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Abstract
Background: Wilms	tumor	is	the	most	frequent	renal	malignancy	in	children.	YTHDF1	
is associated with the development of several kinds of cancers, yet whether common 
variants of the YTHDF1	 gene	 influence	Wilms	 tumor	 risk	 is	unknown.	We	present,	
here,	a	hospital-	based	case-	control	study	specifically	designed	to	investigate	the	role	
of YTHDF1	genetic	variants	on	Wilms	tumor.
Methods: We	successfully	genotyped	samples	of	408	Wilms	tumor	cases	and	1198	
controls which were collected from five hospitals across China. The unconditional 
logistic	regression	was	adopted	to	analyze	the	contributions	of	YTHDF1 gene single 
nucleotide	 polymorphisms	 (SNPs)	 to	 the	 risk	 of	Wilms	 tumor.	 The	 odds	 ratio	 (OR)	
and	95%	confidence	 interval	 (CI)	were	generated	to	evaluate	 the	conferring	 risk	of	
YTHDF1	gene	SNPs	(rs6011668	C>T,	rs6090311	A>G).
Results: Neither	of	the	two	SNPs	could	contribute	to	the	risk	of	Wilms	tumor.	A	nega-
tive association was also detected in the combined effects of protective genotypes 
on	Wilms	tumor	risk.	The	stratification	analysis	revealed	that	compared	with	those	
with	CC	genotype,	rs6011668	CT/TT	genotype	was	associated	with	increased	Wilms	
tumor	risk	in	those	≤18	months	(OR	=	1.54,	95%	CI	=	1.02–	2.30,	p	=	0.038),	and	with	
decreased	Wilms	 tumor	 risk	 in	 those	>18	months	 (OR	=	0.70,	95%	CI	=	0.50–	0.97,	
p	=	0.034).
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1  |  INTRODUC TION

Wilms	tumor	 (nephroblastoma)	 is	a	solid	kidney	tumor	that	mainly	
affects children.1 It is a tumor of embryonic origin that originates 
from abnormal differentiation in primitive cells during fetal nephro-
genesis.2	The	incidence	of	Wilms	tumor	is	higher	in	the	United	States	
compared	to	that	of	Wilms	tumor	in	China,	there	being	about	7	new	
cases per million children compared to 3.3 per million.3,4 Nearly 
80% of cases are diagnosed before the age of five.5	With	 the	ad-
vancement	 of	medical	 treatment,	 the	 5-	year	 survival	 of	 favorable	
histology	Wilms	tumor	has	exceeded	over	90%.6 For patients with 
unfavorable	Wilms	tumors,	the	prognosis	is	still	disappointing.6

Wilms	 tumor	 is	 a	 complex	 disease	 characterized	 by	 the	 broad	
heterogeneity of molecular genetic alterations.7,8 The WT1 gene 
was	 discovered	 as	 the	 first	 identified	Wilms	 tumor	mutated	 gene	
in 1990.9	 Subsequently,	 mutations	 in	 the	 genes	CTNNB1, AMER1, 
and DROSHA	were	demonstrated	as	Wilms	tumor	risk	factors.7,10-	12 
Genome-	wide	analysis,	 as	well	 as	 case-	control	 studies	 also	 identi-
fied	additional	Wilms	tumor	risk	loci.13-	16 However, all the identified 
gene	mutations	only	explain	a	small	portion	of	Wilms	tumor	origin.	
Characterization	of	more	variants	will	further	clarify	the	etiology	of	
Wilms	tumor.

