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A B S T R A C T   

Background: Hybrid controlled trials with real-world data (RWD), where the control arm is composed of both trial 
and real-world patients, could facilitate research when the feasibility of randomized controlled trials (RCTs) is 
challenging and single-arm trials would provide insufficient information. 
Methods: We propose a frequentist two-step borrowing method to construct hybrid control arms. We use pa-
rameters informed by a completed randomized trial in metastatic triple-negative breast cancer to simulate the 
operating characteristics of dynamic and static borrowing methods, highlighting key trade-offs and analytic 
decisions in the design of hybrid studies. 
Results: Simulated data were generated under varying residual-bias assumptions (no bias: HRRWD = 1) and 
experimental treatment effects (target trial scenario: HRExp = 0.78). Under the target scenario with no residual 
bias, all borrowing methods achieved the desired 88% power, an improvement over the reference model (74% 
power) that does not borrow information externally. The effective number of external events tended to decrease 
with higher bias between RWD and RCT (i.e. HRRWD away from 1), and with weaker experimental treatment 
effects (i.e. HRExp closer to 1). All dynamic borrowing methods illustrated (but not the static power prior) cap the 
maximum Type 1 error over the residual-bias range considered. Our two-step model achieved comparable results 
for power, type 1 error, and effective number of external events borrowed compared to other borrowing 
methodologies. 
Conclusion: By pairing high-quality external data with rigorous simulations, researchers have the potential to 
design hybrid controlled trials that better meet the needs of patients and drug development.   

1. Background 

Randomized controlled trials (RCTs) remain a gold standard for 
general clinical research and as regulatory approval support, but their 
conduct may become increasingly challenging in oncology [1]. While 
accelerated regulatory approvals facilitate patients’ timely access to 
effective cancer therapies [2,3], real-world data (RWD) could foster 

further research efficiency. Technology has boosted capabilities for data 
availability and analyses, unlocking the use of sources such as electronic 
health records (EHRs) [4–7], and spurring interest in RWD use for drug 
development and regulatory decisions [8–13]. 

RWD can be applied to construct fully external comparator cohorts 
without randomization [14–23]. Alternatively, hybrid controlled trial 
designs that augment RCT control arms with external cohorts (Fig. 1) 
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can capitalize on well-developed RWD and still retain the benefits of 
some randomization. Patients in the external cohort must be the closest 
possible approximation to the trial control arm, in terms of eligibility, 
clinical history, and treatment received [17,24,25]. In the case of 
EHR-derived data, patients in the external cohort can be contempora-
neous to the trial. The external cohort is typically downweighted rela-
tive to the randomized control arm at the interim and final analyses 
based on an a priori decision rule to protect against potential biases. 

The FDA has discussed hybrid control arms in the rare-disease 
guidance [26,27], and these are examples where hybrid controlled tri-
als could be beneficial in oncology (Table 1): 

● Phase III programs facing challenging timelines (due to long enroll-
ment or follow-up periods) or with secondary interest in low prev-
alence subgroups [28], where hybrid controlled designs might 
mitigate the risk for premature terminations.  

● Single-arm phase II trials using response rate as primary endpoint, 
which may lead to high type I error rates [29], where a hybrid 
controlled trials with progression-free (PFS) or overall survival (OS) 
as endpoints might provide more reliable evidence.  

● Randomized phase II trials, oftentimes underpowered to support 
binary decisions [30,31], can lead to high sign and magnitude error 
rates [32]. Hybrid controlled designs could increase statistical power 
and reliability, although the balance between power and bias must 
be assessed on a case-by-case basis. 

For instance, IMpassion130 was a phase III RCT studying the addi-
tion of atezolizumab to nab-paclitaxel to treat metastatic triple-negative 
breast cancer (mTNBC) [33]. This is a high unmet-need setting, but 
patients may be averse to randomization to the current standard of care 
(SOC) of single-agent anthracycline- or taxane-based treatments; 
whereas immunotherapies such as atezolizumab, are more tolerable and 
have shown early promise [34]. 

Conversely, hybrid controlled trials would be hard to justify where 
adequate RCTs are possible. Additionally, there may be cases where it is 
impossible to construct adequate hybrid control arms without unac-
ceptable bias (the external data may not be fit for purpose). 

This article discusses methods and considerations for hybrid 
controlled trials. In particular, we evaluate a few commonly used dy-
namic borrowing methods, and propose a new frequentist method that, 
despite its simplicity, performs equally to more complex methods. While 
these methods can help to protect against unmeasured confounders and 
other biases, they cannot overcome fundamental differences in patient 
populations, patterns of care, or endpoint measurements. Any valid 
RWD application must carefully assess whether or not the data source is 

fit for purpose, and prospective validation of the data source and trial 
design may be necessary [10,12,16,18,19,22,23,35,36]. 

2. Materials and methods 

From an analytical perspective, of the four main steps in a hybrid 
controlled trial beyond typical RCT procedures (external cohort selec-
tion; baseline covariate balance; endpoint, index dates, and follow-up 
time definition; implementation of a borrowing method), the first 
three are common to fully external controls, and have been described 
before [17,19,22,23]. 

In the implementation of a borrowing method, there are a number of 
approaches described below, all of which effectively downweight the 
external data. Whereas the aim of the first three steps is to account for 
observed patient and trial characteristics, the aim of this step is to 
protect against sources of bias that are unknown or cannot otherwise be 
accounted for. 

