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Abstract

Some species of fusaria are well- known pathogens of humans, animals and plants. Fusarium oxysporum and Neocosmospora 
solani (formerly Fusarium solani) cause human infections that range from onychomycosis or keratitis to severe disseminated 
infections. In general, these infections are difficult to treat due to poor therapeutic responses in immunocompromised patients. 
Despite that, little is known about the molecular mechanisms and transcriptional changes responsible for the antifungal resist-
ance in fusaria. To shed light on the transcriptional response to antifungals, we carried out the first reported high- throughput 
RNA- seq analysis for F. oxysporum and N. solani that had been exposed to amphotericin B (AMB) and posaconazole (PSC). We 
detected significant differences between the transcriptional profiles of the two species and we found that some oxidation- 
reduction, metabolic, cellular and transport processes were regulated differentially by both fungi. The same was found with 
several genes from the ergosterol synthesis, efflux pumps, oxidative stress response and membrane biosynthesis pathways. A 
significant up- regulation of the C-22 sterol desaturase (ERG5), the sterol 24- C- methyltransferase (ERG6) gene, the glutathione 
S- transferase (GST) gene and of several members of the major facilitator superfamily (MSF) was demonstrated in this study 
after treating F. oxysporum with AMB. These results offer a good overview of transcriptional changes after exposure to com-
monly used antifungals, highlights the genes that are related to resistance mechanisms of these fungi, which will be a valuable 
tool for identifying causes of failure of treatments.

InTRoduCTIon
Some members of the genera Fusarium and Neocosmospora 
are well known as human and plant pathogens [1]. In recent 
decades, human fusariosis cases have increased, becoming 
the second most common infections caused by molds after 

aspergillosis [2]. The illnesses caused by these fungi range 
from superficial to more severe and invasive, and disseminated 
infections that affect both immunocompetent and immuno-
compromised patients [3]. The main species responsible for 
fusariosis infections belong to the F. solani species complex 
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(FSSC), recently reclassified into the Neocosmospora genus [4] 
and F. oxysporum species complex (FOSC) [5, 6]. These infec-
tions are very difficult to manage and show poor therapeutic 
response. The survival rate is very low, particularly in patients 
who have persistent neutropenia [7]. The general conditions 
of the host and the broad spectrum of antifungal resistance of 
Fusarium are factors that explain the clinical resistance. As a 
therapeutic management, voriconazole and lipid formulations 
of amphotericin B (AMB) are the recommended drugs for 
fusariosis treatment [8]. Nevertheless, other antifungals, such 
as itraconazole (ITC) and posaconazole (PSC) are also used, 
mainly in refractory cases or in patients with an intolerance 
to the other therapies [9, 10].

Currently, it is known that the cytochrome P450 lanosterol 
14-α demethylase (EGR11 syn Cyp51) is the target of azoles. 
This enzyme is responsible for the oxidative removal of 
the 14α-methyl group of lanosterol, an essential step in 
ergosterol biosynthesis [2]. Ergosterol, which is not in 
human cells, is an important compound of the fungal cell 
membrane. This molecule is the target for polyenes like 
AMB. When the AMB binds to ergosterol, the membrane is 
weakened and then causes a pore formation that generates 
an ionic imbalance and oxidative damage, and subsequent 
cell death [2, 8].

Several resistance mechanisms have been identified in fungal 
pathogens [11]. For the last antifungal compound, resistance 
has been linked to the production of enzymes, such as catalase 
and dehydrogenases, in response to oxidative stress [12], as 
well as SNPs and mutations in ERG3 and ERG6 genes [13], 
which lead to a lower synthesis of ergosterol and, as a result, 
therapeutic target loss [14, 15].

In azole resistance, chromosome duplications, promoter 
modifications and mutations in the CYP51 gene have been 
reported in both molds and yeasts [16–18]. These changes 
in the gene that codes for the therapeutic target, implies an 
increase in the lanosterol synthesis for molds and modifica-
tions in yeasts. In several species of Fusarium, including  
F. oxysporum, the presence of three CYP51 paralogues was 
found, with CYP51c being unique for this genus [19]. In 
addition, the presence of efflux pumps, such as those of the 
major facilitator superfamily (MFS) and the superfamily of 
the ATP- binding cassette (MDR syn. ABC) transporters, has 
been associated with azole resistance [14, 20, 21]. This resist-
ance mechanism aims to reduce the intracellular antifungal 
and thus avoid reaching the lethal dose. In Fusarium, several 
putative ABC transporters and associated proteins [22] as well 
as efflux pumps are useful for expulsing xenobiotics [23] and 
antifungal compounds, especially azoles [1]. Furthermore, 
the enzyme produced in response to oxidative stress has been 
reported to be peroxidase [24, 25].

