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Chronic liver disease (CLD) is currently a major health prob-
lem worldwide, which is accompanied by chronic liver injury
and lack of clinically effective treatment; however, systematic
characterization of chronic liver injury procedures at single-
cell resolution is lacking. In the present study, we established
chronic liver injury mouse models and conducted single-cell
RNA sequencing (scRNA-seq), including choline-deficient,
ethionine-supplemented (CDE) and 3,5-diethoxycarbonyl 1,4-
dihydrocollidinen (DDC) mouse models. We captured in total
16,389 high-quality cells and identified 12 main cell types in
scRNA-seq data. Macrophages and endothelial cells are the
largest cell populations in our dataset. Transcriptional trajec-
tory analysis revealed different expression patterns of cells be-
tween CDE and DDC models and identified potential liver
injury markers, such as Ets1, Gda, Itgam, and Sparc. Differen-
tial analysis identified 25 and 152 differentially expressed genes
in CDE and DDC macrophages, respectively. In addition, 413
genes were detected to exclusively express in specific pseudo-
time states of macrophages. These genes were found to partic-
ipate in immune-related biological processes. Further cell-cell
communication analysis found extensive receding of cell-cell
interactions between different cell types in the liver injury pro-
cess, especially in the DDC model. Our study characterized the
single-cell transcriptional landscape in the process of chronic
liver injury, promoting the understanding of the underlying
molecular mechanisms and providing candidate clinical strat-
egy for effective intervention of chronic liver diseases.

INTRODUCTION
Although the liver has a strong regenerative ability, chronic liver disease
(CLD) and liver cirrhosis are growing health problems around the
world. In 2018, according to data from the Centers for Disease Control
andPrevention, in theUnited States, the population of adults diagnosed
with liver diseases was approximately 4.5 million, and the number of
deaths due to these complications was 44,358. The most common eti-
ologies of CLD and cirrhosis are chronic hepatitis B virus (HBV), hep-
atitis C virus (HCV), alcohol-related liver disease (ALD), and non-alco-
holic fatty liver disease (NAFLD). Globally, 1.5 billion people were
troubled by CLD in 2017, most of them were caused by NAFLD
(60%), HBV (29%), HCV (9%), and ALD (2%).1 According to data
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from the Global Burden of Disease study, in 2015, the age-standardized
incidence rate of cirrhosis and CLD was 20.7 per 100,000, which
increased 13% from 2000. It is estimated that the incidence of liver
cirrhosis in Europe is 26.0 per 100,000, 16.5 per 100,000 in East Asia,
and 23.6 per 100,000 in Southeast Asia.2 Most chronic liver diseases
are characterized by hepatocyte necrosis, inflammation, liver fibrosis,
ductular reaction (DR), or proliferation of hepatic progenitor cells
(HPCs). Current treatments for CLD are limited, and liver transplanta-
tion is the only treatment available to patients diagnosed with liver fail-
ure. Although chronic liver injury is relatively common, the cellular,
molecular, and biological mechanisms that promote the progression
of chronic liver injury have not been fully understood. Identifying com-
mon molecular pathways that promote liver injury in different experi-
mental models of chronic liver injury will help in-depth understanding
of the underlyingmolecularmechanisms and thedevelopment of better
therapeutic strategy to intervene in the progression of CLDs.

NAFLD is currently the most popular liver disease in the world. Non-
alcoholic steatohepatitis is a serious clinical feature of NAFLD, which
is characterized by the accumulation of lipid droplets in liver cells,
and undergoes liver cell death, inflammatory cell infiltration, and liver
fibrosis, and can progressively develop to liver cirrhosis and liver
cancer in severe cases.3,4 Therefore, it is very important to figure
out the relevant molecular mechanisms of the pathological process
from simple steatosis to steatohepatitis. The choline-deficient, ethio-
nine-supplemented (CDE) diet is widely used as a chronic liver injury
The Author(s).
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Figure 1. CDE and DDC diet-induced chronic liver

injury in mice models

(A) Timeline diagram of chronic liver injury model induced

by the CDE diet and DDC diet. A group of C57BL/6

male mice were given Choline-Deficiency, Ethionine

supplementation diet, or 3,5-Diethoxycarbonyl-1,4-Dihy-

drocollidine diet, and liver samples were collected after

3 weeks. (B) Representative photomicrographs of liver

tissue sections in CDE and DDC diet-induced chronic liver

injury. H&E staining shows the tissue morphology, and

Sirius scarlet staining shows the degree of liver fibrosis. (C)

Serial liver sections from the control group and mice on

the CDE diet and DDC diet for 21 days were stained with

specific antibodies against CK19, PCNA, and Desmin.

