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Abstract: Streptocarpus ionanthus (Gesneriaceae) comprise nine herbaceous subspecies, endemic to
Kenya and Tanzania. The evolution of Str. ionanthus is perceived as complex due to morphological
heterogeneity and unresolved phylogenetic relationships. Our study seeks to understand the molecular
variation within Str. ionanthus using a phylogenomic approach. We sequence the chloroplast genomes
of five subspecies of Str. ionanthus, compare their structural features and identify divergent regions.
The five genomes are identical, with a conserved structure, a narrow size range (170 base pairs (bp))
and 115 unique genes (80 protein-coding, 31 tRNAs and 4 rRNAs). Genome alignment exhibits high
synteny while the number of Simple Sequence Repeats (SSRs) are observed to be low (varying from
37 to 41), indicating high similarity. We identify ten divergent regions, including five variable regions
(psbM, rps3, atpF-atpH, psbC-psbZ and psaA-ycf 3) and five genes with a high number of polymorphic
sites (rps16, rpoC2, rpoB, ycf 1 and ndhA) which could be investigated further for phylogenetic utility in
Str. ionanthus. Phylogenomic analyses here exhibit low polymorphism within Str. ionanthus and poor
phylogenetic separation, which might be attributed to recent divergence. The complete chloroplast
genome sequence data concerning the five subspecies provides genomic resources which can be
expanded for future elucidation of Str. ionanthus phylogenetic relationships.

Keywords: Streptocarpus ionanthus; section Saintpaulia; divergence hotspots; phylogeny;
polymorphism; simple sequence repeats (SSRs); genome structure

1. Introduction

Streptocarpus ionanthus (H. Wendl.) Christenhusz (Gesneriaceae) is a complex species, within
Str. section Saintpaulia [1], characterized by morphological heterogeneity among the constituent nine
subspecies. The species is largely traded across America and Europe for its ornamental value, as
crosses among the subspecies have produced extensive flower colors [2] after a century of intensive
breeding [3]. The distribution of Str. ionanthus extends from coastal Kenya to Tanga and Morogoro
regions in Tanzania [4], regions experiencing habitat degradation due to both human and climate
change effects [5]. Str. ionanthus is the only member of sect. Saintpaulia which has been recorded
to occur in exposed habitats outside dense and closed canopy forests, environs which are prone to
human activities. This has led to diminishing of population sizes and even the disappearance of most
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populations, leading to endangered status in taxa such as Str. ionanthus subspecies rupicola, velutinus,
grandifolius and orbicularis according to the International Union for Conservation of Nature (IUCN)
Red List of Threatened Species [6].

The former genus Saintpaulia H. Wendl. has attracted research attention over the last two decades,
witnessing inconsistent taxon classification for both molecular and morphological studies. Previous
phylogenetic studies have applied few markers, both nuclear [7–9] and chloroplast regions [1], aiming
to understand the evolutionary relationship, but without satisfactory findings. The Internal Transcribed
Spacer (ITS) phylogeny [7], for instance, could not separate taxa of the Str. ionanthus group. Further,
the 5S nuclear ribosomal DNA non-transcribed spacer (5S-NTS) data [9] displayed mixed phylogenetic
signals, especially for the lower taxonomic units of Str. ionanthus. These observations challenge the
narrow species concept used by Burtt [10,11] to describe most Usambara and adjacent populations as
species, although this concept was reviewed and updated by Darbyshire [12]. Although the chloroplast
phylogeny [1] also observed similar taxonomic challenges in Str. ionanthus, this study made tremendous
progress in Saintpaulia research by recognizing ten species under sect. Saintpaulia.

Recently, the amount of sequence data available has increased due to the advent of Next-Generation
Sequencing (NGS) and relatively lower sequencing costs [13,14]. Presently, more than 4000 complete
chloroplast genome sequences are available in the National Center for Biotechnology Information
(NCBI) database (https://www.ncbi.nlm.nih.gov/genomes). The chloroplast sequence is characterized by
uniparental inheritance and a substitution rate approximately half that of the nuclear genome [15]. This
low nucleotide substitution, coupled with a maternal inheritance and non-recombinant nature, makes
plant chloroplast genomes appreciated sources of molecular markers for evolutionary studies [16].
Further, chloroplast genomes have demonstrated to be effective in resolving tough phylogenetic
relationships, especially at lower taxonomic levels of recent divergence [17,18].