2.1. Existing methods 

There are a few commonly used types of borrowing methods [37,38], 
including Bayesian approaches such as power prior models, commen-
surate prior models, meta-analytic predictive (MAP) models, robust 
MAP models [39], and hierarchical models, frequentist approaches such 
as simple test-then-pool procedures, as well as variations of these 
approaches. 

Recent proposals call for integrating propensity scores into power 
prior models [40]. However, when patient-level data are available, 
patient-level matching and weighting (e.g. inverse propensity score 
weights) may be preferable to strata-level weights, both to retain a clear 
estimand and possibly to achieve more precise estimates [40]. It would 
be important to compare these new methods to established patient-level 
matching and weighting methods before adopting them. For this reason, 
we currently recommend that patient-level information be used for 
matching or weighting prior to dynamic borrowing (please see Web 
Appendix A for details). 

Commonly used borrowing methods (Table 2) can be categorized as 
static (the downweighting factor is fixed a priori) or dynamic (the 
downweighting factor is a function of observed outcomes) [37]. Each 
method has a tuning parameter that allows a study team to pre-specify 
how much they are willing to borrow from the external data. 

Some methods can determine how much to borrow from external 
data without accessing data on the experimental patients, whereas other 
methods do require accessing data on experimental patients. If experi-
mental patient data are used in deciding how much to downweight 

Fig. 1. Example schema for a hybrid controlled trial using external RWD.  
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external patients, the decision could potentially be influenced by the 
estimated treatment effect, which could raise concerns over the validity 
of the trial or the need to adjust for multiple hypothesis tests. However, 
if experimental patient data are never accessed when making this de-
cision, these concerns would not be applicable. See Web Appendix B for 
details on measuring the amount of information borrowed, as well as 
Chen et al. [41]for an overview of effective sample size. 

Table 1 
Example disease settings and trials for which a hybrid controlled trial may be 
appropriate to consider. In addition to the considerations outlined in this table, it 
is critical to weigh the considerations in Section 3.2 to determine whether a 
hybrid controlled trial is appropriate and whether the external data are fit for 
purpose.  

Disease setting and 
representative trials 

Low 
prevalence 
disease 

Long 
time 
to 
events 

SOC 
with low 
clinical 
benefit 
and/or 
toxic 

Comments 

Metastatic triple 
negative breast 
cancer (mTNBC)  

● IMpassion130 
(phase III for 
atezolizumab) 

(Schmid et al., 
2018)   

✔  ● Median OS < 18 
months  

● Lack of targeted 
therapies  

● SOC can be 
difficult to 
tolerate (e.g. 
anthracycline- 
and taxane-based 
chemotherapy) 

Chronic myeloid 
leukemia (CML)  

● Phase II for 
imatinib 
mesylate 
(Kantarjian 
et al., 2002)   

✔  ● Five-year survival 
for patients 
diagnosed in 
1996–2002, 
44.7% (Ries et al., 
2006)  

● SOC at the time 
(interferon alfa) 
had limited 
efficacy and 
serious side 
effects 

Progressive 
Medullary 
Thyroid Cancer  

● EXAM (phase III 
for cabozantinib) 

(Eisei et al., 2013)   

✔  ● 10 year survival 
percentage of 
95.6% for local 
cancers and 40% 
for metastatic 
cancers (Roman 
et al., 2006)  

● SOC is ineffective, 
so placebo was 
used for control 
therapy in EXAM. 
This raises issues 
as to whether 
randomization 
was ethical. 

Notch activating 
Adenoid Cystic 
Carcinoma (ACC)  

● ACURRACY 
(clinicaltrials. 
gov NC 
T03691207, 
phase II single- 
arm)  

● A future phase III 
trial 

✔  ✔  ● Median OS of ~14 
months in general 
population for 
ACC (Sharma 
et al., 2008) (not 
subset to patients 
with an activating 
notch mutation)  

● Lack of targeted 
therapy  

● No established 
SOC, and common 
treatments are 
ineffective and 
have serious side 
effects 
(chemotherapy, 
surgery, 
radiation) 

Adjuvant therapy 
for early breast 
cancer  

● NATALEE (clinic 
altrials.gov NC 
T03701334,  

✔   ● NATALEE is 
expected to take 7 
years to complete.  

● APHINITY 
enrolled 4800 
patients to  

Table 1 (continued ) 

Disease setting and 
representative trials 

Low 
prevalence 
disease 

Long 
time 
to 
events 

SOC 
with low 
clinical 
benefit 
and/or 
toxic 

Comments 

phase III for 
Ribociclib in 
HR+/HER2-)  

● APHINITY 
(phase III for 
Perjeta +
Herceptin in 
HER2+) (Von 
Minckwitz et al., 
2017) 

observe 381 
invasive disease- 
free survival 
events. 

Pan-tumor NTRK 
gene fusions  

● NAVIGATE 
(clinicaltrials. 
gov NC 
T02576431, 
phase II basket 
study for 
larotrectinib)  

● STARTRK-2 
(clinicaltrials. 
gov NC 
T02568267, 
phase II basket 
study for 
entrectinib)  

● A future phase III 
basket study 

✔  May 
depend 
on 
tumor 
type  

● Cohort selection 
in EHR-derived 
data may be chal-
lenging for basket 
trials, but might 
be possible after 
first gaining expe-
rience with each 
individual tumor 
type. 

