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Diabetes mellitus (DM) is a typical chronic disease that can be divided into 2 types,
dependent on insulin deficiency or insulin resistance. Incidences of diabetic complications
gradually increase as the disease progresses. Studies in diabetes complications have
mostly focused on kidney and cardiovascular diseases, as well as neuropathy. However,
DM can also cause skeletal muscle atrophy. Diabetic muscular atrophy is an unrecognized
diabetic complication that can lead to quadriplegia in severe cases, seriously impacting
patients’ quality of life. In this review, we first identify the main molecular mechanisms of
muscle atrophy from the aspects of protein degradation and synthesis signaling
pathways. Then, we discuss the molecular regulatory mechanisms of diabetic muscular
atrophy, and outline potential drugs and treatments in terms of insulin resistance, insulin
deficiency, inflammation, oxidative stress, glucocorticoids, and other factors. It is worth
noting that inflammation and oxidative stress are closely related to insulin resistance and
insulin deficiency in diabetic muscular atrophy. Regulating inflammation and oxidative
stress may represent another very important way to treat diabetic muscular atrophy, in
addition to controlling insulin signaling. Understanding the molecular regulatory
mechanism of diabetic muscular atrophy could help to reveal new treatment strategies.

Keywords: diabetes mellitus, muscle atrophy, molecular mechanism, treatment, inflammation
INTRODUCTION

Diabetes mellitus (DM) is a common chronic metabolic disease. There are two main subtypes of
endocrine cells in pancreatic islets: b cells and a cells. Islet b cells are involved in the production of
insulin, while islet a cells are responsible for the secretion of glucagon. These cell types work
together to maintain an appropriate blood glucose level in the human body. DM can be mainly
divided into type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). T1DM accounts
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for less than 10% of all instances of DM, with T2DM accounting
for more than 90% (1). DM is mainly induced by two causes: the
impairment of insulin secretion (insulin deficiency) and insulin
resistance (2). The former results from islet b cell dysfunction,
while the latter refers to the loss of insulin-mediated cellular
glucose uptake in DM patients. Increased insulin levels reduce
the affinity of insulin receptors, meaning that cells gradually
become insensitive to insulin.

DM is often accompanied by secondary complications that
involve multiple organs, such as the eyes, kidneys, heart, and
brain, as well as skeletal muscle (3). To date, relevant studies have
mainly discussed the risks of cardiovascular disease, blindness,
and renal failure in DM patients (4). In addition, DM also
induces a shift in muscle fiber phenotype from slow-twitch to
fast-twitch, which can lead to skeletal muscle atrophy, energy
metabolism disorders, and muscle weakness (1, 4). Muscle
atrophy is caused by an imbalance between the synthesis and
degradation of protein (5). Maintaining muscle homeostasis is
crucial for preserving the body’s integrity and function. Muscle
atrophy has also been associated with a variety of diseases, and
can lead to a poor quality of life. Diabetic muscular atrophy is
considered to be a DM complication; it is characterized by
proximal lower extremity muscle weakness, atrophy, pain,
sensory disturbances, and even quadriplegia in severe cases (6).
Research into the molecular mechanism of diabetic muscular
atrophy and its treatment strategies could aid the development of
effective treatments and improve prognoses. To date, however,
little research has been conducted in this regard.