To improve the knowledge of the molecular mechanisms 
of antifungal resistance in Fusarium and related genera, we 
aimed to identify the differentially expressed genes (DEGs) in 
two reference pathogenic strains, i.e. F. oxysporum FMR 9788 
and N. solani FMR 4391 (formerly F. solani), both exposed 
to AMB and PSC, to detect genes previously associated with 

resistance to these compounds in other human and plant 
pathogenic fungi.

METHodS
Fungal strains
Two previously identified fungal strains were used in this 
study: N. solani (formerly F. solani), clinical (FMR 4391 
human blood, USA) [26] and F. oxysporum, agricultural 
(FMR 9788=NRRL 25429=CBS 174.30 Plant, Gossypium 
hirsutum, Egypt) [27]. The susceptibility profiles reported 
previously (Table S1, available in the online version of this 
article) were used to determine the sublethal concentrations 
of the antifungals that were tested in this study (AMB and 
PSC). These concentrations corresponded to half of the 
MIC and were used to induce changes in the transcriptional 
profiles without causing the death of the fungal strains. The 
strains were provided by the culture collection at the Medicine 
Faculty of Reus (FMR; Spain) and deposited in the Grupo 
de Investigación Celular y Molecular de Microorganismos 
Patógenos (CeMoP), Departamento de Ciencias Biológicas, 
as well as conserved in the Museo de Historia Natural of 
Universidad de los Andes, Colombia.

Culture conditions and inoculum production
Strains were grown on Potato Dextrose Agar (PDA; Oxoid, 
Basingstoke, UK) at 25 °C for 10 days. Cultures were flooded 
in a sterile saline solution and filtered to remove cellular and 
mycelial clumps. The conidial suspensions were adjusted 
to the desired concentration of 1×105 conidia ml−1 using a 
Neubauer camera. The conidial concentration and viability 
of the inoculum were verified by subsequent serial plating 
on PDA plates.

Antifungal treatments with AMB and PSC
A suspension of 105 conidia ml−1 was inoculated into 50 ml 
of yeast peptone glucose broth (YPD; yeast extract 10 g l−1, 
peptone 10 g l−1, dextrose 20 g l−1) and incubated at 25 °C for 
7 days with agitation at 150 r.p.m. [28]. Mycelia were then 
collected by filtration and incubated in fresh YPD broth 
supplemented with sublethal concentrations of each anti-
fungal. For AMB concentrations of 0.5 mg l−1 and 1 mg l−1 were 
used for N. solani and F. oxysporum respectively, while for 
PSC 8 mg l−1 concentrations were used for both fungi, which 
corresponded to half of the MIC (Table S1).

Antifungals were diluted to obtain a stock solution of 
1600 mg l−1 in DMSO (Merck, Darmstadt, Germany), which 
was stored at −20 °C. For the control treatment (NCT), YPG 
broth was used, supplemented with DMSO to a final concen-
tration of 1 %. Samples were then incubated for 48 h with the 
antifungals, as previously described. Each treatment was 
carried out in triplicate (technical replicates), and the whole 
experiment was repeated three times (biological replicates). 
Technical replicates were pooled before RNA extraction, 
which was performed independently for each of the biological 
replicates.
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Total RnA extraction of mycelia
Mycelia were collected by filtration and macerated in liquid 
nitrogen using a mortar and pestle and the total RNA was 
then extracted using the hot acidic phenol method [29]. The 
quantity and purity of nucleic acids were determined using 
a NanoDrop ND-1000 UV- VIS spectrophotometer (Thermo 
Scientific, MA, USA), agarose gel electrophoresis, and a 
BioAnalyzer 2100 (Agilent Technologies, CA, USA).