N6-	methyladenosine	 (m6A)	 is	 one	 of	 the	 most	 seen	 internal	
modifications in mRNAs.17-	20 The m6A is a dynamic and revers-
ible process where three groups of proteins take part in, including 
methyltransferases, demethylases, and m6A-	specific	 binding	 pro-
teins.21	 The	 binding	 proteins	 mainly	 include	 YTH-	family	 proteins	
YTHDF1-	3,	YTHDC1-	2,	eukaryotic	initiation	factor	eIF3,	and	insulin-	
like	 growth	 factor	 2	 mRNA-	binding	 proteins	 IGF2BP1-	3.22 In the 
cytosol,	 YTHDF1	 interacts	 with	 translation	 initiation	 factors	 eIF3	
and eIF4A3 to promote the translation process of m6A-	modified	
mRNAs.23	 YTHDF1	 has	 been	 implicated	 in	 several	 types	 of	 can-
cers.24-	26 However, whether YTHDF1 gene variants are related to the 
risk	of	Wilms	tumor	is	not	reported	yet.	The	objective	of	our	case-	
control study was to determine whether the YTHDF1 gene variants 
are	associated	with	Wilms	tumor	risk.

2  |  METHODS

2.1  |  Sample selection

The	 study	was	 approved	 by	 the	 Ethics	 Committee	 of	 Guangzhou	
Women	 and	Children's	Medical	Center.	We	 carried	 out	 the	 entire	
work in accordance with the ethical guidelines of the tenets of the 

Declaration of Helsinki. The cases all had newly diagnosed, histo-
logically	confirmed,	and	previously	untreated	Wilms	tumor.	Controls	
were randomly selected from hospital visitors who were living in the 
same	area	and	were	free	of	Wilms	tumor	when	being	enrolled.	All	
study participants’ guardians provided written informed consent. A 
total	of	414	cases	diagnosed	with	Wilms	tumor	and	1199	hospital-	
based	controls	were	included	(Table	S1).	They	were	recruited	from	
five	 hospitals	 (Guangzhou	Women	 and	Children's	Medical	 Center,	
The	 Second	 Affiliated	 Hospital	 and	 Yuying	 Children's	 Hospital	
of	 Wenzhou	 Medical	 University,	 The	 First	 Affiliated	 Hospital	 of	
Zhengzhou	University,	Second	Affiliated	Hospital	of	Xi'an	Jiao	Tong	
University,	and	Shanxi	Provincial	Children's	Hospital)	 in	five	differ-
ent cities of China. Detailed information regarding sample selection 
was accessible in our previous studies.27,28

2.2  |  Polymorphism selection and genotyping

We	chose	two	SNPs	of	YTHDF1	gene,	rs6011668	C>T	and	rs6090311	
A>G,	to	genotype.	The	reasons	for	choosing	these	two	SNPs	were	
described in our previous study.29 To be specific, the following cri-
teria were adopted to choose potentially functional polymorphisms: 
(1)	the	minor	allele	frequency	(MAF)	reported	in	HapMap	was	>5%	
for	 Chinese	Han	 subjects;	 (2)	 putative	 functional	 potentials	 SNPs	
located	 in	 the	5’-		 flanking	 region,	 exon,	 5’-		 untranslated	 region	 (5’	
UTR),	and	3’	UTR,	which	might	affect	transcription	activity	or	bind-
ing	 capacity	 of	 the	 microRNA	 binding	 site;	 (3)	 SNPs	 in	 low	 link-
age	disequilibrium	with	 each	other	 (R2	 <	 0.8).	 Both	 the	 two	SNPs	
(rs6011668	C>T	and	rs6090311	A>G)	are	 located	 in	the	transcrip-
tion	factor	binding	sites	 (TFBS).	There	 is	no	significant	 linkage	dis-
equilibrium	(LD)	(R2	<	0.8)	between	rs6011668	C>T	and	rs6090311	
A>G	in	YTHDF1 gene (R2	=	0.094).	Genomic	DNA	was	isolated	from	
peripheral	 blood	 according	 to	 the	 standard	 protocol.	 Genotyping	
was	performed	by	TaqMan	SNP	Genotyping	Assay,	by	means	of	an	
ABI	7900HT	 (Applied	Biosystems).30 In each genotyping plate, we 
inserted	negative	 control	 samples	 (water)	 to	ensure	 the	quality	of	
genotyping. 10% of randomly selected replicates from the study 
sample	were	re-	genotyped.	Concordance	rates	for	the	original	and	
replicate samples were 100%.