Muscle atrophy is closely related to two major protein
degradation pathways, the ubiquitin-proteasome system (UPS)
and the autophagy-lysosome pathway (ALP). It is also related to
the protein synthesis pathways, such as the insulin-like growth
factor 1– phosphoinositide-3-kinase–Akt/protein kinase B–
mammalian target of rapamycin (IGF1–PI3K–Akt/PKB–mTOR)
pathway and IGF-1-AKT- Forkhead box O (FoxO) pathways (7–
12). In T2DM, insulin resistance has been shown to inhibit protein
synthesis by inhibiting the IGF-1-PI3K-AKT/PKB-mTOR
pathway, and to activate the UPS and ALP through the IGF-1-
AKT-FoxO signaling pathway, thereby promotingmuscle atrophy.
T1DM-induced muscle atrophy, meanwhile, is mediated by the
FoxO-driven protein degradation pathway (13–15). In addition,
oxidative stress damage, inflammatory response, and high levels of
glucocorticoids (GCs) can all triggermuscle atrophy inDMpatients
(16, 17). Herein, we discuss the major molecular regulatory
mechanisms of muscle atrophy and diabetic muscular atrophy,
and describe potential drugs and treatments for the latter.
Moreover, we provide new ideas and strategies to improve the
prognosis of DM patients.
MOLECULAR MECHANISMS OF
SKELETAL MUSCLE ATROPHY

Protein Degradation Pathways
The UPS is the major hydrolysis system for cellular proteins; it is
responsible for the degradation of misfolded or damaged cellular
Frontiers in Endocrinology | www.frontiersin.org 2
proteins in skeletal muscle (18, 19). Ubiquitin is a short protein
comprising 76 amino acids; it can activate proteolysis in skeletal
muscle (20). Most proteins are degraded by the 26S proteasome,
through the modification of covalently attached polyubiquitin
chains. The ubiquitination of proteins proceeds through a
cascade of reactions that are catalyzed by a range of enzymes,
including E1 ubiquitin-activating enzyme, E2 ubiquitin-
conjugating enzyme, and E3 ubiquitin ligase (21). These tagged
proteins are subsequently recognized by the 26S proteasome,
which consists of a 20S core and two 19S regulatory complexes.
These 19S regulatory complexes can recognize and bind to
ubiquitinated proteins to undergo specific proteolysis (22).
Cullin-RING E3 ubiquitin ligases (CRL) are the largest known
class of ubiquitin ligases; they regulate a variety of cellular
processes in skeletal muscle, including cellular proliferation,
transcription, signal transduction, and development (23).
Levels of the muscle-specific E3 ubiquitin ligases muscle
RING-finger protein-1 (MuRF1) and muscle atrophy F-box
(MAFbx)/Atrogin-1 have been shown to be significantly
upregulated in atrophic skeletal muscle. These ligases are also
known to be involved in the degradation of skeletal muscle
proteins (24–26). Therefore, the UPS is one of the main
mechanisms underlying muscle atrophy, and MuRF1 and
MAFbx are two important regulators of muscle atrophy.

The ALP is a lysosomal degradation pathway that is
widespread in eukaryotic cells; it is involved in the degradation
and elimination of damaged, degenerated, aged, or dysfunctional
organelles (27). The ALP is crucial for cell survival and repair,
intracellular protein balance, and environmental homeostasis.
Under starvation and other conditions, a double-layered
membrane structure forms in cells; this structure then
gradually extends to envelop undegraded proteins or cellular
c omponen t s , t h e r e b y f o rm in g au t opha go s ome s .
Autophagosomes are driven by cytoskeletal proteins to fuse
with lysosomes, where their cargo components become
degraded (28). Autophagy has dual functions. On the one
hand, it can degrade damaged organelles and abnormal
proteins, preventing them from accumulating in cells. On the
other hand, autophagy overactivation can damage organelles,
and thereby become toxic to cells. Studies have found that
autophagy is crucial for maintaining skeletal muscle
homeostasis, and that overactivated autophagy can promote
muscle atrophy or autophagy impairment, leading to muscle
degeneration (29, 30). Autophagy is activated under nutrient
deprivation. Antimicrobial peptide-activated protein kinase
(AMPK) inhibits the mTOR complex-1 (mTORC1) complex,
which in turn inhibits protein synthesis, and can even lead to
severe late-onset myopathy (31, 32). The studies demonstrate
that autophagy plays an important role in skeletal
muscle atrophy.