The poor resolutions and low bootstrap support values observed previously in Str. ionanthus
suggests a case of a recently divergent group which needs to be investigated with methods other
than gene-based approaches. Understanding the evolutionary relationship among such recently
divergent lineages has been achieved using massive DNA data as opposed to a few genes [19,20].
Thus, chloroplast genomic analyses of Str. ionanthus constituent taxa could elucidate its evolutionary
relationship. Presently, only one chloroplast genome exists in sect. Saintpaulia and none in Str. ionanthus.
Here, we sequence chloroplast genomes of five subspecies of Str. ionanthus aimed at (1) reporting
the annotation and sequence variation, (2) screening for divergence hotspots, and (3) providing new
genomic resources for future Str. ionanthus research.

2. Results

2.1. Overall Features of Str. ionanthus Chloroplast Genome

A linear visualization of six sect. Saintpaulia taxa is presented in Figure 1. The chloroplast genome
sizes within Str. ionanthus extended from 153,208 base pairs (bp) (Str. ionanthus subsp. grandifolius)
to 153,377 bp (Str. ionanthus subsp. orbicularis) (Table 1), exhibiting closeness to Str. teitensis with
153,207 bp [21]. Similar to other angiosperms, the five chloroplast genomes exhibited a four-partitioned
structure made of a large single copy region (LSC), two inverted repeat regions (IRA and IRB) and a
small single copy region (SSC) located between the Inverted Repeat (IR) regions. The length of the LSC
region ranged from 84,010 bp (Str. ionanthus subsp. grotei) to 84,115 bp (Str. ionanthus subsp. velutinus),
while the SSC size exhibited a variation from 18,316 bp (Str. ionanthus subsp. grotei) to 18,332 bp in two
subspecies (Str. ionanthus subsp. velutinus and Str. ionanthus subsp. grandifolius). The IR regions varied
from 25,431 bp (Str. ionanthus subsp. velutinus and Str. ionanthus subsp. grandifolius) to 25,464 bp
(Str. ionanthus subsp. orbicularis) (Table 1). The five genomes had a total of 115 unique genes (each)
including 80 protein-coding (PCGs), four ribosomal RNA (rRNAs) and 31 transfer RNA genes (tRNAs)
(outlined in Table 2).

https://www.ncbi.nlm.nih.gov/genomes


Plants 2020, 9, 456 3 of 18

Plants 2020, 9, x FOR PEER REVIEW 4 of 18 

 

Subunit of acetyl-CoA-carboxylase accD 

c-type cytochrome synthesis ccsA 
a Gene with one intron. b Gene with two introns. c Duplicated genes in the IR regions. d Trans-splicing gene. 

 
Figure 1. Linear chloroplast genome maps of six taxa of sect. Saintpaulia (A: Str. teitensis; B: subsp. 
velutinus; C: subsp. grandifolius; D: subsp. orbicularis; E: subsp. grotei and F: subsp. rupicola). The genes 
above the black line (names on top of the figure) represent clockwise transcription while genes below 
(names at the bottom) are transcribed counter-clockwise. Genes of different functional categories are 
colored according to the legend at the bottom. 

2.2. Comparison of Chloroplast Genome Structure in Sect. Saintpaulia 

The structural alignment in Mauve revealed one synteny block (in red) with a conserved gene 
order, minimal structural disparity and no rearrangements among the six genomes (Figure 2). Further, 

Figure 1. Linear chloroplast genome maps of six taxa of sect. Saintpaulia ((A) Str. teitensis; (B) subsp.
velutinus; (C) subsp. grandifolius; (D) subsp. orbicularis; (E) subsp. grotei and (F) subsp. rupicola). The
genes above the black line (names on top of the figure) represent clockwise transcription while genes
below (names at the bottom) are transcribed counter-clockwise. Genes of different functional categories
are colored according to the legend at the bottom.
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Table 1. Characteristics of major features of six sect. Saintpaulia chloroplast genomes.