Original magnification, ⅹ100, as indicated.
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model in mice, which can induce steatohepatitis and HPC expan-
sions.5 The pathogenic mechanism of the CDE diet mouse model is
that the lack of choline in the diet leads to impaired assembly and
secretion of very low-density lipoprotein. Combined with the
hepatocarcinogen ethionine, the CDE diet will lead to hepatic fat
overload, persistent inflammation, portal fibrosis, HPC response,
and development of hepatocellular carcinoma.6–9 Long-term feeding
of the 3,5-diethoxycarbonyl 1,4-dihydrocollidinen (DDC) diet will
cause intraductal porphyrin plug, duct obstruction, and cholestasis,
which will lead to activation of cholangiocytes, increased DR,
increased pro-inflammatory and pro-fibrotic factors, and subsequent
hepatic fibrosis and cirrhosis. The DDC model is useful in studies
aiming at investigating DR cell contribution in liver regeneration un-
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der injury conditions.10,11 Therefore, we chose
the CDE and DDC diet models to investigate
the molecular alterations in different liver injury
conditions.

Herein,weperformed single-cell RNAsequencing
(scRNA-seq) of liver tissues derived from wild-
type (WT) normal, CDE, and DDC mice. We
presented a systematic characterization of the
transcriptional landscape of liver injury process
at single-cell resolution. CDE and DDC models
showed different expression patterns along pseu-
dotime in the process of chronic liver injury.Mac-
rophages were found to exhibit variations of
response to pathological changes. Cell-cell inter-
actions were found to sharply decrease in both
CDE and DDC liver injury models. This study
shed lights on the single-cell transcriptional alter-
ations in CDE and DDC liver injury models and
suggested potential strategy for clinical interven-
tion of CLDs.

RESULTS
Pathological features of chronic liver injury

induced by CDE and DDC diet feeding
In mice, we used the CDE diet to induce steatohepatitis to create a
steatohepatitis model, and fed the DDC diet to create a model of
cholestatic liver disease. Fifteen mice were killed after being on the
CDE and DDC diet for 3 weeks. In the gross specimen, the control
group exhibited liver tissues that were normal in size, soft in texture,
and ruddy in color. Liver tissues in the CDE group were enlarged, soft,
and pale in color, whereas those in the DDC group were significantly
enlarged, slightly harder, and brown (Figure 1A). Four micrometer-
thin, paraformaldehyde-fixed, and paraffin-embedded liver tissue
sections were stained with hematoxylin and eosin to assess the
hepatic architecture. Healthy liver tissues displayed a normal archi-
tecture without obvious inflammatory cell infiltration and fibrous
tissue deposition in the portal area. In contrast, liver tissues from
: Nucleic Acids Vol. 26 December 2021 1365
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CDE-treated mice showed the liver structure destruction, deposition
of lipid droplets in hepatocytes, and infiltration of inflammatory cells
around the portal area. However, DDC-treated liver tissues showed
vastly disrupted liver architecture, plenty of inflammatory cells
around the portal area, and bile thrombus formation in the bile
duct. In addition, we used Sirius Red staining to assess the degree
of fibrosis between the different groups. Compared with the control
group, the CDE and DDC groups showed that the matrix deposition
was mainly in the parenchyma around the portal vein, and the
collagen deposition in the DDC group was significantly higher than
that in the CDE group (Figure 1B). When C57BL/6 mice were fed
the CDE and DDC diet, a strong proliferation response of liver pro-
genitor cells (oval) was observed. In normal liver, CK19 is used as a
marker of bile duct epithelium and elliptical cells, and it is stained
around the portal vein. Significant expansion of CK19-positive cells
was observed 21 days after receiving the CDE and DDC diet (Fig-
ure 1C). Together with the expansion of HPCs, Desmin, a marker
of liver stellate cells, was also increased significantly, and the accumu-
lation was mainly around the portal vein. Matrix deposition occurred
around CK19-positive cells and surrounded the arborizing or ductlike
structures, further indicating that the deposition of ECM around the
portal is closely related to the increase of HSCs. In addition, PCNA, a
marker of proliferation, also increased significantly after being given
the CDE and DDC diet, suggesting that the proliferation ability of
livers increased in the compensatory phase after injury. These obser-
vations indicate the successful establishment of chronic liver injury
mouse models.