Protein Synthesis Pathway
The IGF-1-PI3K-AKT-mTOR pathway is a positive regulator
that is responsible for controlling protein synthesis (33). IGF-1 is
a key growth factor that regulates skeletal muscle synthesis and
catabolism; it also promotes the growth of muscle cells. The
inactivation of muscle-specific IGF-1 receptors impairs muscle
June 2022 | Volume 13 | Article 917113
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growth, triggering a reduction in the number, diameter, and
cross-sectional area of muscle fibers (34). Conversely, the
overexpression of muscle-specific IGF-1 receptors has been
shown to lead to muscle hypertrophy (11). Then, IGF-1 can
activate the PI3K-AKT signaling pathway and then stimulate
mTOR activity (35). mTOR is assembled into different
complexes such as mTORC1 and mTOR complex-2
(mTORC2). mTORC1 positively regulates the activation of its
effector 70-kDa ribosomal protein S6 kinase (p70S6K) and
negatively regulates the inhibitory of the translation initiation
factor 4E-eukaryotic translation initiation factor 4E binding
protein 1 (eIF4E-4EBP1) complex. This leads to increased
protein translation and synthesis, which subsequently
promotes muscle growth (36, 37).

In addition to IGF-1’s regulatory role in muscle growth and
protein synthesis, the FoxO family also plays an important role in
the pathophysiological process of skeletal muscle development.
The FoxO family has three subtypes, FoxO1, FoxO3, and FoxO4,
which control a series of atrophy-related genes in skeletal muscle,
including MAFbx and MuRF1. The dephosphorylation of FoxO
members can up-regulate MAFbx and MuRF1, thereby
accelerating protein degradation and subsequently inducing
muscle atrophy (5). FoxO’s transcription factor is the
downstream target of the PKB/AKT pathway. AKT can
phosphorylate all members of FoxO, with the resulting
phosphorylated FoxO members being exported from the
nucleus to the cytoplasm. This inhibits their transcriptional
activity, and eventually represses muscle atrophy (38).
Although AKT can inhibit the UPS and ALP (5), AKT remains
inactive in the absence of growth factors. FoxO members will
translocate to the nucleus and induce the transcription of the
target genes of UPS and ALP (9), thereby initiating
protein degradation.
MOLECULAR MECHANISM OF DIABETIC
MUSCULAR ATROPHY

The molecular mechanism of diabetic muscular atrophy is very
complicated. The current mainstream view is that diabetic
muscular atrophy is closely related to insulin resistance, insulin
deficiency, inflammation, oxidative stress, glucocorticoids and so
on (Figure 1).

Insulin Resistance
Insulin-stimulated glucose uptake is crucial for muscle
contraction. Insulin is a powerful synthetic signal that
significantly stimulates muscle protein synthesis (39). Classical
insulin signaling pathways and anabolic stimuli, including PI3K,
3-phosphoinositide-dependent kinase 1 (PDK1), AKT, mTOR,
and p70S6K, activate protein synthesis and thereby promote
muscle growth (40, 41). DM-induced insulin dysfunction
inhibits glucose uptake in skeletal muscle, thereby disturbing
muscle contraction (42). Under normal conditions, the
intracellular insulin signaling cascade activates the mTOR
pathway and inhibits autophagy (including the lysosomal
Frontiers in Endocrinology | www.frontiersin.org 3
degradation of proteins and organelles). However, such effects
are deactivated in the presence of insulin resistance, which may
accelerate muscle loss in patients with DM (43). In addition,
sarcopenia is a complication of T2DM that is characterized by
the progressive loss of skeletal muscle mass and function (44, 45).
Sarcopenia is related to the weakness and geriatric syndrome of
the human body; it can impact quality of life for elderly patients,
and can even lead to death in severe cases (46). Due to low
muscle mass, sarcopenia may lead to insulin resistance through
altered glucose disposal (47).