Taxa Str. teitensis

Str. ionanthus
subsp.
velutinus

Str. ionanthus
subsp.
grandifolius

Str. ionanthus
subsp.
orbicularis

Str. ionanthus
subsp. grotei

Str. ionanthus
subsp.
rupicola

Accession
Number MF596485 MN935472 MN935471 MN935470 MN935469 MN935473
Total size (bp) 153,207 153,307 153,208 153,377 153,215 153,290
LSC size (bp) 84,103 84,115 84,016 84,123 84,010 84,097
SSC size (bp) 18,300 18,332 18,332 18,326 18,316 18,326
IR size (bp) 25,402 25,431 25,431 25,464 25,445 25,434
Number of genes 114 115 115 115 115 115
Number of PCGs 79 80 80 80 80 80
Number of tRNAs 31 31 31 31 31 31
Number of rRNAs 4 4 4 4 4 4

LSC: Large Single Copy region; SSC: Small Single Copy region; IR: Inverted Repeat region; PCGs: Protein Coding
genes; tRNAs: transfer RNA genes; rRNAs: ribosomal RNA genes.

Table 2. Genes present in the chloroplast genomes of five Str. ionanthus subspecies.

Category Gene Names

Photosystem 1 psaA, psaB, psaC, psaI, psaJ

Photosystem 11 psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT,
psbZ

NADH Dehydrogenase ndhA a, ndhB a,c, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK
ATP Synthase atpA, atpB, atpE, atpF a, atpH, atpI

Cytochrome b/f complex petA, petB, petD, petG, petL, petN
RubisCO large subunit rbcL

RNA Polymerase rpoA, rpoB, rpoC1 a, rpoC2
Ribosomal proteins (Large) rpl2 a, rpl14, rpl16, rpl20, rpl22, rpl23 c, rpl32, rpl33, rpl36
Ribosomal proteins (Small) rps2, rps3, rps4, rps7 c, rps8, rps11, rps12 b,c,d, rps14, rps15, rps16 a, rps18, rps19

Ribosomal RNAs rrn4.5 c, rrn5 c, rrn16 c, rrn23 c

Transfer RNAs trnA-UGC a,c, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-GCC,
trnG-UCC, trnH-GUG,

trnI-CAU c, trnI-GAU a,c, trnK-UUU, trnL-CAA c, trnL-UAA a, trnL-UAG,
trnf M-CAU,

trnN-GUU c, trnP-UGG, trnQ-UUG, trnR-ACG c, trnR-UCU, trnS-GCU,
trnS-GGA, trnS-UGA, trnS-CGA

trnT-GGU, trnT-UGU, trnV-GAC c, trnV-UAC a, trnW-CCA, trnY-GUA,
trnM-CAU

ycf 1 c, ycf 2 c, ycf 3 b, ycf 4, ycf 15 a,c

Protease clpP b

Maturase matK
Translational initiation factor inf A
Envelope membrane protein cemA

Subunit of acetyl-CoA-carboxylase accD
c-type cytochrome synthesis ccsA

a Gene with one intron. b Gene with two introns. c Duplicated genes in the IR regions. d Trans-splicing gene.

All five subspecies exhibited a duplication of 18 genes, including seven tRNAs (trnM-CAU,
trnL-CAA, trnV-GAC, trnE-UUC, trnA-UGC, trnR-ACG and trnN-GUU), the four rRNAs, and seven
PCGs (rpl2, rpl23, ycf 2, ycf 15, ndhB, rps7 and rps12). A total of 15 genes (ndhA, ndhB, petB, petD, rpl2,
rpl16, rpoC1, rps12, rps16, trnA-UGC, trnG-UCC, trnI-GAU, trnK-UUU, trnL-UAA, and trnV-UAC)
contained a single intron, whereas two genes (clpP and ycf 3) contained two introns each. Compared to
the congeneric Str. teitensis [21], the six genomes generally had a high similarity, although Str. teitensis
had 114 genes due to the absence of the gene ycf 15.