RnA sequencing
RNA sequencing for each sample was performed at BGI 
on an Illumina HiSeq 2000 instrument using paired- end 
tags and strand- specific chemistry. A total of 18 libraries 
were constructed to identify the gene expression profiles of  
N. solani FMR 4391 and F. oxysporum FMR 9788 when 
exposed to AMB or PSC. These libraries included three 
replicates of (i) N. solani and F. oxysporum isolates exposed 
to amphotericin B; (ii) N. solani and F. oxysporum isolates 
exposed to posaconazole; and (iii) N. solani and F. oxysporum 
isolates exposed to DMSO as a negative control.

To visually inspect the raw reads, we performed quality control 
using FastQC [30]. Reads were then clipped, quality- trimmed 
and quality- filtered (with a minimum read length of 60 bps 
and a quality threshold of 20) using FLEXBAR [31]. After the 
clean- up process, we used TopHat2 [32] to map all paired-
 end tag (PET) reads to the corresponding reference genomes. 
More specifically, reads from Fusarium oxysporum. sp. lyco-
persici strain 4287 were mapped to the current version of the 
genome [33], and N. solani reads were mapped to the latest 
version of the genomes of Nectria haematococca (currently 
Neocosmospora haematococca) MPVI isolates 77-13-4 (FGSC 
9596, Fungal Genetics Stock Center) and 77-13-7 [34].

Considering the quality of the sequences, two independent 
replicas of each condition were used to perform all further 
analyses. Expression levels were presented as fragments per 
kilobase of exon per million reads (FPKMs), and differential 
gene- expression analyses were performed using the CuffDiff2 
pipeline [35, 36]. Differentially expressed genes between the 
treated samples (PSC and AMB) and the control (DMSO) 
were calculated using a false discovery rate (FDR)≤10−3, an 
absolute fold change value (log2) ≥2 and a statistical signifi-
cance threshold of P- value<0.05. The pooled method was 
used for cross- replicate dispersion estimation.

data analysis
The database obtained from RNA- seq analyses from each 
treatment were used to determine gene- ontology (GO) 
mapping, annotation, enrichment analysis and functional 
interpretation. First, we filtered in the base the genes with 
a statistically significant log2 fold change (P- value<0.005), 
DEGs with –inf or inf values were replaced for the lower or 
higher log2 value of each treatment adding+1 or –1, respec-
tively. Next, we introduced the list of loci associated with each 
DEG into both the blast2GO application [37] and into the 
OmicsBox Base Platform version 1.2.4 (https://www. biobam. 
com/ omicsbox/? cn- reloaded= 1) in order to perform GO 

and obtained the GO terms. To avoid redundancy REVIGO 
(http:// revigo. irb. hr) [38] was used with a default parameter 
(allowed similarity=0.7). Next, that data was used to analyse 
associations and to determine which genes were shared 
among treatments via a Venn diagram from the online tool 
http:// bioinformatics. psb. ugent. be/ webtools/ Venn/. The 
heatmap containing only the DEGs associated with resist-
ance mechanisms, was constructed using R studio software 
(http://www. rstudio. org/) and the stat package ggplot2 (http:// 
ggplot2. org).

cdnA synthesis and qRT-PCR
Total RNA was treated with DNase I (Thermo Scientific, 
MA, USA) and reverse- transcribed using the iScript cDNA 
Synthesis Kit under the thermal cycling conditions recom-
mended by the manufacturer (BioRad, CA, USA). cDNA 
samples were stored at −80 °C for subsequent quantitative 
real- time polymerase chain reaction (qRT- PCR) analysis.

qRT- PCR assays were performed to validate the data obtained 
by RNA- seq analysis. Three DEGs were selected that had been 
detected by RNA- seq analysis in F. oxysporum when exposed 
to AMB and PSC treatments. The genes for which expres-
sion was assessed included the C-22 sterol desaturase (ERG5), 
gluconate 5 dehydrogenase (G5D) and aflatoxin pump efflux 
(AFLT). These genes have been linked to antifungal resistance 
in other fungi [2, 39–42]. Elongation factor 1 beta (EF1b) 
was used as the reference (normalizing) gene, the primer 
sequences of which are described in Table S2.