When insulin resistance occurs, insulin or IGF-1 signaling is
inhibited. This results in the inactivation of the PI3K/AKT
pathway, which in turn inhibits mTOR activity and reduces
protein synthesis; these effects may ultimately lead to muscle loss
in T2DM patients (48). In addition, insulin resistance leads to
elevated systemic glucose levels, with glucose being able to react
with proteins or lipids to generate advanced glycation end
products (AGEs) (49). AGEs play an important role in the
pathogenesis of chronic diabetic complications. Moreover, the
accumulation of AGEs is a potential cause of muscle loss and
muscle weakness in T2DM patients (50). Receptor for advanced
glycation end products (RAGE) is a transmembrane signaling
receptor that is associated with diabetic renal and vascular
complications. AGEs can induce muscle atrophy or myogenesis
impairment through the RAGE-mediated, AMPK-induced
downregulation of AKT signaling (51). Furthermore, AGEs
have been shown to modulate muscle anabolic signaling by
inhibiting the mTORC1 signaling pathway (50). Overall,
insulin resistance can inactivate the IGF-1-PI3K-AKT-mTOR
protein synthesis pathway, thereby reducing protein synthesis
and ultimately inducing skeletal muscle atrophy.

Insulin Deficiency
Patients with T1DM exhibit a reduced repair capacity regarding
their skeletal muscle satellite cells, as well as skeletal muscle
dysfunction. Both of abnormal phenotypes are associated with
insulin deficiency, which causes the rates of protein degradation
exceed that of protein synthesis (52). Under normal conditions,
insulin receptor (IR) and IGF-1 receptor (IGF-1R) can act
through the PI3K/AKT pathway on a variety of cellular
functions. For example, during glucose uptake and protein
synthesis, the activation of AKT in response to insulin or IGF-
1 can phosphorylate FoxO transcription factors, thereby
inhibiting their transcriptional activity (4). Insulin-deficient
diabetes, or a loss of insulin/IGF-1 action in muscle, reduces
complex I-driven mitochondrial respiration and supercomplex
assembly through the FoxO-mediated inhibition of complex I
subunit (53). These effects impact mitochondrial function and
induce skeletal muscle atrophy. In a biopsy from patients with
T1DM who experienced insulin deficiency for 8 h, transcripts of
the UPS and ALP were found to be increased, indicating that
muscle atrophy in T1DM is induced by FoxO-driven protein
degradation. Therefore, blocking this pathway may protect
against diabetic complications (4). In short, when insulin is
deficient, the transcriptional activity of FoxO becomes
enhanced, which in turn promotes the expression of muscle
June 2022 | Volume 13 | Article 917113
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atrophy-related genes (such as MAFbx and MuRF1) and causes
muscle atrophy.

Inflammation
Interleukin-6 (IL-6) is a pro-inflammatory cytokine that has
catabolic effects on muscle (54). Patients with T2DM have
elevated levels of C-reactive protein, IL-1b, and IL-6 (55). In
T1DM, the ability of skeletal muscle regeneration is impaired due
to dysfunction of satellite cells. The transient elevation of IL-6
leads to the proliferation of satellite cells, while the slow elevation
of IL-6 impairs satellite cell function (56). Therefore, chronically
elevated IL-6 levels may be responsible for satellite cell
dysfunction in DM. In addition, hyperglycemia can promote
Frontiers in Endocrinology | www.frontiersin.org 4
the release of inflammatory mediators, such as IL-6. It can also
stimulate macrophages, some other innate immune cells, and
activate some apoptosis-related signaling pathways, such as the
Fas/FasL signaling pathway (57, 58). Such stimulation can lead to
islet b cell dysfunction, subsequently causing insulin deficiency
(2). In addition, IL-6 can also induce insulin resistance by
reducing insulin sensitivity, or by affecting lipid metabolism
(59, 60). Insulin acts by binding to IR. Tumor necrosis factor
alpha (TNF-a), which is a pro-inflammatory cytokine, can
destroy the tyrosine phosphorylation activation of IR and IR
substrate (IRS) in the insulin signaling cascade, thereby leading
to insulin resistance (60). In addition, TNF-a can also reduce the
glucose uptake and utilization of skeletal muscle and adipocytes
FIGURE 1 | Key pathways involved in Diabetic muscular atrophy.
June 2022 | Volume 13 | Article 917113

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Shen et al. Diabetic Muscular Atrophy
by reducing the expression of glucose transporter 4 (GLUT4).
This leads to insulin resistance (61), thereby promoting
muscle atrophy.

