss increased slightly. Figure 1B 
presents the F1 score for keyword extraction. The F1 score was evaluated on the test set through training epochs. 
The F1 score rapidly increased until the 10th epoch. It continuously increased after the 10th epoch in contrast to 
the test loss, which showed a change of tendency. Thus, the performance of keyword extraction did not depend 
solely on the optimization of classification loss.

Additionally, we evaluated the performance of keyword extraction for the three types of pathological domains 
according to the training epochs. Figure 2 depicts the exact matching rates of the keyword extraction using entire 
samples for each pathological type. The exact matching was measured on the test set. The extraction procedure 
showed an exact matching of 99% from the first epoch. The specimen and pathology were extracted over 96% 
from the first epoch. The overall extractions were stabilized from the 10th epoch and slightly changed after the 
10th epoch.

We also investigated the exact matching using different sample numbers to train the model, as shown in Fig. 3. 
We used 100, 300, 500, 1000, and 3000 samples to compare the dependency for the number of samples on the 
training of keyword extraction. The performance for the pathology type, among the keyword types, showed the 
most intensive dependency for sample numbers.

Keyword extraction results.  We compared the performance of five supervised keyword extraction meth-
ods for the pathology reports. The methods were two conventional deep learning approaches, the Bayes classi-
fier, and the two feature-based keyphrase extractors named as Kea2 and Wingnus1. Performance was evaluated in 

Table 1.   Number of unique keywords in the pathology report dataset.

Dataset Type #

Training

Specimen 619

Procedure 227

Pathology 733

Test

Specimen 200

Procedure 106

Pathology 202
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terms of recall, precision, and exact matching. The deep learning methods (BERT, LSTM, CNN) were evaluated 
after the training of 30 epochs. All methods used the identical dataset that is pathology report as inputs.

We briefly introduce each keyword extraction model. One of the deep learning approaches was an LSTM-
based model that consisted of an embedding layer, an LSTM layer, and a fully connected layer. Another was the 
CNN structure that consisted of an embedding layer, two convolutional layers with max pooling and drop-out, 
and two fully connected layers. A simple Bayes classifier was also used. These three models classified each word 
for the three keyword types. We also used Kea and Wingnus, which are feature-based candidate selection meth-
ods. These methods select keyphrase candidates based on the features of phrases and then calculate the score of 
the candidates. These were not suitable to distinguish keyword types, and as such, the three individual models 
were separately trained for keyword types.

Additionally, we carried out the pre-training of the LSTM model and the CNN model through the next sen-
tence prediction10, respectively. The English Wikipedia dataset was used for pre-training. Text was only extracted 

Figure 1.   Fine-tuning for the keyword extraction of pathology reports (A) Cross-entropy loss on the training 
and test sets according to the training step (B) F1 score on the test set according to the training step.

Figure 2.   Exact matching for the three types of pathological keywords according to the training step.

Figure 3.   Exact matching rate for the three types of pathological keywords according to the number of samples 
used to train the Bidirectional Encoder Representations from Transformers model (A) Specimen type (B) 
Procedure type (C) Pathology type.
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from the dataset by ignoring lists, tables, headers. We organized pairs of two sentences that have precedent rela-
tion and then labeled these pairs as IsNext. For each pair, one sentence was randomly selected and matched with 
the next sentence. On the other hand, we randomly selected two sentences and labeled them as NotNext. In the 
pre-training, the ratio of the label was 33.3% of IsNext and 66.6% of NotNext. The pre-training was carried out 
for 150,000 sentence pairs until reaching at least 99% of accuracy.

Table 2 shows the keyword extraction performance of the seven competitive methods and BERT. Compared 
with the other methods, BERT achieved the highest precision, recall, and exact matching on all keyword types. 
It showed a remarkable performance of over 99% precision and recall for all keyword types. It also correctly 
extracted the procedure type by 99.56%. Similarly, the performance of the two conventional deep learning models 
with and without pre-training was outstanding and only slightly lower than that of BERT. The pre-trained LSTM 
and CNN models showed higher performance than the models without pre-training. The pre-trained models 
achieved sufficient high precision and recall even compared with BERT. However, the models showed lower 
exact matching than BERT. The Bayes classifier showed poor performance only for exact matching because it is 
not suitable for considering the dependency on the position of a word for keyword classification. Meanwhile, 
the two keyphrase extractors showed the lowest performance. These extractors did not create proper keyphrase 
candidates and only provided a single keyphrase that had the maximum score. The difference in medical terms 
and common expressions also reduced the performance of the extractors.