Single-cell characterization of transcriptomic landscape of

chronic liver injury in mice models

The mouse liver tissue of normal, CDE, and DDC samples were sub-
jected to single-cell RNA library construction and sequencing (Fig-
ure 2A). In total, 16,389 cells were detected with high quality and
used for further analysis. Based on the expression patterns of top var-
iable genes, these cells were classified into 28 clusters (Figure S1 and
Table S1). Most of these cell clusters showed different enriched bio-
logical functions, and some presented similar biological functions
(Table S2). According to the expression profiles of mouse cell markers
curated in the SingleR package and manually curated gene markers
from previous studies (Table S3),12–15 cell clusters were annotated
as 12 main different cell types, including hepatocytes, endothelial
cells, Kupffer cells, hepatic stellate cells, B cells, T cells, natural killer
T cells (NKT), neutrophils, macrophages, dendritic cells (DC), natu-
ral killer cells (NK), and monocytes (Figures 2B and S2). Marker
genes of different cell types showed exclusively high expression in cor-
responding cell types, such as Plpp3, Selenop, and Igfbp7 in endothe-
lial cells, and Timd4, Cd5l, and Clec4f in Kupffer cells (Figure 2C).
Gene markers in other immune cell types and hepatic cell types
also showed exclusive expression in the corresponding cells (Figures
S3 and S4). Macrophage has the largest population in captured cells,
in total over 4,000 cells in all samples (Figure 2D). The second largest
cell population is endothelial cells, which has about 3,500 cells in total.
The most portions of macrophages, neutrophils, and monocytes were
found in the DDC sample, while the majority of hepatic stellate cells,
1366 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
hepatocytes, DC, and Kupffer cells were in the CDE sample. These ob-
servations suggested that the damage impacted different cell types in
these two liver injury models. In addition, some cell types were over-
represented in the WT normal liver sample, such as periportal hepa-
tocytes, B cells, and endothelial cells.

Reconstruction of expression trajectory in chronic liver injury

Chronic liver injury is a gradual process of liver damage. To explore
distinct roles of different cell types in this progressive pathological
process, expression patterns of cells were reconstructed to infer the
pseudotime of different cell types across samples. The CDE model
showed expression patterns more similar to the normal sample, while
the DDCmodel showed more different transcriptional activities (Fig-
ure 3A). Different cell types showed distinct expression patterns
across pseudotime tracks (Figure S5). In the early stage, T cells and
NKT cells exhibited more transcriptional activities in the CDEmodel,
whereas the normal sample shows more activity of hepatocytes. Inter-
estingly, much fewer cells were inferred to show up in the early stage
of DDC model. These observations showed that hepatocytes were
damaged in the early stage of both chronic liver injury models. Genes
were then classified into six different expression clusters according to
the expression similarity across pseudotime (Figure 3B). Cluster 2 has
the largest set of genes, wherein genes showed the highest expression
level at the beginning and decreased activity in the following pseudo-
time. Immune-related genes also showed clustered expression pat-
terns along the pseudotime (Figure 3C). For example, the Cd55
gene, which encodes a glycoprotein involved in the regulation of
the complement cascade, showed high transcriptional activity at the
early pseudotime but weak activity in the late pseudotime. Important
marker genes in CLDs and liver regeneration, such as Ccl5,16 Ccr5,16

and Csf1r,17 showed high expression in middle or late pseudotime,
especially in the DDCmodel (Figure 3D). Furthermore, we also iden-
tified several genes that exhibited remarkable changes across pseudo-
time. In particular, the expression levels of Ets1 and Sparc were found
to decrease, whereas transcriptional activity of Gda and Itgam was
found to increase in late pseudotime.