First line Diffuse 
Large B-Cell 
Lymphoma 
(DLBCL)  

● GOYA (phase III 
for 
Obinutuzumab 
+ CHOP vs 
Rituximab- 
CHOP) (Vitolo 
et al., 2017)  

✔   ● 5 year survival 
percentage of 
62% (Crump 
et al., 2017)  

● Rituximab-CHOP 
has been an 
established SOC 
for many years  

● Approximately 
one third of 
patients relapse or 
are refractory to 1 
L treatment 
(Friedberg 2011) 

Relapsed/ 
Refractory DLBCL  

● ARGO (NC 
T03422523, 
phase II for 
Atezolizumab, 
Rituximab, 
Gemcitabine and 
Oxaliplatin  

● Potential future 
studies 
comparing CAR- 
NK to CAR-T 
therapies. This 
may also be 
relevant in other 
disease areas 
(Liu et al., 2020).   

✔  ● Median OS of 6.3 
months for 
patients whose 
disease is 
refractory (best 
response of 
progression or 
stable disease 
during 
chemotherapy) or 
relapses (within 
12 months of 
autologous stem 
cell 
transplantation) 
(Crump et al., 
2017)  

W.K. Tan et al.                                                                                                                                                                                                                                  

http://clinicaltrials.gov
http://clinicaltrials.gov
https://clinicaltrials.gov/ct2/show/NCT03691207
https://clinicaltrials.gov/ct2/show/NCT03691207
http://clinicaltrials.gov
http://clinicaltrials.gov
https://clinicaltrials.gov/ct2/show/NCT03701334
https://clinicaltrials.gov/ct2/show/NCT03701334
http://clinicaltrials.gov
http://clinicaltrials.gov
https://clinicaltrials.gov/ct2/show/NCT02576431
https://clinicaltrials.gov/ct2/show/NCT02576431
http://clinicaltrials.gov
http://clinicaltrials.gov
https://clinicaltrials.gov/ct2/show/NCT02568267
https://clinicaltrials.gov/ct2/show/NCT02568267
https://clinicaltrials.gov/ct2/show/NCT03422523
https://clinicaltrials.gov/ct2/show/NCT03422523


Contemporary Clinical Trials Communications 30 (2022) 101000

4

Table 2 is not exhaustive, and excludes some notable classes of 
models, such as MAP models [42]. Note that while MAP models are most 
appropriate for settings where there are multiple external data sources, 
our context considers an alternative scenario where borrowing is only 
from one external data source. 

2.2. Proposed “two-step” borrowing method 

2.2.1. Overview 
We propose a simple “two-step” dynamic borrowing procedure as 

follows:  

1. Fit a regression model to the randomized control and external control 
cohort and estimate the hazard ratio (HR) between the groups, 
HRRWD to estimate residual bias between the two cohorts. Note that 
this step does not involve data for the experimental group. Then, 
estimate the cohort-level downweighting amount, analogous to the 
power prior parameter as a function of the HR. The weight function 

w = f(HRRWD) can be any function that fulfills the following 
criteria: 1) bounded between 0 and 1 (to allow downweighting 
anywhere from all to none of the external cohort), and 2) mono-
tonically increases with increasing HRRWD (to allow for more 
downweighting with higher bias between trial and RWD control 
groups). In our illustrations, we used one example of the weight 
function w = exp( − c|log(HRRWD)|), where c > 0 is a constant decay 
factor selected via simulations that optimize type 1 error and power 
(see Fig. 2a.) Another example of a weight function is a step function 
where w = 1 when |log(HRRWD)| = 0 and then drops to w = 0 at an 
appropriately chosen value of |log(HRRWD)|, equivalent to a test- 
then-pool procedure for a point null hypothesis. Other weight func-
tions may also be considered.  

2. Fit a second regression model to a dataset containing both the trial 
and external patients, giving a weight of 1 to all trial patients and a 
weight of w to all external patients. The second model is used to 
estimate the treatment effect of the experimental therapy versus the 
control therapy. 

Table 2 
Common classes of borrowing methods.  

Statistical method Description Tuning parameter Pros/cons 

Static  
Power prior with fixed power 

parameter (Chen et al., 
2000; Ibrahim et al., 2000) 

The contribution of each external patient to 
the likelihood is weighted by a common 
“power parameter” between 0 and 1. 
Typically implemented as a Bayesian model. 

Power parameter: Setting it to 1 is equivalent to 
pooling, and setting it to 0 is equivalent to 
ignoring external data 

Pro: Simple and interpretable downweighting 
factor 
Con: Does not cap type I error inflation or 
decreases in power 

Dynamic  
Test-then-pool (Viele et al., 

2014) 
A hypothesis test is done to compare the 
outcomes of external and trial controls after 
steps 1–3.  
● For point null hypotheses, the data are 

pooleda if the null hypothesis of no 
difference is not rejected, and is ignored 
otherwise.  