This experiment was carried out in python on 24 CPU cores, which are Intel (R) Xeon (R) E5-2630v2 @ 
2.60 GHz, 128 GB RAM, and GTX 1080Ti. The times elapsed for training each model are summarized in Table 3. 
Especially, we listed the average running time for each epoch of BERT, LSTM, and CNN.

Similarity in standard medical vocabulary.  To investigate the potential applicability of the keyword 
extraction by BERT, we analysed the similarity between the extracted keywords and standard medical vocabu-
lary. We extracted 65,024 specimen, 65,251 procedure, and 65,215 pathology keywords by BERT from 36,014 
reports that were not used to train or test the model. After removing the duplicates, we prepared unique key-
word sets. As the standard vocabulary adopted the combined terms of specimen and pathologic diagnoses (e.g., 
adenocarcinoma of sigmoid colon), we also built a combined vocabulary of specimen and pathologic diagnoses 
from the extracted keywords as shown in Table 4.

Examples of standard medical vocabulary include the International Classification of Disease, Systemized 
nomenclature of clinical medicine terms, North American Association of Central Cancer Registries (NAACCR), 
and medical subject headings (MeSH)16,17. Meanwhile, there is no well-known vocabulary specific to the pathol-
ogy area. As such, we selected NAACCR and MeSH to cover both cancer-specific and generalized medical 
terms in the present study. Almost all clinical cancer registries in the United States and Canada have adopted 
the NAACCR standard18. A recently developed biomedical word embedding set, called BioWordVec, adopts 
MeSH terms19. In filtering invalid and non-standard vocabulary, 24,142 NAACCR and 13,114 MeSH terms were 
refined for proper validation.

The extracted pathology keywords were compared with each medical vocabulary set via Wu–Palmer 
word similarity, which measures the least distance between two word senses in the taxonomy with identical 

Table 2.   Summary of keyword extraction performance for pathology reports. SPE represents specimen type, 
PRO represents procedure type, and PAT represents pathology type.

Methods

Precision Recall Exact Matching

SPE PRO PAT SPE PRO PAT SPE PRO PAT

BERT 0.9951 0.9985 0.9961 0.9962 0.9990 0.9938 0.9839 0.9956 0.9795

LSTM 0.9871 0.9932 0.9438 0.9764 0.9919 0.9387 0.9327 0.9868 0.9151

Pre-trained LSTM 0.9940 0.9978 0.9924 0.9915 0.9979 0.9934 0.9646 0.9794 0.9631

CNN 0.9740 0.9769 0.9320 0.9716 0.9758 0.9204 0.9327 0.9502 0.8770

Pre-trained CNN 0.9947 0.9958 0.9855 0.9903 0.9964 0.9823 0.9631 0.9690 0.9218

Bayes Classifier 0.9300 0.9601 0.8956 0.8946 0.9775 0.8227 0.7130 0.9078 0.5168

Kea 0.7321 0.1154 0.3499 0.3751 0.1076 0.1198 0.1010 0.0981 0.0190

WINGNUS 0.6227 0.1786 0.1552 0.3904 0.1650 0.1017 0.1098 0.1552 0.0835

Table 3.   Running times for model training.

Methods Times (s)

BERT (1 epoch) 19.0

LSTM (1 epoch) 127.8

CNN (1 epoch) 32.0

Bayes Classifier 2.4

Kea 13,081.1

WINGNUS 10,815.5
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part-of-speech20. We measured the similarity between the extracted keyword and the medical vocabulary by 
averaging the non-zero Wu–Palmer similarity and then selecting the maximum of the average.

Figure 4 shows the distribution of the similarity between the extracted keywords and each medical vocabulary 
set. The majority of the specimen + pathology type terms related strongly to two vocabulary sets. Similarly, the 
procedure type showed a distribution skewed to the right. For the procedure type, 114 and 110 zero similari-
ties were estimated for MeSH and NAACCR among the 797 extracted keywords, respectively. For the speci-
men + pathology type, we found 38 zero similarities compared with both vocabulary sets among 9084 extracted 
keywords. The keywords that showed zero similarity included terms that were incorrectly extracted, terms with 
no relation with such vocabulary sets, and terms extracted from typos. Our model managed to extract the proper 
keywords from the misrepresented text.