2.2. Comparison of Chloroplast Genome Structure in Sect. Saintpaulia

The structural alignment in Mauve revealed one synteny block (in red) with a conserved gene
order, minimal structural disparity and no rearrangements among the six genomes (Figure 2). Further,
within the Large and Small single copy regions (LSC and SSC), very minor sequence variations were
observed, as exhibited by the red vertical lines in the genome blocks and the yellow vertical lines in the
consensus sequence identity (green block). However, the Inverted Repeat (IR) regions were relatively
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more conserved, as displayed by the green block. Comparison of the genes present at the Inverted
Repeat/ Single Copy (IR/SC) junctions (Figure 3) revealed that the Large Single Copy/ Inverted Repeat
A (LSC/IRA) junction occurred between the rps19 and rpl2 genes for all species while the IRA/SSC was
characterized by an overlap of the ycf 1-ndhF genes, except in Str. teitensis in which the genes were next
to each other. Further, the Small Single Copy/ Inverted Repeat B (SSC/IRB) junction was characterized
by the ycf 1 gene while the IRB/LSC junction occurred between the genes rpl2 and trnH. The SSC/IRB
junction extended into the ycf 1 gene creating a ycf 1 pseudogene with a conserved length (795–799 bp)
in the IRA/SSC junction. To conclude, all junctions had similar genes with only slight variations in the
distance between the junctions and adjacent genes.
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Figure 3. Comparison of the Inverted Repeat/ Single Copy (IR/SC) junctions’ characteristics among
the six sect. Saintpaulia genomes. The genes below and above are transcribed in clockwise and
counter-clockwise directions, respectively. The setting is not to scale.

2.3. Divergent Hotspots and Simple Sequence Repeats (SSRs) in Str. ionanthus

The values of nucleotide variability (Pi) across the analyzed coding and intergenic sequences
of the five subspecies ranged from 0 (majority) to 0.00526 (psbC-psbZ) (Figure 4), with a low average
value (Pi = 0.00050). The total alignment file was 153,533 bp, with 152,813 sites (99.53%) being
monomorphic while only 184 sites were polymorphic of which subsp. rupicola had the majority of
Insertion and Deletions (InDels). Twenty-six Protein-Coding genes (PCGs) were observed to contain
polymorphic sites, with only five genes having more than five sites (rps16_9, rpoC2_6, rpoB_6, ycf 1_8
and ndhA_7). The majority of the polymorphic sites (169) were singleton variable sites and there were
only 15 parsimony informative sites, representing a relatively low variation among the subspecies.
Despite the low variation, ten regions exhibited some polymorphism (hereafter termed as divergence
hotspots), including five regions with Pi > 0.002 (psbC-psbZ, psbM, psaA-ycf 3, rps3 and atpF-atpH) and
five PCGs with more than five polymorphic sites.
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Figure 4. Nucleotide variability (Pi) values among chloroplast genomes of the five Str. ionanthus
subspecies for (A) Coding sequences and (B) Intergenic spacer regions.

SSRs range from mono-to hexa-nucleotide repeat units which exhibit polymorphism even within
one species and occur widely in plant genomes. Sect. Saintpaulia cp genomes exhibited small variation
in the number of SSRs with two subspecies (Str. ionanthus subsp. velutinus and Str. ionanthus subsp.
grandifolius) having 40 SSRs, two subspecies (Str. ionanthus subsp. orbicularis and Str. ionanthus subsp.
grotei) having 37 SSRs while Str. ionanthus subsp. rupicola and Str. teitensis have 41 and 28 SSRs,
respectively (Figure 5A). Further, the mononucleotides dominated, followed by both dinucleotides
and tetranucleotides. while the Trinucleotides (2%), pentanucleotides (2%) and hexanucleotides (3%)
were the minority (Figure 5B). The intergenic regions housed the majority (55–60%) of the SSRs, while
the intron and coding sequences accounted for the approximately 40% remaining. The coding genes
having SSRs included rpoC2, psbC, atpB, rpl22, ndhA and ycf 1.
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2.4. Phylogenetic Analysis

The phylogenetic relationship presented identical topology for both Maximum Likelihood (ML)
and Bayesian Inference (BI) tree approaches, as shown in Figure 6. Regarding Gesneriaceae, Streptocarpus
was closer to Dorcoceras and Lysionotus, while Petrocodon was closer to Primulina and Haberlea was
distantly placed. The four species of Primulina displayed a close relationship with each other while Str.
ionanthus genomes used here exhibited monophyly from Str. teitensis. Concerning the Str. ionanthus,
subspecies rupicola exhibited a relative distinction from the other four, subsp. velutinus and subsp.
grandifolius grouped together and were sistered to the grouping of subsp. orbicularis and subsp.
grotei. Our data report a poor phylogenetic structure within Str. ionanthus, findings in line with some
previous studies.
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other Gesneriaceae based on (A) complete genome sequence and (B) coding genes and (C) intergenic
regions. The bootstrap support values are given for both Maximum Likelihood (ML) and Bayesian
Inference (BI) trees (ML/BI) and * denote maximum support values for both ML/BI.