Furthermore, the systemic inflammatory responses caused by
obesity and long-term overnutrition not only induce typical
insulin resistance in T2DM patients, but also reduce protein
synthesis in muscle, thereby promoting UPS- and ALP-mediated
protein degradation and facilitating the progression of muscle
atrophy (62). Signal transducer and activator of transcription 3
(STAT3) can be activated by pro-inflammatory cytokines (such
as IL-6); this weakens protein synthesis-related signaling
pathways in muscle (63–66). Nuclear factor-kB (NF-kB) is an
important transcriptional regulator that can induce the
expression of various genes by activating stimulatory factors
(viruses, tumor necrosis factor, and B cell activating factor) (67,
68). Additionally, NF-kB can increase the degradation of specific
muscle proteins by increasing the expression of MuRF1 (69–71).
NF-kB and STAT3 signaling pathways function as inflammatory
pathways that can be significantly activated by increases in pro-
inflammatory cytokines (i.e., TNF-a) and non-esterified fatty
acids. This then increases the expression of MuRF1, thereby
activating the UPS (72, 73). IL-6-activated STAT3 can induce
insulin resistance through suppressors of cytokine signaling 3
(SOCS3); it can then inhibit the PI3K-AKT pathway, which
reduces protein synthesis (74, 75) and increases myostatin
transcription (72). These effects are significant as they can
improve the progression of muscle atrophy. NF-kB and STAT3
may be involved in muscle atrophy in T2DM patients (62). In
addition, IL-6 can also induce muscle atrophy via the regulation
of IGF-1 (37, 74). Overall, inflammation can reduce protein
synthesis through the inhibition of IGF-1 and the induction of
insulin resistance, activate the UPS through the FoxO family and
their downstream E3 ubiquitin ligases, and promote the
expression of atrophy-related genes (possibly through the NF-
kB and STAT3 pathways). Thus, it can eventually lead to
muscle atrophy.

Oxidative Stress
Excess production of reactive oxygen species (ROS) in the
human body can induce oxidative stress, which damages lipids,
proteins, and deoxyribonucleic acid (DNA) (76). In addition,
obesity and hyperglycemia can also lead to oxidative stress (77–
79). The high metabolic capacity of skeletal muscle makes it
susceptible to oxidative stress injuries (37). Oxidative stress
inhibits the AKT-mTOR pathway and its downstream targets,
which subsequently inhibits protein synthesis and promotes
muscle atrophy (80, 81). In addition, islet b cells are
particularly sensitive to ROS due to their inherent antioxidant
enzymes at low levels. ROS can directly damage b cells and
promote apoptosis. Moreover, they can indirectly regulate the
insulin signaling pathway and inhibit the function of b cells,
leading to the occurrence of DM (82, 83). ROS is an important
mediator for activating pro-inflammatory signaling pathways
(84, 85). A chronic inflammatory environment is also
conducive to producing free radicals, such as ROS. This can
aggravate b-cell damage, thereby generating a positive feedback
loop in which further harmful cytokines are then secreted,
Frontiers in Endocrinology | www.frontiersin.org 5
triggering further damage to b cells (86). Oxidative stress can
induce insulin deficiency, and can produce large quantities of
ROS to hinder insulin signaling transduction, thereby triggering
insulin resistance (87). Eventually, this can contribute to the
development of skeletal muscle atrophy. Therefore, oxidative
stress injury plays an key role in the process of skeletal
muscle atrophy.