● For non-equivalency null hypotheses, 
the external data are pooled if the null is 
rejected, and is ignored otherwise 

For point null hypotheses:  
● The significance level of the test (smaller 

alpha makes it more difficult to reject the 
null, and thus more likely to pool) 

For non-equivalency null hypotheses:  
● The significance level of the test (smaller 

alpha results in wider confidence intervals, 
making it harder to reject the null and thus 
less likely to pool)  

● The equivalency bounds (larger bounds are 
more likely to contain the confidence 
interval, thus making it more likely to reject 
the null and pool) 

Pro:   

● Simple  
● Does not require outcome data for 

experimental group to determine 
downweighting factor 

Con: All or nothing approach, resulting in 
greater variability and uncertainty about how 
much information will be borrowed 

Adaptive/modified power 
prior model (Duan et al., 
2006; Neuenschwander 
et al., 2009) 

Similar to the (static) power prior, but the 
power parameter is given a prior 
distribution and allowed to be selected 
based on the data. The power parameter is 
estimated simultaneously with all other 
parameters in the model, including the 
treatment effect. 

Hyperpriors on the power parameter Pro: Retains some of the interpretability of the 
fixed power prior method 
Con:   

● Can be difficult to implement in standard 
software and can be computationally 
intensive  

● Requires outcome data on experimental 
group to estimate the downweighting factor 

Frequentist version of 
modified power prior (See 
two-step approach in Web 
Appendix A) 

Step 1: A regression model is fit to the 
external and trial controls to estimate the 
HR between these two arms. The estimated 
HR is mapped to a downweighting factor, 
such that HRs near 1 give a downweighting 
factor close to 1 and HRs far from 1 give a 
downweighting factor close to 0. 
Step 2: A second regression model is fit to 
the pooled external and trial data, giving all 
external patients the common 
downweighting factor determined in step 1 
and giving all trial patients a weight of 1. 

The rate at which the common weights decay to 
0 as the HR moves away from 1. For example, the 
downweighting factor could be defined by the 
function w = exp(c *|log(HR)|) for a tuning 
parameter c > 0. Larger values of c result in a 
faster decay to 0 as the HR moves away from 1. 

Pro:   

● Simple and interpretable downweighting 
factor that is chosen dynamically  

● Does not require outcome data from 
experimental group to determine 
downweighting factor, as the 
downweighting factor is determined in step 
1 and outcome data for the experimental 
group is not required until step 2 

Con: Still pending a full evaluation of 
performance in different settings 

Commensurate prior model 
(Hobbs et al., 2011, 2012) 

The outcomes in the randomized controls 
are centered around the outcomes in the 
external controls. For example, the log 
hazard rate of the trial controls might be 
given a normal prior, centered around the 
log hazard in the external controls and with 
hyperprior on the precision of the normal 
prior. 

The hyperpriors on the precision of the normal 
distribution that shrinks the hazard rate in the 
randomized controls toward the hazard rate in 
the external controls. The more this precision is 
pushed toward zero, the less the hazard in the 
trial controls is shrunk toward the hazard in the 
external controls and the more the external 
controls are effectively downweighted. 

Pro: Dynamic Bayesian borrowing method that 
is straightforward to implement in standard 
software 
Con:   

● Downweighting is implicit, so can be more 
difficult to interpret the amount of 
borrowed information.  

● Requires outcome data on experimental 
group to estimate the downweighting factor  

a In this context, pooling refers to combining RWD and trial control data into a single dataset that is then analyzed as though the data were collected together. 
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While we used an exponential model in steps 1 and 2 in the simu-
lations of Section 3, it would be straightforward to use a different type of 
model instead, such as a Weibull or Cox model. Regardless, the same 
type of model should be used in both steps so that the weights deter-
mined in step 1 accurately reflect the amount of residual bias for the 
model used in step 2. 

2.2.2. Details 
In more detail, let zi,exp and zi,ext be indicators for whether patient i is 

in the experimental arm or external cohort, respectively. Also, let Dexp, 
Dctr, and Dext be tabular datasets (all with the same columns and one row 
per patient) containing data on patients in the experimental arm, control 
arm, and external cohort, respectively. Suppose that a proportional 
hazards model is prespecified for the trial analysis. 

In step 1 or our proposed approach, the analyst would fit the model 
λ(t; zi,ext , βext) = λ0(t)exp(βext zi,ext) using the concatenated row bound 
pooled dataset (Dctr, Dext), where λ(t) is the hazard at time t and λ0(t) is 
the baseline hazard at time t. Note that Dexp is not involved in step 1, as 
data on patients in the experimental arm are not required. The dynamic 
borrowing weight would then be calculated as w = exp( − c|β̂ext |) where 
the decay factor c is determined prior to analyzing the data through a 
simulation similar to that in Section 3, in which many values of c are 
tried in a grid search and one value is selected to achieve the desired 
operating characteristics. 

In step 2 of our proposed approach, the analyst would fit the model 
λ(t; zi,exp, βexp) = λ0(t)exp(βexp zi,exp) using the concatenated row bound 
dataset (Dctr, Dext , Dexp), providing the weight w to all external patients 
and a weight of 1 to all trial patients. The estimate of the log HR βexp and 
its associated confidence intervals would then be used to determine the 
effect of the experimental therapy. 

As shown in Fig. 2a., the proposed formula for the weight is equal to 
1 if HRRWD between the randomized and external controls is equal to 1, 

and decays to 0 as the HRRWD moves away from 1. Values of c represent a 
tradeoff between type 1 error and power for the trial: larger values of c 
result in quicker weight decays, less borrowing, and correspondingly a 
lower type 1 error at the expense of lower power. Though the weight w is 
selected dynamically as a function of the data, the procedure for 
determining the weight (setting the value of c) is specified prior to 
inspecting and analyzing the data. This is a frequentist analog to the 
modified power prior, where the weight w is comparable to the power 
parameter. However, unlike the modified power prior, calculation of w 
is straightforward and not computationally intensive. 