Transcriptional disruption in macrophage in chronic liver injury

models

Hepatic macrophages have been shown to play key roles in the
injury and repair during the progression of chronic liver diseases.18

We further compared the transcription profile of macrophages be-
tween different samples and pseudotime states. In the comparison
between normal and CDE model samples, 17 up-regulated and eight
down-regulated genes were identified (Figure 4A and Table S4).
These dysregulated genes were found to participate in response to
foreign invasions, such as "humoral immune response" and "antimi-
crobial humoral response," suggesting the disorder of response to
exotic attack in macrophages (Figure 4B). In the DDC sample, 43
up-regulated and 109 down-regulated genes were identified when
compared with the WT normal sample (Figures 4C and Table
S5). These significantly altered genes were enriched in immune-
related processes, such as "positive regulation of response to external
stimulus," "cell chemotaxis," and "leukocyte migration" (Figure 4D).



Figure 2. Characterization of single-cell transcriptomics in liver injury

(A) Experimental design for scRNA-seq experiments. (B) UMAP dimensionality reduction of all cells. (C) UMAP visualization of the expression of feature genes for identification

of mouse endothelial cells (Plpp3, Selenop, and Igfbp7) and Kupffer cells (Timd4, Cd5l, and Clec4f). (D) Percentage and total numbers of different cell types in CDE, DDC, and

WT samples.
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In the comparisons between different states of macrophages, 89, 22,
52, 133, and 117 genes were identified to exclusively up-regulate in
state 1, 2, 3, 4, and 5, respectively (Figures 4E and Table S6). These
exclusive genes among different states of macrophages were en-
riched in not only immune-related biological processes, such as "an-
tigen processing" and "leukocyte migration," but also genome insta-
bility, such as "DNA replication" and "cell cycle" (Figure 4F). State 2
macrophages were found to be more dysregulated in the regulation
of infectious diseases, while state 4 macrophages showed more alter-
ations in the regulation of genome instability. Our analysis revealed
that different molecular aspects of macrophages were dysregulated
in CDE and DDC, and macrophages in different states showed
distinct alterations.

Analysis of cell-cell communications in chronic liver injury

To further investigate the changes of cell-cell interactions in chronic
liver injury, we evaluated the interactions between each two different
cell types. By mapping the expression of paired genes of ligands and
receptors, cell-cell communications between different cell types in
WT normal, CDE, and DDC samples were individually constructed
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 1367
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Figure 3. Expression patterns of various cells in liver injury

(A) Pseudotime trajectory of different cells. Each point indicates one single cell. (B) DEGs along the pseudotime are hierarchically clustered into six different clusters. (C) Top

DEGs in each pseudotime cluster. (D) Smoothed gene expression along pseudotime of selected markers for liver injury and immune cells.
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(Figures 5A–5C). In the WT normal sample, hepatic stellate cells and
macrophages showed the most interactions with other cells. Kupffer
cells and endothelial cells exhibited the most intense interactions
with other cells in the CDE sample, whereas the DDC sample showed
the most cell communications in Kupffer cells and macrophages. To
further investigate changes of cell-cell communications between
different samples, we compared the interaction density by using the
number of expressed ligand-receptor pairs. In the comparison be-
tween CDE and normal samples, hepatic stellate cells and periportal
hepatocytes showed themost reducing of interactions with other cells,
while interactions between T cells and other cells were extensively
enhanced (Figure 5D). The DDC sample was found to show wide-
spread decline in cell-cell interactions, especially for hepatic stellate
cells, hepatocytes, and endothelial cells (Figure 5E). These analyses
1368 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
uncovered prevailing variations of cell-cell interactions in chronic
liver injury.

DISCUSSION
Chronic liver disease is threatening human health worldwide, of which
chronic liver injury is themajor pathological feature. The chronic path-
ological process often causes unremarkable clinical manifestations
until very late stages. Therefore, in-depth analysis, especially in molec-
ular levels, is needed to unveil subtle changes in the slow progress of
chronic liver injury. In the present analysis, we introduced a systematic
description of single-cell transcriptome in chronic liver injury CDE
and DDC models. We performed a series of bioinformatics analysis
to reveal the expression patterns, transcriptional changes of macro-
phages, and cell-cell communications in liver injury samples.