3. Discussion

3.1. Analysis of Genome Features

During this study, we sequence and compare the major features of five Str. ionanthus subspecies
chloroplast genomes. Generally, the angiosperm chloroplast genome is considered to be conserved [15].
The Str. ionanthus taxa used here reveal the typical angiosperm structure with identical genes, gene
order and no structural reconfigurations. The genomes exhibit a narrow size range (170 bp) and do not
deviate from the first reported chloroplast genome in sect. Saintpaulia [21]. However, much lower size
ranges have been reported in the Hosta (<85 bp) [22] and Pyrus hopeiensis (46 bp) [23] species and, thus,
Str. ionanthus cp genomes can be termed as relatively variable.

Seen in the chloroplast genome, the Inverted Repeat (IR) region is reported to be stable [24] with
border shifts contributing to the evolution of species, including variation in genome sizes [23,25]. Our
study supports this, with Str. ionanthus subsp. orbicularis having the longest IR region and also being
the largest of the five genomes in terms of complete genome size. The representative Str. ionanthus
cp genomes in this study are characterized by similar genes in the Inverted Repeat/ Single Copy
(IR/SC) boundaries, with slight variations in the length flanking or drifting away from the boundaries.
Nonetheless, other reported Gesneriaceae genomes vary from Str. ionanthus in some junctions. The
Large Single Copy/ Inverted Repeat A (LSC/IRA) occurs between rps19–rpl2 in sect. Saintpaulia and
Harbelea [26], rpl22–rpl2 in Petrocodon [27] and inside rps19 in Primulina [28], Dorcoceras [29] and
Lysionotus [30] genomes. Diversity within Gesneriaceae also is noted in the IRA/SSC junction with Str.
ionanthus genomes being similar to Petrocodon, Dorcoceras and Lysionotus, by having an overlap of ycf 1
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and ndhF genes, and different from Str. teitensis, Haberlea and Primulina which have ycf 1. However, the
other two junctions are similar within Gesneriaceae.

Besides the similarity in the IR/SC junctions, the high genome synteny with minor variations
reported in the Mauve alignment portray a conserved cp genome in Str. ionanthus. Accompanying the
absence of observable structural variations, the minor variations exhibited by the red/yellow lines in
the single copy regions could be attributed to the presence of Insertions and Deletions (InDels) in those
regions, especially the non-coding regions, as reported in another study [31]. Mixed observations have
been reported in angiosperm chloroplast genomes, with some exhibiting high variation and others
being relatively conserved. Previous genomic analyses involving higher taxonomic ranks such as
the order Dipsacales [32] or family Ranunculaceae [33] have reported substantially higher genome
variations in terms of gene content, arrangement and structural rearrangements such as inversed
regions. However, genomic exploration at the genera levels in Notopterygium [34], Camellia [24],
Prunus [35], Meconopsis [36], just to mention a few, have demonstrated highly conserved chloroplast
genomes among constituent species. Found in much lower taxonomic levels, studies involving four
varieties of Arachis hypogaea (peanut) [31], seventeen individuals of Jacobaea vulgaris [37], two Ulmus
americana (elm) genotypes among others, reveal very high cp genome similarities. Thus, the high
genome similarity among Str. ionanthus subspecies is expected. Interestingly, some studies such as
Pyrus cultivars [38] report a relatively high variability among low taxonomic ranks.

3.2. Divergence Hotspots in Str. ionanthus

Simple Sequence Repeats (SSRs) are important sources of information for genetic diversity and
polymorphism testing [24] due to motif variations, a high number of repetitions, and genome-wide
distribution [39]. The distribution of SSRs in cp genomes is mostly concentrated in the intergenic
spacers and intron regions rather than in the genes [40]. This is the case in our study where the number
of SSRs in the intergenic regions are the majority (55–60%), while the introns and coding sequences
contribute approximately 20% each. Since the chloroplast is conserved in angiosperms, chloroplast
SSRs are transferrable across species and genera [24] and, thus, the SSR data explored in the present
study provide useful information for the design of phylogenetic markers for future use. Though
the number of SSRs is low, the Adenine/ Thymine (A/T) motifs vary within Str. ionanthus, with the
subspecies rupicola having the highest quantity.