2.3. Data considerations 

2.3.1. Treatment time period and data collection methods 
Fully contemporaneous external data including only patients who 

start therapy after the first patient enrolled in the trial and prior to the 
last patient enrolled would provide the strongest evidence [26]. How-
ever, if SOC and diagnostic practices have remained stable in the setting 
of interest, and there is no evidence of outcome drift prior to the start of 
the trial, it may be possible to include historical real-world patients. This 
could increase the size of the external cohort, which could be particu-
larly relevant for rare diseases. If historical patients are included in the 
real-world cohort, comparability of follow-up times between external 
and trial patients may be assessed with methodologies such as the 
reverse Kaplan Meier method [43]. To account for potential differential 
follow-up times, outcomes may be censored to a pre-specified maximum 
duration (e.g. censor all events happening after the trial follow-up 
duration), as long as the censoring algorithm is applied 
non-differentially across all cohorts. 

In addition to the time period of data collection (historical vs 
contemporaneous, or a mixture of the two), data on the external cohort 
can be collected either prospectively or retrospectively. Most EHR data 

Fig. 2a. Simulation results. X-axis values smaller than 1 indicate that external controls have longer median time-to-event than randomized controls after steps 1–3, 
and x-axis values larger than 1 indicate that external controls have shorter median time-to-event than randomized controls after steps 1–3. In practice, the full range 
of residual bias shown on the x-axis may not be relevant (see Section 4.4). 
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is collected retrospectively without the express purpose of supporting 
research. However, it is also possible to select patients in a prospectively 
designed real-world study and follow them through the EHR [44]. While 
retrospective data capture is less burdensome, prospective intentional 
data capture may allow for better alignment between the randomized 
and real-world cohorts. 

2.3.2. Assessment of potential benefits 
The assessment and magnitude of potential benefits of a hybrid 

controlled trial approach is specific to the trial at hand and depends on 
several factors and assumptions. 

Web Appendix C provides a framework for making these assessments 
with an illustration for a trial similar to IMpassion130 [33], where a 
potential reduction of the patients randomized to the control arm by half 
(by effectively accruing enough control patients in the external data 
source after accounting for downweighting) might have made it possible 
to reduce the number of new patients enrolled to the trial by 225 pa-
tients yet maintaining required power, read out the study 4 months 
early, and enroll patients 2:1 (experimental:control) as opposed to 1:1. 

3. Simulation study design 

To demonstrate how borrowing methods perform, we simulated data 
resembling a modified IMpassion130 trial [33] if the trial had used a 2:1 
instead of a 1:1 randomization ratio, and had been able to effectively 
borrow half of the control patients from an external data source. Spe-
cifically, each simulated dataset had N = 450 trial experimental, N =
225 trial control, and N = 225 expected external RWD events available 
to borrow. The simulation setup maintained the overall N = 900 sample 
size of the IMPassion130 trial at its design of 88% power, but with some 
events coming from the external data source as a hybrid control arm. 

To illustrate the performance of statistical borrowing methods across 
a variety of scenarios plausible in practice, we considered a range of 
experimental treatment effects, HRExp, that were more effective or less 
effective compared to that hypothesized in the IMPassion130 trial 
(HRExp = 0.78). We also considered values of residual bias between the 
external real-world (RWD) and randomized controls, HRRWD, ranging 
from no bias (HRRWD = 1) to extreme bias scenarios where the RWD 
patients were expected to have worse (HRRWD > 1) or better outcomes 
(HRRWD < 1) compared to the trial controls. Additional details of the 
simulation study parameter and values are shown in Table 3 and details 
of the data generating process, model specifications, and metrics are in 
Web Appendix B. 

For each parameter combination, we simulated 1000 datasets and 
illustrated performance of five different statistical borrowing methods: 
1) commensurate prior model, 2) test-then-pool procedure with a point 
null hypothesis, 3) our proposed two-step procedure with an exponen-
tial model, 4) power prior model with a fixed power parameter (“static 
power prior”), and 5) an exponential model to the trial data only (no 
borrowing) for reference. While methods 1–3 are dynamic borrowing 
approaches, method 4 was a static borrowing method. We averaged the 
results over the 1000 simulated datasets to compute the average number 
of effectively borrowed external events, the type I error rate and power 
for a one-sided hypothesis test at a 0.025 significance level, the mean 
squared error and bias of the log hazard ratio comparing experimental 
and control arms, and the standard deviation of the number of events 
effectively borrowed (See Web Appendix B for details). 

These simulations are intended to reflect the type of assessments that 
might be done at the design stage of a hybrid controlled trial. They 
emulate a study design in which the external control arm is fully con-
current, and the final analysis is triggered by the total number of events 
that have occurred across the trial and external arms (downweighting 
the events in the external arm based on a priori assumptions regarding 
how much information will be effectively borrowed). 