2.3  |  Statistical analysis

For	 the	analyzed	SNPs,	 a	 goodness-	of-	fit	χ2 test was used to test 
for	deviations	from	Hardy-	Weinberg	equilibrium	(HWE).	To	test	the	

Conclusion: Our present work sheds some light on the potential role of YTHDF1 gene 
polymorphisms	on	Wilms	tumor	risk.

K E Y W O R D S
case-	control	study,	polymorphism,	risk,	Wilms	tumor,	YTHDF1



    |  3 of 6LIU et aL.

difference in the distribution of demographic variables between 
cases	and	controls,	 a	Chi-	square	 test	 for	 categorical	 variables	and	
a	Student	 t-	test	 for	continuous	variables	were	conducted.	The	as-
sociation	between	the	SNPs	and	Wilms	tumor	risk	was	determined	
using	unconditional	logistic	regression	computing	odds	ratios	(ORs)	
and	95%	confidence	intervals	(CIs).	Stratified	analyses	were	carried	
out	across	the	strata	of	the	following	factors:	age,	sex,	and	clinical	
stages.	 In	 all	 analyses,	 a	 two-	tailed	p value <0.05 was considered 
statistically	 significant.	 Statistical	 calculations	were	done	with	 the	
SAS	statistical	software	package	version	9.1	(SAS	Institute	Inc.).31

3  |  RESULTS

3.1  |  Effect of YTHDF1 gene SNPs on Wilms tumor 
risk

Table S1 gives information on the baseline characteristics of the in-
cluded	cases	and	controls.	Similar	distributions	of	age	(p	=	0.118)	and	
gender (p	=	0.218)	were	observed	between	cases	and	controls.	Of	all	
the	included	samples	(414	cases	and	1199	controls),	we	successfully	
genotyped	408	Wilms	tumor	cases	and	1198	controls.	The	genotype	

distribution	of	rs6011668	C>T	and	rs6090311	A>G	polymorphisms	
and	 their	 relationship	with	Wilms	 tumor	 risk	 are	 listed	 in	Table	1.	
As	 expected,	 the	 genotype	 distributions	 of	 rs6011668	C>T	 (P for 
HWE	=	0.490)	and	rs6090311	A>G	(P	 for	HWE	=	0.378)	polymor-
phism	in	controls	did	not	deviate	from	HWE.	We	evaluated	the	as-
sociation	of	rs6011668	C>T	and	rs6090311	A>G	with	Wilms	tumor	
risk but did not find statistical significance in all genotype models. 
Non-	significant	 association	 results	 remained	 unchanged	 after	 ad-
justing	 by	 age	 and	 sex.	We	 then	 allocated	 rs6011668	CT/TT	 and	
rs6090311	AG/GG	genotypes	as	protective	genotypes.	Compared	
to	0	protective	genotype,	1,	2,	and	1–	2	protective	genotypes	could	
not	decrease	Wilms	tumor	risk.

3.2  |  Stratification analysis

We	next	determined	 the	association	between	YTHDF1 gene poly-
morphisms	 and	 susceptibility	 to	Wilms	 tumor	 in	 subgroups	 sepa-
rated	by	age,	sex,	and	clinical	stages	 (Table	2).	For	rs6011668,	the	
CT/TT	genotype	was	associated	with	increased	Wilms	tumor	risk	in	
those	≤18	months	(OR	=	1.54,	95%	CI	=	1.02–	2.30,	p	=	0.038),	or	with	
decreased	Wilms	tumor	risk	 in	those	>18	months	(OR	=	0.70,	95%	

TA B L E  1 Association	between	YTHDF1	gene	polymorphisms	and	Wilms	tumor	susceptibility