The overall nucleotide variability in Str. ionanthus cp genomes is comparatively lower (Pi = 0.0006)
than in some other reported taxa (Cardiocrinum: Pi = 0.003; Papaver: Pi = 0.009) [41,42], an expected
result in this case of a lower taxonomic level. Insertions and Deletions (InDels) are known to contribute
the most microstructural variation in chloroplast genomes [23]. Here, InDels are attributed to the
polymorphic sites detected in the ten divergent regions (psbC-psbZ, psaA-ycf 3, atpF-atpH, psbM, rps3,
rps16, rpoC2, rpoB, ycf 1 and ndhA). Although these divergence regions were discovered in Str. ionanthus,
the majority of them occur in Str. ionanthus subsp. rupicola which limits their ability to separate
the Usambara taxa. However, this result should be interpreted with caution and more sampling
could reveal interesting details about the variation of these genome regions. The extremely high
polymorphism of Str. ionanthus subsp. rupicola may be partly due to long-term isolation of the
subspecies from the others.

The observed low variability means that a majority of the genome regions are of limited capacity
for phylogenetic studies, thus previously applied chloroplast regions could not resolve Str. ionanthus
classification. The coding and non-coding sequences have varied substitution rates [23]. Non- coding
regions are less controlled by function and have relatively higher nucleotide substitution rates causing
rapid evolution, thus, are more preferred for phylogenetic studies in lower taxonomic level taxa [23,43].
Similar to reports in most angiosperms [44], the intergenic regions in Str. ionanthus exhibit higher
nucleotide diversity than the coding regions, with the most variable region being psbC-psbZ. Studies
in higher plants have reported a high variability of matK, rps16 and rbcL [45] and other non-coding
regions [46,47], thus are proposed for phylogenetic studies. Analysis of three Pyrus specie chloroplast
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genomes [48] identify four divergence hotspots (petN-psbM, psbM-trnD, rps4-trnT-trnL, and psaI-ycf 4)
having an average variation of Pi = 0.00054. However, in our study, most of these regions exhibit very
low or no polymorphism. The divergence hotspots detected here could be tested further for utility in
the phylogenetic analyses using all subspecies and more samples. Our results are valuable for future
studies on estimating the variation within Str. ionanthus.

3.3. Phylogenetic Relationship within Str. ionanthus

The relative stability of molecular data makes them useful in estimating phylogenetic relationships
among species [24]. Despite making great milestones in sect. Saintpaulia phylogenetics, previous
phylogenetic studies [1,7] were unable to obtain a high-resolution and strongly-supported phylogeny
in Str. ionanthus, although these studies applied few markers. Here, we report the first genome-scale
phylogenetic analysis in sect. Saintpaulia by comparing the phylogenetic relationship among the
six sequenced taxa and within Gesneriaceae. However, we admit the fact that our study might not
make entirely conclusive remarks on Str. ionanthus phylogeny due to the limited number of genomes.
Nevertheless, our observations are consistent with most earlier studies and sets the blueprint for future
phylogenomic analyses in understanding Str. ionanthus.

Rapid evolution leads to poorly-resolved phylogenies [49] and produce short branches with little
nucleotide polymorphism observed, which imply a recent divergence. Previously, molecular dating
studies on Str. ionanthus using both nuclear [4] and chloroplast (Kyalo, unpublished) genes have
demonstrated a case of recent diversification (<2 million years ago). This could explain the short
branches observed in our study. However, the high bootstrap support in the present study shows
the ability of complete genomes to improve the phylogenetic resolutions in plant evolution [50,51]
and adding more genomes to this complex can produce a conclusive phylogeny of Str. ionanthus.
Str. ionanthus subsp. rupicola is presented as distinct from the other four subspecies in all datasets used
here, although this is not a new finding as similar outcomes have been reported in previous studies.
This can be geographically explained in that Str. ionanthus subsp. rupicola occurs in Kenya while the
other four subspecies are distributed in the Usambara mountains (Tanzania).