GCs
GC is a hypoglycemic hormone that promotes gluconeogenesis
and glycogen breakdown, thereby counteracting the action of
insulin and increasing blood glucose levels (88). GC signaling
significantly contributes to muscle atrophy in DM (89). In
addition, when GC binds to glucocorticoid receptor (GR), it
inhibits AKT, GLUT4, and IR signals, and then induces insulin
resistance (90). In T1DM caused by insulin deficiency, when
insulin deficiency coexists with GCs in muscle, GR can compete
with IRS1 to bind PI3K subunits P110 and p85. This results in a
decrease in the phosphorylation levels of IRS, PI3K, and AKT,
eventually leading to muscle atrophy (89, 90). GCs mainly cause
muscle atrophy by increasing protein breakdown through the
UPS and ALP, and by reducing protein synthesis via the
inhibition of the IGF-1-PI3K-AKT-mTOR and mTOR/p70S6k
pathways (91–93). In addition, GCs upregulate the production of
myostatin, which reduce protein synthesis via the AKT-mTOR
pathway (94). GCs can also induce muscle atrophy by binding to
their receptors, thereby interfering with the insulin/IGF-1
signaling pathway and stimulating the transcription of
dystrophin. Moreover, GRs can synergize with FoxO1 to
induce MuRF1, thereby accelerating muscle atrophy (95). GRs
also upregulate the expression of regulated in development and
DNA damage responses 1 (REDD1) and Kruppel like factor 15
(KLF15). KLF15 is a member of the KLF transcription factor
family; it can regulate muscle catabolism by regulating MAFbx
and MuRF1 (96). The expression of KLF15 has been found to be
up-regulated in the livers of diabetic mice, and hyperglycemia is
known to up-regulate KLF15 protein, thereby accelerating
skeletal muscle atrophy (97). REDD1 is a stress-responsive
protein that inhibits the targets of mTOR in mTOR1 (98). The
inhibition of mTOR can upregulate KLF15, which would
increase the expression of atrophy-related genes, thereby
triggering atrophy (96, 99). Overall, GCs participate in skeletal
muscle atrophy through multiple pathways.

Other Factors
Glucose can stimulate the degradation of WW domain-
containing E3 ubiquitin protein ligase 1 (WWP1) through the
proteasome pathway. The downregulation of WWP1 inhibits the
ubiquitin-dependent degradation of KLF15 and then up-
regulates KLF15 expression. This increases the expression of
muscle atrophy-related genes, resulting in the loss of skeletal
muscle mass (100). IGF-1 activates PDK1 to exert a core role in
anabolic signaling. Subsequently, PDK1 activates the AKT/
mTOR/p70S6k pathway (101), which further promotes protein
synthesis. Moreover, it inhibits protein degradation by inhibiting
the FoxO1 transcription factor (102). Increasing amounts of
evidence have shown that microRNAs are involved in the
June 2022 | Volume 13 | Article 917113

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Shen et al. Diabetic Muscular Atrophy
regulation of skeletal muscle homeostasis. The overexpression of
miR-193b in T1DM patients has been shown to reduce the
expression of PDK1 and the phosphorylation of AKT, mTOR,
p70S6k, and AMPK. In this way, it can inhibit protein synthesis
and enhance the expression of MAFbx and MuRF1, thereby
promoting proteolysis (103). To summarize, the mechanism that
causes diabetic muscular atrophy is very complex; it warrants
further in-depth study and exploration.
TREATMENTS AND THERAPEUTIC
DRUGS

To gain a systematic understanding of the impact of commonly
used anti-diabetic drugs on muscle atrophy and discuss potential
therapeutic drugs, we outline various studies on the drugs to treat
diabetic muscular atrophy (Table 1).