The QuantPrime platform [31] was used to design the qRT- 
PCR primers. Primers were designed with an annealing 
temperature of 60±0.5 °C and to span an exon- exon region 
border to avoid genomic DNA amplification. All primers 
were synthesized by IDT (Integrated DNA Technologies, IA, 
USA). The primer sequences used are shown in Table S2. All 
selected genes were amplified using the Maxima SYBR Green/
ROX qPCR Master Mix (Thermo Scientific, MA, USA). The 
qRT- PCR was carried out in a 7500 Fast Real- Time PCR 
System (Applied Biosystems, MA, USA). To calculate the 
cycle threshold (Ct), the reactions were made as follows: 50 °C 
for 2 min; 95 °C for 10 min; and 40 cycles of 95 °C for 15 s, 
60 °C for 1 min and 72 °C for 20 s values. This process was 
followed by 95 °C for 15 s, 60 °C for 1 min, 95 °C for 30 s, and 
then 60 °C for 15 s to obtain melt curves that would assess 
primer specificity. Each qRT- PCR was prepared in at least 
three replicates, and the amplification efficiency of each 
primer set was determined based on fivefold dilutions of the 
cDNA template.

The Pearson correlation coefficient was calculated for the 
Ct value of the qRT- PCR analysis and the log2 values. The 
Ct values for the target genes and the reference genes were 
compared to those in the control and treated samples and 
normalized relative to the Ct values obtained for the refer-
ence gene using the Relative Expression Software Tool 2009 
(REST) (http:// rest- 2009. gene- quantification. info/). The 
mathematical model accounted for differences in the ampli-
fication efficiencies of the reference gene and the target gene 

https://www.biobam.com/omicsbox/?cn-reloaded=1
https://www.biobam.com/omicsbox/?cn-reloaded=1
http://revigo.irb.hr
http://bioinformatics.psb.ugent.be/webtools/Venn/.
http://www.rstudio.org/
http://ggplot2.org
http://ggplot2.org
http://rest-2009.gene-quantification.info/
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and for the mean Ct deviation between the control and the 
treated conditions [43].

The expression ratio results were tested for significance by 
running a Pair Wise Reallocation Randomization Test with 
α=0.001 using the REST 2009 software [43].

RESuLTS
The transcriptional profiles of both F. oxysporum FMR 9788 
and N. solani (formerly F. solani) FMR 4391 were analysed 
to identify genes that might be involved in resistance to PSC 

or AMB. For both strains, RNA was extracted after 48 h 
of exposure to the antifungal drugs (or DMSO, negative 
control), and the resulting reads were mapped to the latest 
version of their respective reference genomes (as described 
in Methods). The set of statistical results from our RNA- seq 
data after the blast2Go analysis is shown in Table S3 and 
the raw reads are available at https://www. ncbi. nlm. nih. gov/ 
geo/ query/ acc. cgi? acc= GSE82060. As shown in Fig. 1a, we 
identified several DEGs in the transcriptome of F. oxysporum 
treated with AMB (407 genes) and PSC (84 genes) and in the 
transcriptome of N. solani when treated with AMB (103) and 

Fig. 1. Distribution of genes expressed in response to antifungal treatments. (a) Number of total DEGs and the corresponding number of 
up- and down- regulated genes in each treatment for F. oxysporum FMR 9788 and N. solani FMR 4391 after 48 h of exposure to AMB and 
PSC compared to levels in the negative control. (b) Venn diagram showing the number of differentially expressed and shared transcripts 
per species and treatment.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE82060
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE82060
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PSC (92 genes), which are given in Table S4. For the DEGs 
that are probably associated to antifungal resistance, we show 
the gene name, location and fold change with P- value<0.05 
in Table S5.

Initial analysis revealed significant differences 
among antifungal treatments and fungi
A total of 686 DEGs were identified in the two strains in 
response to the two antifungals (Fig. 1a, b), with a global 
result of 269 up- regulated genes and 417 down- regulated 
(Fig. 1b). To ascertain the molecular mechanisms involved 
in the response to these antifungals, we examined the func-
tional distributions of the regulated genes using blast2GO 
and OmicsBox. GO enrichment analysis allowed us to 
identify the functional categories under strong regula-
tion upon exposure to the antifungals. The 686 DEGs, 
identified through RNA- seq analysis, were represented 
in a wide variety of biological process terms such as lipid 
metabolic process, lipid catabolic process, lipid transport, 
transmembrane transport, vesicle- mediated transport, 
glutathione metabolic process, response to stress oxida-
tive and response to drug (Fig. 2). These are considered of 
interest because several genes involved in these biological 
processes have already been associated with antifungal 
resistance mechanisms in clinical and/or agricultural fungi 
[14, 15, 23].