Discussion
In this work, we proposed a keyword extraction method for pathology reports based on the deep learning 
approach. We employed one of the recent deep learning models for NLP, BERT, to extract pathological key-
words, namely specimen, procedure, and pathology, from pathology reports. We evaluated the performance of 
the proposed algorithm and five competitive keyword extraction methods using a real dataset that consisted of 
pairs of narrative pathology reports and their pathological keywords. In addition to the evaluation, we applied 
the present algorithm to unlabeled pathology reports to extract keywords and then investigated the word simi-
larity of the extracted keywords with existing biomedical vocabulary. The results supported the usefulness of 
the present algorithm. An advantage of the present algorithm is that it can be applied to all pathology reports of 
benign lesions (including normal tissue) as well as of cancers.

Many NLP systems for extracting clinical information have been developed, such as a lymphoma classification 
tool21, a cancer notifications extracting system22, and a biomarker profile extraction tool23. These authors adopted 
a rule-based approach and focused on a few clinical specialties. However, the inter-institutional heterogeneity of 
the pathology report format and vocabulary could restrict generalizability in applying pipelines.

Table 4.   Unique set of extracted keywords from unlabeled pathology reports.

Type #

Specimen 3052

Pathology 3475

Specimen + Pathology 9084

Procedure 797

Figure 4.   Distribution for the maximum value of word similarity for each extracted keyword and the existing 
pathology vocabulary (A) Specimen + Pathology type and medical subject headings (MeSH) (B) Procedure 
type and MeSH (C) Specimen + Pathology type and North American Association of Central Cancer Registries 
(NAACCR) (D) Procedure type and NAACCR.
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Rapid progress in ML technologies has accelerated the progress in this field and specifically allowed our 
method to encompass previous milestones. Yala et al. adopted Boostexter (a boosting classification system) to 
parse breast pathology reports24. Our work adopted a deep learning approach more advanced than a rule-based 
mechanism and dealt with a larger variety of pathologic terms compared with restricted extraction. Leyh-
Bannurah et al. developed a key oncologic information extraction tool confined for prostate cancer25. Our 
method is suitable for dealing with overall organs, as opposed to merely the target organ. Oliwa et al. developed 
an ML-based model using named-entity recognition to extract specimen attributes26. Our model could extract 
not only specimen keywords but procedure and pathology ones as well. Giannaris et al. recently developed an 
artificial intelligence-driven structurization tool for pathology reports27. Our work aimed at extracting patho-
logical keywords; it could retrieve more condensed attributes than general named entity recognition on reports.

Many deep learning models have been adopted for keyword extraction for free text. Cheng and Lapata 
proposed a data-driven neural summarization mechanism with sentence extraction and word extraction using 
recurrent and convolutional network structure28. However, our model showed outstanding performance com-
pared with the competitive LSTM model that is similar to the structure used for the word extraction. Zhang et al. 
suggested a joint-layer recurrent neural network structure for finding keyword29. They employed a dual network 
before the output layer, but the network is significantly shallow to deal with language representation. Zhang et al. 
developed a target-centered LSTM model30. This model classifies whether a single word is a keyword. It is prone 
to errors of extracting not exactly matched keyword rather than our model that extracts keywords in one step. 
These deep learning models used a unidirectional structure and a single process to train. In contrast, our model 
adopted bidirectional representations and pre-training/fine-tuning approaches.

Several NLP studies on electronic health records have attempted to create models that accomplish multiple 
tasks based on an advanced deep learning approach. Li et al. developed a BERT-based model for electronic health 
records (EhrBERT) to normalize biomedical entities on the standard vocabulary11. In comparison, our model 
could extract pathological keywords stated in the original text and intuitively summarize narrative reports while 
preserving the intention of the vocabulary. Lee et al. proposed an adjusted BERT that is additionally pre-trained 
with biomedical materials (bioBERT)12 and employed it to perform representative NLP tasks. Meanwhile, our 
algorithm could not only extract but also classify word-level keywords for three categories of the pathological 
domain in the narrative text. Chen et al. proposed a modified BERT for character-level summarization to reduce 
substantial computational complexity14. In contrast, our algorithm could perform word-level keyword extraction 
because of restrictive vocabulary usage in the pathological domain, thereby requiring a shorter sequence for the 
same text and reducing computational load.