As noted above and detailed in Web Appendix B, each borrowing 
method has a tuning parameter. For each dynamic borrowing method, 

we used grid search to select tuning parameters that would result in the 
lowest type I error while maintaining 88% power for the target HRExp 
under no residual bias. The approach of minimizing type 1 error at a 
fixed power (instead of maximizing power at a fixed type 1 error) was 
used to select c to allow for comparisons across static and dynamic 
borrowing methods. While dynamic borrowing methods cap the 
maximum type I error rate over a range of residual biases (of which the 
actual value is unknown in practice), static borrowing methods do not 
cap the type I error rate (as they are data agnostic). To enable the side- 
by-side comparisons of static and dynamic borrowing methods in a 
practical scenario, we therefore fixed the power under no residual bias 
and examined potential type I error inflation across a range of residual 
biases. 

4. Simulation results 

Fig. 2b shows the simulation results for the average number of 
effectively borrowed external events, power (probability of rejecting the 
null when HRExp < 1), and type I error (probability of rejecting the null 
when HRExp = 1). Scenarios to the left of the x-axis represent longer 
median survival in the external controls than randomized controls. With 
the tuning parameters selected in these simulations and for HRExp = 0.78 
and HRRWD = 1 (the target scenario under no residual bias), the 
commensurate prior model has 88.5% power, the test-then-pool pro-
cedure has 88.6% power, the two-step approach has 88.5% power, the 
power prior model with power parameter fixed at 0.6 has 90.2% power, 
and the reference model that does not borrow any information from 
external data has 74.1% power. 

As seen in Fig. 2b., the effective number of external events is greatest 
for the dynamic borrowing methods (commensurate, test-then-pool, and 
two-step) when the external patients introduce no bias (HRRWD = 1), and 
tapers off as the magnitude of the bias increases. For the static power 
prior model in this example, the effective number of events is always 

Table 3 
Simulation setup based on IMpassion13033.  

Parameter Values 

Experimental treatment effect: Hazard 
ratio between experimental and control 
arms of trial (HRExp) 

0.70 (More effective than expected) 
0.78 (Target HR, i.e. alternative 
hypothesis) 
0.85 (Less effective than expected) 
1.00 (No treatment effect) 

Residual bias: Hazard ratio between real- 
world controls and randomized 
controls after careful alignment on I/E 
criteria, covariate balancing, and 
alignment of endpoints, index dates, 
and follow-up time (HRRWD) 
(composite bias) 

Range from 0.5 to 2 by 0.1 (i.e. 0.5, 0.6, 
…, 1.9, 2.0): 
0.5 (Extreme): External patients have 
longer median time-to-event than 
randomized controls 
1 (No bias) 
2 (Extreme): External patients have 
shorter median time-to-event than 
randomized controls 

Expected downweighting factor for 
external controlsa 

0.6 

Total number of patients in RCT (control 
+ experimental) 

675 (out of 900 planned in 
IMpassion130) 

Number of external patients potentially 
available to borrow 

375 (resulting in an expected 375 * 0.6 
= 225 effectively borrowed external 
patients) 

Randomization ratio in trial 2:1 (experimental:control) 
Target number of events (control +

experimental + downweighted external 
control) 

655 

Percent lost to follow-up in both the trial 
and external data source 

5% 

Accrual rate in trial 34 patients per month 
Significance level for hypothesis test of 

experimental treatment effect 
0.025 one-sided  

a At the time of study design, the downweighting factor is known with cer-
tainty if using a power prior model with fixed power parameter, and is predicted 
if using a dynamic borrowing method. 
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60% of the total number of external events. As noted above, there tends 
to be a greater number of external events as HRRWD increases due to the 
assumption of equal follow-up time for all groups. Also as noted above, 
there is a decrease in the number of external events as HRExp increases to 
1 (moving from left column to right of Fig. 2b.) because the hazard in the 
experimental group becomes similar to that in the control arm, and thus 
more of the total events occur in the experimental group. This can be 
seen in the results for the test-then-pool, two-step, and power prior 
methods. Interestingly, the same trend does not occur for the 
commensurate prior model. 

Regarding power, the left-most panel (HRExp = 0.7) represents an 
overpowered study, so all methods tend to have near 100% power 
regardless of residual bias and the number of external events borrowed, 
except for the static power prior model for which power can be 
dramatically impacted if there is large residual bias. The second column 
from the left (HRExp = 0.78) represents the expected experimental 
treatment effect. The horizontal line is at 88%, which corresponds to the 
designed power of the IMpassion130 trial. All borrowing methods ach-
ieve 88% power when there is no residual bias (HRRWD = 1) even though 
the target number of events was not reached with only trial patients. For 
all methods, power decreases as fewer events are borrowed. This 
decrease is more pronounced when the median survival in the external 
controls is longer than in the randomized controls (HRRWD < 1), because 
the few effectively borrowed events reflect a longer median OS, sug-
gesting that the experimental treatment effect is smaller than it is in 
truth. The third column from the left (HRExp 0.85) represents a scenario 
in which the experimental treatment effect is not as strong as antici-
pated. Hence the power is shifted downward, but the trends are other-
wise similar to the scenario in which HRExp = 0.78. The fourth column 
from the left (HRExp = 1) represents a scenario in which the experiment 

treatment has no effect, which is required to assess type I error, as dis-
cussed below. 