Our results also show that the glutathione S- transferase 
(GST) gene was differentially regulated in AMB treatments, 
although in F. oxysporum it was significantly up- regulated 
while in N. solani it was down- regulated (Fig. 3, Table S5). 
This is a multifunctional protein related to detoxification 
processes and tolerance to oxidative stress and may be 
associated with the response to the damage caused by this 
antifungal tested. In the PSC treatments this gene remained 
unchanged.

In addition, F. oxysporum in the AMB treatment exhibited 
a significant change in the regulation of genes involved in 
lipid biosynthetic processes and ergosterol pathway, among 
which the sterol 24- C- methyltransferase (ERG 6), C-22 
sterol desaturase (ERG 5), cholestenol Delta- isomerase 
and different cytochrome P450 oxidoreductases genes were 
up- regulated (Fig. 3).

The AMB- treated and PSC- treated F. oxysporum shared 13 
DEGs (Fig. 1b), of which an efflux pump himE, a prob-
able glutathione S- transferase and two MFS transporter 
were of most relevance. For N. solani treatments (AMB 
and PSC) five DEGs were shared, with cell- wall protein 
SED1 and heat- shock protein 16 (HSP16) being the 
most important (Fig.  3). In both AMB treatments (for  
F. oxysporum and N. solani) five DEGs were shared, being 
mainly associated to putative proteins. Between the two 
PSC treatments (for F. oxysporum and N. solani), only the 
benzoate 4- monooxygenase gene was shared. Interestingly, 
sterol 24- C- methyltransferase (ERG6) was common to  
F. oxysporum AMB, PSC and N. solani PSC treatments.

Genes differentially expressed in F. oxysporum 
and N solani against AMB and PSC previously 
associated with resistance mechanisms in other 
fungi
Genes involved in the ergosterol synthesis pathway, 
sterol synthesis or related to membrane stability
In total, 26 DEGs were found in F. oxysporum for these 
pathways, 22 in response to AMB and 4 to PSC treat-
ments. For the latter, all genes were down- regulated and 
encode for cytochrome P450 proteins, ERG6 and carnitine 
O- acetyltransferase. In total for this category in the N. solani 
treatments, eight DEGs had transcriptional changes, two in 
the AMB treatment and the others in the PSC treatment, all 
of which were down- regulated. For the AMB treatment, the 
down- regulated genes are related to membrane stability.

In F. oxysporum with AMB treatment, some genes related to 
ergosterol biosynthesis, such as sterol 24- C- methyltransferase 
(ERG6), C-22 sterol desaturase (ERG5), cytochrome P450 
oxidoreductase (CPR) and three cytochrome P450 monooxy-
genase isoforms were up- regulated, as well as other lipid 
synthesis related genes, such as cholestenol delta- isomerase 
and several related to glucan. For this specific treatment, 
genes like 3- hydroxybutyryl- CoA dehydrogenase (HBD), 
Lipase 4 (LIP4), triacylglycerol lipase V precursor and lipid 
phosphate phosphatase 2 were found to be down- regulated 
(Fig.  3). As mentioned before, in N. solani with the PSC 
treatment the DEGs were down- regulated and correspond 
to one isoform of sterol 24- C- methyltransferase (ERG6), C-8 
sterol isomerase (ERG2), cytochrome P450 monooxygenase, 
cholestenol Delta- isomerase and lipase 4 (LIP4) (Fig.  3). 
As with F. oxysporum, N. solani did not have any ergosterol 
pathway gene up- regulated in the PSC treatment.

Notably, in F. oxysporum exposed to AMB, we found several 
up- regulated genes that were related to wall stability, such as 
the beta- glucanase (BGL), glucan endo-1,3- beta- glucosidase 
A1 (EBGA1), endo- beta-1,4- glucanase D (EGID) and glucan 
endo-1,6- beta- glucosidase B (EGIB). All of these genes can 
be related with resistance to antifungals (Fig. 3).

Genes involved in oxidation-reduction reactions 
and response to stress
We found that the gene that encodes for the GST enzyme was 
differentially expressed in the AMB treatments. In the case 
of F. oxysporum, it was up- regulated, while in N. solani it was 
down- regulated.