4. Materials and Methods

4.1. Sampling, Laboratory Experiments and Sequencing

We collected leaf samples of five subspecies of Str. ionanthus (illustrated in Figure 7) from the
Usambara mountains (Tanzania) and Kilifi (Kenya) based on the countries’ laws governing collection
and exportation of biological samples for research purposes. The samples were dried in silica gel
for further laboratory experiments. Genomic DNA was extracted from each leaf sample using Plant
DNAzol Reagent (Life Feng, Shanghai) following the manufacturer’s instructions. Sequencing was
done using the Illumina HiSeq 2000 platform from the Tsingke company (Wuhan, China), obtaining
raw reads.
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confirm the start and stop codons. The program tRNAscan-SE ver. 1.21 [58] was used to verify the 
identified tRNA genes. The genome maps were developed in the Organellar Genome Draw program 
(OGDRAW) ver. 1.3.1 [59]. Classification of the annotated genes according to functionality was 
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provided in Table 1). 

4.3. Genome Comparison 

Figure 7. Morphological heterogeneity in Streptocarpus ionanthus; (A) Str. ionanthus subsp. velutinus,
(B) Str. ionanthus subsp. orbicularis, (C) Str. ionanthus subsp. grandifolius, (D) Str. ionanthus subsp.
rupicola, (E) Str. ionanthus subsp. grotei (trailing habit) and (F) Str. ionanthus subsp. grotei (rosulate habit).

4.2. Assembly and Gene Annotation

Filtration was performed on the raw Illumina reads using an NGS QC tool kit [52] to eliminate
low-quality reads. The resultant clean reads of the five subspecies were mapped alongside the reference
chloroplast genome of Str. teitensis (GenBank Accession: MF596485) using the program Bowtie ver.
2.2.6 [53], following the default settings. Assembly of the chloroplast genome reads into contigs was
done by Velvet ver. 1.2.10 [54] set at k-mer of 75, 85, 95 and 105. The verified contigs were subjected
to BLAST and library searches and connected into complete genomes in SPAdes ver. 3.10.1 [55] with
parameters set to default. The products of the Assembly were visualized and manually corrected in
Bandage ver. 8.0 [56].

Genome annotation was done using the GeSeq application [57], an online tool in the Chlorobox
database (https://chlorobox.mpimp-golm.mpg.de/index.html), combined with manual corrections to
confirm the start and stop codons. The program tRNAscan-SE ver. 1.21 [58] was used to verify the
identified tRNA genes. The genome maps were developed in the Organellar Genome Draw program
(OGDRAW) ver. 1.3.1 [59]. Classification of the annotated genes according to functionality was
conducted with reference to the online CpBase database (https://rocaplab.ocean.washington.edu/tools/
cpbase/). The annotated genomes were submitted to the National Center for Biotechnology Information
(NCBI) GenBank database (Accession numbers provided in Table 1).

https://chlorobox.mpimp-golm.mpg.de/index.html
https://rocaplab.ocean.washington.edu/tools/cpbase/
https://rocaplab.ocean.washington.edu/tools/cpbase/
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4.3. Genome Comparison

Genome features such as the expansion or contraction in the Inverted Repeat/ Single Copy (IR/SC)
junctions, structural re-organization and the loss or pseudogenization of genes have been used in
previous studies to inform an evolutionary history of species [60]. Comparison of these features was
performed among the available six sect. Saintpaulia cp genomes (Table 1). The IR/SC junctions were
analyzed to detect possible expansion or contraction through identification of the genes present or
adjacent to the junctions. To determine the gene order and identify possible structural re-arrangements
among the six cp genomes, multiple alignment of the genomes was done using the program Mauve [61].
During this analysis, progressiveMauve was set as the alignment algorithm, full alignment was
automatically calculated, and the genomes were assumed to be non-collinear.