Targeting Insulin Resistance and
Insulin Deficiency
The commonly used drugs for T2DM include metformin,
glinides, thiazolidinediones, and peptidyl peptidase-4
inhibitors, all of which can improve insulin sensitivity.
Metformin is a first-line drug for T2DM; it can eliminate the
deleterious effects of DM on human bones. By activating AMPK,
metformin can not only increase the translocation of glucose
transporter 4 to the cell membrane, but can also contribute to
skeletal muscle repair (104, 105). Glinides stimulate insulin
secretion to reduce blood glucose level by closing the ATP-
sensitive potassium channels (KATP) channel of islet b cells
(114). However, repaglinide, which is a kind of glinide, can
induce skeletal muscle atrophy and sarcopenia (104). Therefore,
this drug may be not the ideal therapeutic drug of DM.
Thiazolidinediones function as an important class of insulin
sensitizers; they can not only improve insulin sensitivity to DM
(115), but can also inhibit proteolytic pathways and stimulate
mitochondrial biogenesis. Thiazolidinediones can partially
induce the express ion of peroxisome prol i ferator-
Frontiers in Endocrinology | www.frontiersin.org 6
activated receptor-gamma coactivator 1 alpha (PGC-1a), so as
to reduce the expression of atrophy-related genes in muscles of
patients with T2DM (104). Thus, they may be able to prevent
diabetic muscular atrophy. Insulin remains the main treatment
for T1DM; it can promote protein synthesis and inhibit protein
breakdown (104). It should be noted that the dosages of these
drugs need to be adjusted temporally according to a patient’s
blood glucose levels. As mentioned above, insulin deficiency
induces muscle protein degradation through the FoxO-
dependent pathway. Therefore, blocking this pathway can
prevent diabetic muscular atrophy, the complications of DM.
Moreover, this could provide new insights into the prevention
and treatment of diabetic muscular atrophy.

Anti-Inflammation and Antioxidation
There is positive feedback between inflammation and oxidative
stress. Inflammation could induce cellular oxidative stress and
oxidative stress also could lead inflammation (12, 73, 116).
Aspirin is a non-steroidal anti-inflammatory drug that has
been shown to alleviate insulin resistance and hyperglycemia in
patients with T2DM by inhibiting the Janus kinase (JAK)/STAT
and NF-kB signaling pathways (117). At the same time, aspirin
also has good antioxidant properties in denervation induced
muscle atrophy, as evidenced by reduced reactive oxygen species
(66). However, the long-term use of nonsteroidal anti-
inflammatory drugs is not recommended due to their adverse
side effects. Other anti-inflammatory and antioxidant
supplements, such as omega-3 fatty acids and vitamin D,
represent viable options for long-term, daily usage (50).
Omega-3 fatty acids, such as eicosapentaenoic and
docosahexaenoic acids, are ingested through one’s diet. It is
well known that inflammation and oxidative stress could be
restricted by omega-3 fatty acids. Omega-3 fatty acids can
ameliorate inflammation, reduce proinflammatory cytokine,
inhibits free radicals (ROS) (107). They can reduce NF-kB
activation by blocking the activation of Toll-like receptor 4
(TLR4) signaling (induced by lipopolysaccharides or saturated
fatty acids). This subsequently exerts an anti-inflammatory effect
TABLE 1 | Treatments and therapeutic drugs for diabetic muscular atrophy.

Drugs Function Mechanism Effect on muscle References

Metformin Targeted insulin
resistance

Activate AMPK Promote repair of
skeletal muscle

(104, 105)

Anti-inflammatory Inhibit NF-kB (106)
Thiazolidinedione Targeted insulin

resistance
Inhibition of protein hydrolysis and induction of PGC-1a to reduce the expression of
atrophy-related genes

Attenuate the muscle
wasting

(104)

Insulin Targeted insulin
deficiency

Promote the synthesis of protein; inhibit the decomposition of protein Indirect benefit to
skeletal muscle

(104)