Genotype
Cases
(N = 408)

Controls
(N = 1198) pa 

Crude OR
(95% CI) P

Adjusted OR
(95% CI)b  pb 

rs6011668	C>T	(HWE	=	0.490)

CC 300	(73.53) 868	(72.45) 1.00 1.00

CT 104	(25.49) 307	(25.63) 0.98	(0.76–	1.27) 0.879 0.97	(0.75–	1.26) 0.826

TT 4	(0.98) 23	(1.92) 0.50	(0.17–	1.47) 0.208 0.49	(0.17–	1.42) 0.189

Additive 0.473 0.92	(0.73–	1.16) 0.473 0.91	(0.72–	1.15) 0.422

Dominant 108	(26.47) 330	(27.55) 0.674 0.95	(0.74–	1.22) 0.674 0.94	(0.73–	1.21) 0.619

Recessive 404	(99.02) 1175	(98.08) 0.202 0.51	(0.17–	1.47) 0.211 0.49	(0.17–	1.43) 0.193

rs6090311	A>G	(HWE	=	0.378)

AA 162	(39.71) 458	(38.23) 1.00 1.00

AG 188	(46.08) 577	(48.16) 0.92	(0.72–	1.18) 0.508 0.92	(0.72–	1.18) 0.516

GG 58	(14.22) 163	(13.61) 1.01	(0.71–	1.43) 0.973 1.02	(0.72–	1.45) 0.911

Additive 0.767 0.98	(0.83–	1.16) 0.824 0.99	(0.84–	1.17) 0.875

Dominant 246	(60.29) 740	(61.77) 0.597 0.94	(0.75–	1.18) 0.597 0.94	(0.75–	1.19) 0.623

Recessive 350	(85.78) 1035	(86.39) 0.758 1.05	(0.76–	1.45) 0.758 1.07	(0.77–	1.47) 0.698

Protective genotypesc 

0 98	(24.02) 262	(21.87) 1.00 1.00

1 266	(65.20) 802	(66.94) 0.89	(0.68–	1.16) 0.383 0.89	(0.68–	1.16) 0.376

2 44	(10.78) 134	(11.19) 0.433 0.88	(0.58–	1.33) 0.536 0.87	(0.58–	1.32) 0.516

0 98	(24.02) 262	(21.87) 1.00 1.00

1–	2 310	(75.98) 936	(78.13) 0.369 0.89	(0.68–	1.15) 0.369 0.88	(0.68–	1.15) 0.359

Abbreviations:	OR,	odds	ratio;	CI,	confidence	interval;	HWE,	Hardy-	Weinberg	equilibrium.
aχ2	test	for	genotype	distributions	between	Wilms	tumor	patients	and	controls.
bAdjusted	for	age	and	sex.
cProtective	genotypes	were	carriers	with	rs6011668	CT/TT	and	rs6090311	AG/GG	genotypes.
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CI	=	0.50–	0.97,	p	=	0.034),	 in	comparison	to	CC	genotype.	No	sig-
nificant	associations	were	found	between	rs6090311	AG/GG	or	1–	2	
protective	genotypes	and	the	risk	of	Wilms	tumor,	in	all	subgroups.

4  |  DISCUSSION

Emerging epidemiological evidence has shown the implication of 
genetic	 variants	 in	Wilms	 tumor	 risk.	 To	 fully	 unearth	 the	 genetic	
spectrum	of	Wilms	tumor	still	is	a	challenge	that	remains.	The	cur-
rent work provided a collection of evidence regarding the role of 
YTHDF1	gene	polymorphisms	on	risk	of	Wilms	tumor.