The present study has several limitations. First, the algorithm was developed using the pathology reports of a 
single institution, which might limit the generalizability of its application to other institutions. However, we are 
constantly upgrading our algorithm. Recently, it was further trained with different types of pathology reports 
that were generated manually. Second, other information, including pathologic staging and tumor size, were 
not considered in the present algorithm. The extraction of these data through the algorithm would be helpful 
in building pathology big data that contain abundant information in the future. Third, clinical guidelines and 
practice constantly change. When new guidelines with new procedures and diagnoses are implemented, the per-
formance of the algorithm could be affected, and thus, the algorithm should be recalibrated. Fourth, the present 
algorithm did not show 100% extraction accuracy. However, it demonstrated high (> 90%) accuracy; the extent 
of this discrepancy could be compensated by statistical methods.

Conclusion
The proposed keyword extraction model for pathology reports based on BERT was validated through perfor-
mance comparison using electronic health records and practical keyword extraction of unlabeled reports. The 
present algorithm showed a significant performance gap with five competitive methods and adequate application 
results that contain proper keyword extraction from misrepresented reports. We expect that this work can be 
utilized by biomedical researchers or medical institutions to solve related problems.

Materials and methods
Data approval.  This study was created with the hospital common data model database construction pro-
cess. The study protocol was approved by the institutional review board of Korea University Anam Hospital (IRB 
NO. 2019AN0227). Written informed consent was waived by the institutional review board of Korea University 
Anam Hospital because of the use of a retrospective study design with minimal risk to participants. The study 
also complied with the Declaration of Helsinki.

Pathology report data and preprocessing.  The pathology reports were stored as a table in an elec-
tronic health records database. One cell in the ‘results’ column of the pathology dataset contained one pathol-
ogy report. The name and identification code of the patients and pathologists were stored in separate columns. 
No names and identification codes were indicated in the ‘results’ column. We acquired the consecutive 39,129 
pathology reports from 1 January to 31 December 2018. Among them, 3115 pathology reports were used to 
build the annotated data to develop the keyword extraction algorithm for pathology reports. The other 36,014 
pathology reports were used to analyse the similarity of the extracted keywords with standard medical vocabu-
lary, namely NAACCR and MeSH.

When one pathology report described more than two types of specimens, it was divided into separate reports 
according to the number of specimens. The separated reports were organized with double or more line breaks for 
pathologists to understand the structure of multiple texts included in a single pathology report. Several reports 
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had an additional description for extra information, which was not considered to have keywords. The description 
was also organized with double or more line breaks and placed at the bottom of the report.

The pathology reports were divided into paragraphs to perform strict keyword extraction and then refined 
using a typical preprocess in NLP. Each pathology report was split into paragraphs for each specimen because 
reports often contained multiple specimens. After the division, all upper cases were converted to lowercase, and 
special characters were removed. However, numbers in the report were not removed for consistency with the 
keywords of the report. Then, each word was tokenized using WordPiece embeddings8. Finally, 6771 statements 
from 3115 pathology reports were used to develop the algorithm.

Keyword extraction strategy and labeling.  The present study focused on three types of keyword 
extraction tasks: (1) body organ, (2) procedure for specimen acquisition, and (3) final pathologic diagnosis. All 
keywords were extracted manually by a certified clinical data specialist and confirmed by a pathologist.

Each word piece in the reports was assigned one of the keyword classes through the labeled keywords. The 
body organ of a specimen was mapped as specimen. The procedure used to acquire the sample was mapped as 
procedure. The pathological decision was mapped as pathology. Lastly, all of the remaining words were assigned 
O, representing ‘otherwise.’ Accordingly, tokens split by the tokenizer were linked with the tag of words, as well.

In this work, a pre-trained BERT10 was employed and fine-tuned for pathology reports with the keywords, 
as shown in Fig. 5. The model classified the token of reports according to the pathological keyword classes or 
otherwise. To tag the keyword classes of tokens, we added the classification layer of four nodes to the last layer 
of the model. Accordingly, the cross-entropy loss was used for training the model.

After the classification, the tagged tokens were detokenized through estimated probability via the model. 
Several sets of tokens were combined into one word. Let wi be the i th word in a pathology report and tij be j th 
the token of wi . The probability of pathological keyword classification for wi was estimated by.

 where l  denotes pathological class and plij denotes the output of the model before the softmax function for token 
tij . Lastly, the pathological class of wi was determined by argmax

l

wl
i.

Code availability
Source code is available at https​://githu​b.com/KU-RIAS/Keywo​rd-Extra​ction​-for-Patho​logy-Repor​ts-with-BERT.
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