Figure 4. Transcriptional differential analysis of macrophages in CDE, DDC, and different cell states

(A) Heatmap shows the differential genes between CDE and WT cells. (B) Enriched biological processes of differential genes in CDE. (C) DEGs between DDC and

WT cells. (D) Biological processes enriched in CDE cells. (E) Heatmap shows the differential genes in cells of different states. (F) Enriched biological processes in different

cells of states.
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Figure 5. Communications between different cell types in WT, CDE, and DDC samples

Interactions between different types of cells in WT (A), CDE (B), and DDC samples (C). (D) The changes of cell-cell interaction intensity of different cell types between CDE and

WT samples. (E) The changes of cell-cell interaction intensity of different cell types between DDC and WT samples.
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Animal models are crucial for investigating the molecular pathogen-
esis and improving our understanding of human chronic liver dis-
eases.19 Multiple mouse and rat models have been established for
chronic liver diseases. The CDE and DDC mouse models used in
our study are classic chronic liver disease models, which well recapit-
ulate human chronic liver injury, especially in the process of NAFLD
and non-alcoholic steatohepatitis. More animal models and even clin-
ical patient samples will be needed to further validate our findings in
this study, but our findings in the present study still offered useful in-
sights for deeper understanding of transcriptional changes in chronic
liver injury and suggestions for potential markers indicating the
pathological process. After DDC and CDE diet-induced injury, hepa-
tocytes around the portal vein are damaged, and the transcription
profile of hepatocytes after injury is significantly changed. In addition,
some hepatocytes also express bile duct cell markers, which may be
1370 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
HPCs, suggesting that liver injury can promote the activation of
HPCs and its repair to the liver. However, the origin of HPCs is
not clear at present.

Accumulated evidence has shown that the disorder of the immune
system, including changes in the number or function of immune cells,
is important during the development of chronic liver injury. For
example, macrophages play an important role in the activation and
expansion of HPCs, and liver regeneration mediated by HPCs in
chronic liver injury. Our results also show that the increase in the pro-
portion of Kupffer cells and dendritic cells may promote the activa-
tion of HPCs, while the increase in the proportion of inflammatory
cells promotes the progression of liver inflammation and fibrosis in
chronic liver injury. Besides, in the DDC model, the expression of
vascular endothelial growth factor A inmacrophages was significantly
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increased, which can stimulate endothelial cell capillarization and
accelerate the progression of liver fibrosis.

The liver has a strong ability to regenerate and repair. Our study
found that a small population of cells highly expressed genes related
to cell cycle, chromosome stability, and proliferation. These genes are
closely related to cell proliferation and cell cycle division, and the pro-
portion of cells in CDE and DDC groups is higher than that in WT
group, indicating that the proliferation ability of hepatocytes is
enhanced after injury. This result is also consistent with our PCNA
staining results, and whether this group of cells are liver stem cells
that originally existed in the liver, remains to be verified. But from
the perspective of grouping, it is obviously different from HPCs.

Our transcriptional trajectory analysis revealed the difference of
expression patterns between CDE and DDC models and identified
some gene markers of chronic liver injury. To validate these findings,
not only more samples will be needed, but more time intervals during
the pathological process will also be necessary. Analysis of samples in
different time points along pathological process of chronic liver injury
will enlarge molecular changes and largely facilitate our understand-
ing of the occurrence and development of chronic liver diseases.
Notably, a considerable portion of hepatocytes were badly damaged,
which might not be captured in the scRNA-seq library. After being
fed with CDE or DDC diet, the damage of liver cells in mice is aggra-
vated, and the viability of isolated liver cells is reduced, which greatly
reduces the proportion of liver cell populations. Therefore, the chang-
ing features of hepatocytes may not be well recapitulated in our data-
set because of technical issues. Although the number of hepatocytes is
not very large, it does not affect our major observations and analysis
of the results. This could be resolved by using single-cell nucleic
sequencing in the further study. In WT and CDE mice, endothelial
cells and Kupffer cells are the starting points of differentiation, indi-
cating that endothelial cells and the immune environment serve the
goalkeepers of the liver’s homeostasis. When faced with injury, they
are the first to respond. In the CDE model, hepatocytes around the
portal vein can be activated at an early stage, and at the same time
T cells, NK cells, and stellate cells are also activated to respond to
injury; however, it is particularly interesting that stellate cells and
CDE-derived hepatocytes in the early stage of WT account for
more, which is significantly different from CDE. It shows that the he-
patocytes regenerated after injury in the CDEmodel are similar to the
original hepatocytes in the WT, and can differentiate into periportal
hepatocytes. This phenomenon further confirms the contribution of
HPCs to liver regeneration. This is also in line with the physiological
process of the liver’s damage repair.