YTHDF1	 gene	 resides	 in	 chromosome	 20q11.	 Prior	 studies	
have	 found	YTHDF1	 to	be	associated	with	cancer.	The	up	 regula-
tion	of	YTHDF1	 is	detected	 in	ovarian	cancer	and	associated	with	
adverse	 prognosis.	 YTHDF1	 facilitates	 tumorigenesis	 and	 metas-
tasis of ovarian cancer via augmenting the translation of EIF3C.32 
YTHDF1	is	frequently	amplified	in	hepatocellular	carcinoma	(HCC)	
tissues and significantly associated with the prognosis of HCC pa-
tients.	 Mechanism	 analysis	 revealed	 that	 YTHDF1	 can	 acceler-
ate	 the	 translational	output	of	FZD5	mRNA	 in	an	m6A-	dependent	
manner	 and	 function	 as	 an	oncogene	 through	 the	WNT/β-	catenin	
pathway.33	METTL3	facilitates	oral	squamous	cell	carcinoma	tumor-
igenesis	by	strengthening	the	c-	Myc	stability	via	YTHDF1-	mediated	
m6A modification.34	 Shi	 et	 al.35 demonstrated that deficiency of 
YTHDF1	 inhibited	non-	small	cell	 lung	cancer	cell	proliferation	and	
xenograft	 tumor	 formation.	Unexpectedly,	 they	observed	 that	 the	
high	expression	of	YTHDF1	was	related	to	better	clinical	outcomes.	
Nishizawa	et	al.36	found	that	high	YTHDF1	expression	was	linked	to	
a significantly more reduced overall survival rate in colorectal can-
cer	patients.	Molecular	mechanism	experiments	revealed	that	c-	Myc	
could	drive	YTHDF1	to	facilitate	cancer	proliferation.

Epidemiology reports of YTHDF1	gene	SNPs	and	cancer	risk	are	
limited.	In	2012,	a	genome-	wide	association	study	was	carried	out	
on	Wilms	tumor.	The	authors	used	cases	recruited	through	oncology	
clinics in North America to identify genetic variants that confer sus-
ceptibility	to	Wilms	tumor.	They	selected	SNPs	that	demonstrated	
an association of a significance level of p < 5 × 10−5 for the replica-
tion phase. They failed to detect YTHDF1	gene	SNPs	that	were	asso-
ciated	with	Wilms	tumor	risk.12	Meng	et	al.37	genotyped	240	SNPs	
in 20 m6A	modification-	related	genes	on	colorectal	cancer	in	China.	
Two	SNPs	rs2024768	and	rs6090289	in	the	YTHDF1 gene could not 
modify	the	risk	of	colorectal	cancer.	We	also	investigated	the	role	of	
YTHDF1	gene	SNPs	on	the	risk	of	hepatoblastoma	using	313	hepa-
toblastoma cases and 1446 controls from China.29	For	the	two	SNPs	
analyzed,	 rs6011668	 C>T	 could	 not	 impact	 hepatoblastoma	 risk,	
but	rs6090311	G	allele	could	decrease	hepatoblastoma	risk.	In	the	
current study, no significant relationships were detected between 
rs6011668	C>T	or	 rs6090311	A>G	and	Wilms	 tumor	 risk,	 respec-
tively. Thus, the role of YTHDF1	SNPs	varies	from	types	of	cancers.

We	admit	that	our	study	has	its	weakness.	First,	the	sample	size,	
although	enrolled	from	several	hospitals,	may	be	too	small	to	explain	
the	effects	of	an	entire	population.	Second,	we	had	no	access	to	other	

environmental	factors,	which	could	have	biased	Wilms	tumor	risk	as-
sessment	without	adequate	adjustment	for	these	covariates	in	the	risk	
evaluation model. Third, all the participants were Chinese, and the ap-
plicability	of	the	findings	to	other	populations	requires	confirmation.

In conclusion, our study did not find strong evidence that 
YTHDF1	gene	variants	 influence	Wilms	 tumor	 risk.	Our	 results	 re-
quire	independent	replication	in	larger	studies,	preferably	with	more	
detailed information on environmental effect analysis, functional 
experiments,	and	across	other	populations.
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