The type I error can be dramatically inflated for the power prior 
method under large residual bias (HRRWD near 2 when HRExp = 1). 
However, the dynamic borrowing methods all cap the type I error (max 
type I error rate of 0.13 for test-then-pool, 0.12 for the commensurate 
prior model, and 0.097 for the two-step regression), which is shown in 
Fig. 3; these are the same results shown in Fig. 2b., but excluding the 
static power prior model and with a different y-axis scale. For these 
simulations and choice of turning parameters, type I error increases for 
moderate residual bias (HRRWD near 1.2). However, as the residual bias 
continues to move away from 1, the models stop borrowing, in turn 
decreasing type I error. This is a key property of dynamic borrowing 
methods [37]. We also note that type I error decreases below the nom-
inal rate when the median survival in the external controls is longer than 
in the randomized controls (HRRWD < 1); this is for the same reason that 
power also decreases in this setting. As the residual bias becomes larger 
(HRRWD > 1.2–1.3), and less information is borrowed from the external 
data, type I error decreases. 

By carefully selecting the tuning parameters of the dynamic 
borrowing methods, we were able to achieve fairly similar performance 
with the commensurate prior, test-then-pool, and two-step methods. 
However, in order to obtain 88% in the target scenario with no bias 
(HRExp = 0.78 and HRRWD = 1), the test-then-pool approach incurred the 
largest max type I error inflation, followed by the commensurate prior 
model and two-step approach (see Fig. 3). The commensurate prior 
model is more sensitive to residual bias than the two-step approach in 
these simulations, as seen by the greater type I error inflation and 
decrease in power, though it might be possible to improve the perfor-
mance of the commensurate prior model by using a spike-and-slab prior 
[41] instead of the Half-Cauchy prior we used in these simulations (see 
Web Appendix B). However, the spike-and-slab prior is also more diffi-
cult to tune. 

Web Appendix B also shows results for the mean squared error (MSE) 
and bias of log(HRExp), as well as the standard deviation of the number 
of external events effectively borrowed. 

4.1. Assessment of risk and benefits 

As noted above, all of these methods have a tuning parameter that 
can adjust how much is borrowed, which results in different risk/benefit 
trade-offs [37]. Risk refers to potential inflation of type I error or 
decrease in power, and benefits refers to potential increases in power, 
timeline savings, or randomization ratios that allocate more patients to 
the experimental arm. Fig. 3 shows the simulation results for the 
two-step method with three different tuning parameters, as well as with 
a model that is fit to the trial data only (no borrowing). As c increases, 
the weight decays to 0 faster and borrowing is less likely. This results in 
lower type I error rates and less of a power decrease when there is 

Fig. 2b. Same results for type I error, excluding power prior model and with a 
different y-axis scale. In practice, the full range of residual bias shown on the x- 
axis may not be relevant (see Section 4.4). 

Fig. 3. Two-step procedure with different risk/benefit profiles. In practice, the full range of residual bias shown on the x-axis may not be relevant.  
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residual bias, but also lower power when there is no residual bias. 
Similar trends are observed with the other methods [37]. 

By itself, the results shown in Fig. 2a and b., and 3 may not provide 
adequate information to support a study team’s decision on which risk/ 
benefit profile they prefer. This decision may depend on the amount of 
residual bias expected in that setting, and the purpose of the trial. To 
make an informed decision, a study team would need to assess how 
much bias might be introduced by the external controls after careful 
cohort selection, covariate balancing, and endpoint, index date, and 
follow-up alignment (steps 1–3). While it is impossible to know exactly 
how much residual bias there will be in a particular study, it may be 
possible to build a body of evidence to suggest likely/plausible sce-
narios. In particular, by replicating the control arms of recently 
completed studies (ie, following steps 1–3 and then comparing outcomes 
with the randomized control) in the same disease area and trial setting, 
and with the same external data source, it may be possible to develop 
empirical evidence for how much residual bias might be expected. The 
operating characteristics of the trial (type I error and power) could then 
be evaluated accordingly. 

For example, Carrigan et al. [19] applied steps 1–3 to Flatiron 
Health’s nationwide EHR-derived de-identified database to emulate the 
control arms of eleven trials in advanced non-small cell lung cancer 
(aNSCLC), and found that nine trials had a residual bias HRRWD (ob-
tained by exponentiating the ‘Difference in ln(HR)’ column of Table 1 in 
that report) between 0.96 and 1.10 for the Overall Survival (OS) 
endpoint [19]. These authors speculated that this large residual bias was 
in part due to the enrichment in the trial population of 
mesenchymal-to-epithelial transition (MET) positive patients, not 
accounted for in steps 1–3 [19]. 

Similarly, Tan et al. (2021) studied 15 trials across multiple tumor 
types and found that the majority of trials had HRRWD ranging from 0.66 
to 1.09 for the OS endpoint [23]. Such evaluations provide a sense of 
how much residual bias may be plausible and relevant when selecting 
the value of tuning parameters and assessing the overall suitability of a 
hybrid design for a future cancer trials with similar I/E criteria. An 
evaluation in mTNBC, either based on clinical judgment or an analysis 
similar to Carrigan et al. or Tan et al. [19,23], could help to select the 
value of tuning parameters and assess overall suitability of a hybrid 
design for a future mTNBC trial. 

5. Discussion 

Hybrid controlled trials with external RWD have the potential to 
improve the efficiency of cancer drug development, which could be 
particularly beneficial in disease settings with low prevalence or long 
times to event, or for which the SOC has low clinical benefit and/or is 
very toxic. While we have primarily focused on two-arm designs in this 
paper, hybrid control arms could also be extended to multi-arm designs, 
including platform trials, where several experimental arms are evalu-
ated against a single, shared control arm [45]. Hybrid control arms can 
be constructed by assessing the borrowing of external data to the shared 
control arm, and then evaluating treatment effects of multiple experi-
mental arms separately. 