4.4. Identification of Divergent Hotspots and Simple Sequence Repeats (SSRs)

Intraspecific variations within the five Str. ionanthus genomes were identified using nucleotide
diversity values (Pi) of the aligned sequence, executed in DNA Sequence Polymorphism (DnaSP) ver.
6.0 [62]. The settings for DNA polymorphism analysis were a window length of 800 bp and the step
size set to 200 bp. Further, this analysis narrowed to check the variability of coding genes and the
intergenic regions. The results indicated similar variable peaks and, thus, the graphs for coding genes
and intergenic regions are presented here. We also estimated the number of polymorphic sites in each
of the 62 protein coding genes with DnaSP ver. 6.0. Mutations are key variants which can lead to
polymorphism among taxa. Here, mutations among the five genomes of Str. ionanthus were evaluated
by analyzing the number of Insertions and Deletions (InDels) using DnaSP and, eventually, confirmed
manually from the aligned sequences.

Simple Sequence Repeats (SSRs) were identified from the six sect. Saintpaulia genomes using
MISA (Microsatellite Identification tool) on the web version [63]. The selection criteria were minimum
repeat thresholds of 10, 5, 4, 3, 3 and 3 for mononucleotide, dinucleotide, trinucleotide, tetranucleotide,
pentanucleotide and hexanucleotide repeats, respectively.

4.5. Phylogenetic Analysis

Since the focus of this study was on understanding Str. ionanthus, the phylogenetic relationship
was explored at the family level using the other nine Gesneriaceae chloroplast genomes and two
outgroups already deposited in the National Center for Biotechnology Information (NCBI) (Table
S1). We applied both Maximum Likelihood (ML) and Bayesian Inference (BI) approaches using
three datasets—the complete genome sequences, 62 protein coding gene sequences and 30 intergenic
spacer sequences. The sequences were aligned in Multiple Alignment using Fast Fourier Transform
(MAFFT) [64]. The ML analysis was implemented in IQ-TREE ver. 1.6.1 [65], with the substitution
model chosen by ModelFinder [66]. Based on the Bayesian Information Criterion (BIC), the best-fitting
models for the ML analyses were TVM + F + R2 for both complete genomes and intergenic spacers, and
GTR + F + R2 for coding genes. The branch supports were estimated with 5000 bootstrap replicates
and 1000 maximum iterations via the UltraFast Bootstrap approximation [67]. The BI analysis was
conducted in MrBayes ver. 3.2.6 [68] by running four chains for two million generations. Sampling
of the trees was done every 1000 generations, with the first 25% of the sampling being discarded
as burn-in while the remaining were used to construct a 50% majority rule consensus tree. The
best-fitting substitution models were GTR + F + I + G4 for complete genomes, intergenic spacers
and GTR + F + G4 coding genes, respectively. The output trees were visualized in FigTree ver. 1.4.2
(http://tree.bio.ed.ac.uk/software/figtree/).

5. Perspectives on Streptocarpus ionanthus Research

It is undoubtedly crucial to expound on the genetic relationships within Str. ionanthus to
understand the species evolution and inform development of horticultural cultivars. We performed

http://tree.bio.ed.ac.uk/software/figtree/
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comparative analysis to estimate the level of variation in gene arrangement, mutation spots, repeat
sequences and phylogenetic relationships among five Str. ionanthus taxa and other Gesneriaceae. The
majority of the phylogenetic markers developed as barcodes for angiosperm classification have proven
useful in resolving phylogenetic relationships in higher taxonomic levels but are rarely informative at
lower levels. Seen in Str. ionanthus, the nine subspecies exhibited poor resolutions and mixed signals in
previous phylogenies which used few molecular markers. No clear phylogenetic distinction has been
reported among the subspecies, except subspecies rupicola which exhibits a clear monophyly within
the complex. This implies a case of recent divergence in Str. ionanthus, especially in the Usambara
mountains taxa. To the best of our knowledge, this study presents the first genome-scale analysis in the
group and the findings exhibit a close phylogenetic relationship and low sequence variation among
the five subspecies investigated. However, our study identified some divergent hotspots which could
be explored for polymorphism with more sampling and applied to shed more light on the evolution
of Str. ionanthus. Our work can be a blueprint for progressive molecular research in Str. ionanthus,
especially phylogenomic analysis which should incorporate the entire species’ taxon representation
and increased sampling for each taxon. To conclude, this study provided a first glimpse into the
evolution of Str. ionanthus complex using a phylogenomic approach and opened the species to more
research opportunities.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/4/456/s1,
Table S1: Species used in the phylogenetic analysis.
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