Aspirin Antioxidation Reduce the production of ROS Attenuate muscle
wasting

(66)
Anti-inflammatory Inhibition of Janus Kinase (JAK)/STAT and NF-kB signaling pathway (107)
Targeted insulin
resistance

Omega-3 fatty
acid

Antioxidation Inhibit the production of ROS Against Muscle atrophy (108)
Anti-inflammatory Decreased Activation of NF-kB; stimulated MTORC1 signal (109–111)

Vitamin D Antioxidation Get rid of ROS Prevent and cure
muscle atrophy

(112)
Anti-inflammatory The proinflammatory cascade reaction (NF-kB, TNF-a) was down-regulated, and the

expression of FOXO1 was decreased
(112, 113)
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(108). Higher ratios of omega-3 to omega-6 will lead to lower
production of pro-inflammatory mediators derived from omega-
6 (109). Omega-3 has also been shown to stimulate mTORC1
signaling, and thus could be used to repress muscle atrophy
(110). Vitamin D, a ROS scavenger, can also act as an anti-
inflammatory and antioxidant mediator (111). Pro-
inflammatory cascades (i.e., NF-kB and TNF-a) have been
shown to be downregulated when vitamin D binds to receptors
in macrophages and lymphocytes (112). Vitamin D has also been
shown to regulate muscle growth. In a muscle-specific vitamin D
receptor knockout model, insulin resistance was found to occur,
accompanied by the increased expression and activity of FOXO1.
In vitamin D-treated muscle cells prepared in vitro, reductions
were observed in the expression, nuclear translocation, and
activity of FOXO1 (113). Therefore, vitamin D regulates
muscle growth in part through FOXO1 signaling; it could be
thereby used to prevent skeletal muscle atrophy.

In addition to regulating muscle atrophy, metformin and
thiazolidinediones have relatively strong anti-inflammatory
activities (115, 118). Therefore, incidences of muscle atrophy-
related complications (or the degree of muscle atrophy) decrease
when these drugs are used to treat DM. Systemic inflammation
can lead to insulin resistance, whereas exercises can reduce
systemic inflammatory markers and improve systemic and
local muscle inflammation. Consequently, muscle atrophy
following exercise can be relieved by increasing protein
synthesis via the upregulation of the IRS1-PI3K-AKT pathway,
the downregulation of the UPS, and the strengthening of
mTORC2 activation (62). Overall, therefore, anti-inflammatory
and antioxidant therapy may constitute an important strategy for
combatting diabetic muscular atrophy.
PROSPECTS

There is a growing understanding of the mechanism underlying
DM-induced muscle atrophy. Insulin signaling plays a dominant
role in controlling muscle size, and GC signaling significantly
promotes muscle atrophy in patients with DM. In addition,
inflammation, oxidative stress, and the activation of some
signaling pathways can all also cause muscle atrophy in
patients with DM. It is worth noting that inflammation is
closely related to insulin resistance, insulin deficiency, and
even oxidative stress regarding the mechanism of diabetic
muscular atrophy. Therefore, regulating inflammation may
represent another very important way to treat diabetic
muscular atrophy, in addition to controlling insulin signaling.
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This could have important therapeutic implications for the
treatment of diabetic muscular atrophy, and even DM.
Oxidative stress is also an important cause of DM and its
related complications, so inhibiting excessive ROS production
is crucial for delaying the onset of DM. From the perspective of
antioxidants, however, to date little progress has been made
regarding the development of drugs for treating diabetic
muscular atrophy. Protecting and restoring insulin function,
reducing insulin resistance, and inhibiting inflammation
through antioxidants all also represent viable research
directions, as they could suppress diabetic muscular atrophy.
Further in-depth research into the mechanism of diabetic
muscular atrophy will contribute to the development of better
treatments. A therapeutic method for diabetic muscular atrophy
could potentially be developed through the co-regulation of
insulin signaling, the GC signaling pathway, inflammation, and
oxidative stress; this would be extremely valuable for improving
the quality of life of patients with DM.
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