Prior to borrowing information from an external source, it is critical 
to assess whether the external data are fit for purpose. This evaluation 
involves many factors related to the ability to apply the trial’s eligibility 
criteria to the external dataset (including biomarker and/or genomic 
information if required), to achieve covariate balance on clinically 
prognostic characteristics, and to align endpoint definitions, index 
dates, and follow-up time [17,22,46]. 

If the data are deemed fit for purpose, then statistical borrowing 
methods provide a principled way to protect against unknown or un-
observable sources of residual bias that persists after alignment with 
clinical trial information. Our evaluation of borrowing methods varied 
across the dimensions of static versus dynamic, and Frequentist versus 
Bayesian. We found that dynamic borrowing methods such as the 

commensurate prior and two-step regression model tended to protect 
against type 1 error inflation over a range of residual bias; however, the 
exact amount of borrowing cannot be pre-specified and is dependent on 
data similarity. Frequentist dynamic borrowing methods such as the 
two-step regression model may have the additional advantages of ease of 
explaining the intuition (i.e. a weighted regression model) and ease of 
implementing in practice with existing software packages. Yet, there is 
no one-size-fits-all for every scenario, and therefore for a specific situ-
ation, simulations are critical to assess performance of several 
borrowing methods, as well as for selecting tuning parameters that 
result in the desired operating characteristics. 

While the analytical methods described herein help to address po-
tential discrepancies between the trial and external data source, it is 
always preferable to minimize these discrepancies at the beginning of 
the study to the extent possible. To this end, we note that treatment 
patterns in the real world typically follow standard guidelines, such as 
the National Comprehensive Cancer Network (NCCN) guidelines, and 
alignment of the trial protocol with these guidelines could reduce the 
need to rely on analytical methods later in the study to account for 
differences. Investigations into treatment patterns and patient charac-
teristics in the real-world can also help to inform trial protocols. 

As noted above, there is a history of conducting hybrid controlled 
trials in cancer, though typically with historical trial data as opposed to 
external RWD [38,45,47]. When bridging historic and current trials, 
patient populations, endpoint definitions, and assessment timings may 
be more similar between trials, as compared to RWD. However, RWD 
may be more recent or collected concurrently to the trial. Using his-
torical data can be problematic when SOCs (including supportive care) 
or diagnostic methods have evolved over time, or if I/E criteria have 
become more inclusive [26,48,49]. 

For registrational hybrid controlled trials, it could be important for 
the assessment of comparability between randomized and external 
controls to be conducted by an independent data monitoring committee 
in a pre-defined manner. Similar to the two-stage design [50–53], at the 
interim we recommend that an independent statistician implement the 
borrowing approach in addition to the weighting or matching. It is 
typically preferable to have early discussions with regulatory author-
ities; in the case of the US FDA, we recommend considering study design, 
operating characteristics of the borrowing methods, and format for 
submitting RWD [26,54], possibly through the Complex Innovative Trial 
Designs Pilot Program [49]. There are also operational features of 
hybrid control designs that require consideration. In particular, the time 
at which a sufficient number of events have occurred to make an interim 
assessment on how much information to borrow from the external 
cohort may occur when the trial is already or nearly fully enrolled. 
Timing of assessment may be an even more crucial issue when using 
hybrid controlled designs for platform trials, where multiple experi-
mental treatments are compared against a single control arm using a 
master protocol, especially if the multiple experimental treatment arms 
start enrolling at different time points. Furthermore, if the study team 
had been planning to borrow information from the external data source 
but the interim assessment shows that it will not be possible, then the 
trial could potentially be underpowered. In order to mitigate these risks, 
additional research is needed to develop and assess decision criteria that 
can be applied early in a trial’s enrollment. 

In addition, there are many methodological areas for future research 
to adapt and evaluate borrowing methods for use with external RWD. In 
particular, it will be important to develop methods for incorporating 
covariate balancing weights into borrowing methods, including weights 
to balance post-baseline characteristics and treatment patterns such as 
differences in treatment duration and subsequent therapies [17,55]. 
There has already been initial work done in this area [40], but as 
described above and in Web Appendix A, we think there may be op-
portunities for simpler solutions that retain a clear causal estimand. 
There is also a need to evaluate borrowing methods with simulations 
that reflect the many nuances of RWD, such as missing data and 
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differential treatment duration, assessment timing, and 
loss-to-follow-up. 

6. Conclusion 

This methodological work is done against the backdrop of a large 
medical need. Nearly two million new cancer cases in the United States 
are projected for 2022 [56] but only a small fraction will enroll in a 
clinical trial [57]. Hybrid controlled trials leverage the overlap between 
clinical trial protocols and routine care, using valuable patient resources 
more efficiently to better meet the high unmet needs of patients with 
cancer. As with any use of RWD, the data sources need to be carefully 
assessed on a case-by-case basis to ensure the data are fit for purpose, 
and the operating characteristics of the statistical methods need to be 
assessed through simulations that mimic the trial at hand. By pairing 
high-quality external data with rigorous simulations, researchers have 
the potential to design hybrid controlled trials that better meet the needs 
of drug development and patients. 
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