Our study offered a systematic view on single-cell transcriptional al-
terations in chronic liver injury models. Although our findings are
based on mouse models and need validation in clinical patient
samples, these analyses provided organized cognition of molecular
pathological changes and potential therapeutic targets for chronic
liver diseases. With more diverse sources of samples, including those
from different time points of chronic liver injury and surgical spec-
imen of clinical patients, we will be able to describe a more refined
transcriptional landscape and identify markers at early stage for early
clinical intervention.

MATERIALS AND METHODS
Establishment of in vivo mouse models

C57BL/6 mice were purchased from Charles River Laboratories (Wil-
mington, MA). Mice used in this study were aged 6 weeks and weighed
around 19 g. For the CDE diet, mice were given unlimited access to
choline-deficient diet (TROPHIC,Nantong,China) anddrinkingwater
supplement with 0.15% (w/v) DL-ethionine (Sigma-Aldrich, St. Louis,
MO) for 3 weeks. For the DDC diet, 6-week-old male mice were fed a
diet supplementedwith 0.1%DDC (TROPHIC) for 3weeks, while con-
trolmice received normal chowand drinkingwater for the entire exper-
imental period and were killed at the same time as mice fed with the
CDE and DDC diet. All animal studies were approved by the Commit-
tee on the Ethics of animal experiments of Shanghai General Hospital,
Shanghai Jiao Tong University School of Medicine. All animal experi-
ments in the present study were performed under protocols following
the Guide for the Care and Use of Laboratory Animals.

Single-cell collections

The mouse liver tissues were surgically removed and kept in MACS
Tissue Storage Solution (Miltenyi Biotec) until processing. The tissue
samples were processed as described below. Briefly, samples were first
washed with PBS, minced into small pieces (approximately 1 mm3)
on ice and enzymatically digested with 50 U/mL collagenase I (Wor-
thington) and 30 U/mL DNase I (Worthington) for 45 min at 37�C,
with agitation. After digestion, samples were sieved through a 70-mm
cell strainer, and centrifuged at 300 � g for 5 min. After the superna-
tant was removed, the pelleted cells were suspended in red blood cell-
lysis buffer (Miltenyi Biotec) to lyse red blood cells. After washing
with PBS containing 0.04% BSA, the cell pellets were re-suspended
in PBS containing 0.04% BSA and re-filtered through a 40-m cell
strainer. Dissociated single cells were then stained for viability assess-
ment using Calcein-AM (Thermo Fisher Scientific) and Draq7 (BD
Biosciences). The single-cell suspension was further enriched with
an MACS dead cell removal kit (Miltenyi Biotec).

Single-cell RNA-seq

The BD Rhapsody system was used to obtain transcriptomic informa-
tion of single cells. Single-cell capture was achieved by random distri-
bution of a single-cell suspension across >200,000 microwells using a
limited dilution approach. Beads with oligonucleotide barcodes were
added to saturation to pair the beads with the cells in microwells. Cell-
lysis buffer was added to hybridize poly-adenylated RNAmolecules to
the beads. Beads were collected into a single tube for reverse
transcription.

Single-cell RNA-seq data processing

The raw scRNA-seq data were aligned and quantified against the
mouse reference genome (mm10) by applying the BD Rhapsody
Analysis pipeline (Version 1.8, https://hub.docker.com/r/bdgenomics/
rhapsody) with default parameters. Particularly, sequencing reads were
Molecular Therapy: Nucleic Acids Vol. 26 December 2021 1371
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mapped to by using STAR software (version 2.7.6a) with customized
settings from BD Rhapsody standard pipeline.20 Low-quality cells
were filtered out as previously described.21 In particular, quality of cells
was evaluated based on the number of total UMI counts, the number of
detected genes, and the proportion of mitochondrial gene counts in
each cell. Cells were filtered out as low-quality cells if total UMI counts
or detected gene numbers (in log10 scale) were lower than the median
of all cells minus three times of median absolute deviation. In addition,
cells with mitochondrial gene proportions higher than the median of
all cells minus three times of median absolute deviation were also
removed in the following analysis.

Cell doublet detection and removal

The Scrublet software was applied to detect cell doublets, which are
formed from the situation that two or more cells entered the samemi-
crofluid droplet and were labeled with undistinguished barcodes.22

Specifically, a doublet score was calculated for each single cell by using
default settings. Then the threshold was inferred from the bimodal
distribution calculation. All cells with doublet scores lower than the
threshold were removed as cell doublets.

Data integration of all samples

The Seurat package (version 4.0) was used to integrate all cells across
samples.23 In particular, reciprocal (RPCA) was employed to deter-
mine anchors between samples, wherein each sample was projected
to other principal components analysis (PCA) space and constrained
by the same mutual neighborhood requirement. Anchors were iden-
tified by using the FindIntegrationAnchors function, which takes
Seurat objects of all samples as input. These anchors were then
used to integrate together by IntegrateData function.

Unsupervised clustering analysis

The unsupervised graph-based clustering algorithm implemented in
the Seurat package was used to cluster cells by their gene expression.
The top 2,000 variable genes were first generated with appropriate
threshold of the mean expression and dispersion. The PCA was
then performed by using these variable genes. The FindCluster func-
tion implemented in Seurat was used with default parameters to
perform clustering.

Dimensionality reduction using UMAP

The dimensionality of all sample datasets was further reduced by us-
ing Uniform Manifold Approximation and Projection (UMAP) im-
plemented in Seurat with RunUMAP function. The same number
of PCs as those in clustering was used to calculate the embedding.
The UMAP dimensionality reduction was used for visualization.

Differential expression analysis

Differentially expressed genes (DEGs) in specific cell types or clusters
between different samples were identified by using the FindMarkers
function embedded in Seurat package. In each comparison, genes
with fold change >1.5 and Benjamini-Hochberg adjusted p value
<0.05 were considered statistically significant. Additionally, the clus-
terProfiler package was utilized to detect enriched Kyoto Encyclo-
1372 Molecular Therapy: Nucleic Acids Vol. 26 December 2021
pedia of Genes and Genome pathways or Gene Ontology biological
functions from each set of DEGs.24

Trajectory inference

The pseudotime trajectory analysis was performed by using the
Monocle2 package with default settings.25 Monocle2 is an unsuper-
vised algorithm designed to recover single-cell gene expression
kinetics during cellular processes. DEGs (Q value <0.001) were
identified by the DifferentialGeneTest function. The trajectory in
this study was visualized in 2D tSNE graphs and the expression dy-
namic expression heatmaps were constructed by using the plot_pseu-
dotime_heatmap function.

Cell-cell interactions analysis

The cell-cell interaction analysis at molecular level was conducted by
using CellPhoneDB with default parameters according to the official
protocols.26 CellPhoneDB is a computational framework to predict
cell-type specific ligand-receptor complexes based on well-curated
complexes.27 Significant cell-cell interactions were identified by per-
forming 1,000 interactions for the statistical analysis (p < 0.05). In
this study, the ligand-receptor interactions between each pair of
different cell types was based on expression profile.

Statistical analysis

Statistical analysis and data visualization in the present study was per-
formed by using R software (R Foundation for Statistical Computing,
Vienna, Austria; http://www.r-project.org). Unless specific state-
ments, all statistical tests were two-tailed and p value or false discov-
ery rate <0.05 was considered as statistically significant.
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