Eighteen genes involved in oxidation- reduction reactions 
and response to stress were differentially expressed in  
F. oxysporum against AMB and three against PSC treatments. 
For the latter, two genes were down- regulated and encode 
one FAD- dependent monooxygenase (HpaM), trichodiene 
oxygenase (Tri4) and one encodes a short- chain dehydroge-
nase, while the benzoate 4- monooxygenase was up- regulated. 
In AMB treatment, most DEGs were down- regulated, such as 
thioredoxin (TRX), gluconate 5- dehydrogenase (G5D), pro- 
apoptotic serine protease (PASP), epoxide hydrolase (EPHX), 
peroxisomal acyl- coenzyme A oxidase 1(ACOX1) and 
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short- chain dehydrogenase (SDR). Among the up- regulated 
genes in the AMB treatment were glutathione S- transferase 
(GST), NADPH oxidase (NOX), and NAD- dependent alde-
hyde dehydrogenase (NAD- DAD) (Fig. 3).

For this category, N. solani treated with AMB had four 
DEGS, the cell- wall SED1 (SED1) and sulfite oxidase genes 

were up- regulated. In this treatment important genes were 
down- regulated, such as glutathione S transferase (GST) 
and heat- shock protein 16 (HSP16) (Fig. 3). For this fungus 
under PSC treatment eight genes had transcriptional changes, 
the benzoate 4- monooxygenase cytochrome P450 (CYP53), 
gluconate 5- dehydrogenase (G5D), S- (hydroxymethyl) 

Fig. 2. GO based on functional categorization of the DEGs for each treatment and fungus. The significantly enriched (P- value < 0.05) GO 
categories are represented, containing the DEGs expressed by F. oxysporum FMR 9788 and N. solani FMR 4391 in response to AMB and 
PSC. On the x- axis is the respective GO erm (biological process) and, on the y- axis, the number of sequences in each GO term.
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glutathione dehydrogenase (GTSp), D/L- glyceraldehyde 
reductase (GLD1) and cell wall SED1 (SED1) genes were 
up- regulated, while the heat- shock protein 16 (HSP16) and 
short- chain dehydrogenase genes were down- regulated.

Genes involved in the transport of substances and 
efflux pumps
After PSC treatment, F. oxysporum showed four down- 
regulated genes: ABC multidrug transporter, efflux pumps 
himE (himE) and two MFS transporters (MFS), and only 
two were up- regulated: multidrug- resistant protein- related 
genes and fumarate mitochondrial transporter genes. For 
F. oxysporum against AMB, seven genes were up- regulated, 
the most important being the aflatoxin efflux pump (AFLT), 
efflux pump himE (himE), MFS transporter (MFS), major 
facilitator mirA and mirB related genes; nine genes were 
down- regulated, among which there were several isoforms 
of MFS and ABC multidrug transporters.

In addition, N. solani under AMB treatment had just three 
DEGs, corresponding to the ABC multidrug transporter 
(MDR1) gene, efflux pump and succinate/fumarate mito-
chondrial transporters, which were down- regulated. The 
only up- regulated gene in N. solani in this category was an 
aquaporin in the PSC treatment (Fig. 3); another four genes 
were down- regulated.

Validation of gene expression by qRT-PCR
High- throughput paired- end RNA sequencing (RNA- seq) 
technique is a powerful tool for quantifying and identifying 

mRNA expression profiles. Despite that being widely accepted 
[44, 45] we have corroborated our results by qRT- PCR, which 
is the gold standard for quantifying the level of expression of 
genes under different conditions [46]. We conducted qRT- 
PCR on ERG5, G5D and AFLT as gene makers normalized 
to the elongation factor 1 beta (EF1b) reference gene. The 
resulting expression levels agreed with the RNA- seq gene 
expression levels, confirming the obtained results from high- 
throughput sequencing (Table 1).

Table 1. Validation of differentially expressed genes using qRT- PCR. 
Three genes modulated in response to AMB and PSC were amplified 
in F. oxysporum. Gene expression levels are represented as a log2- fold 
change at each treatment relative to the negative control (DMSO), as 
determined by ANOVA followed by Tukey’s post- hoc test (P<0.005). 
The genes are cytochrome P450 oxidoreductase (CPR), gluconate 5 
dehydrogenase (G5D), aflatoxin pump efflux (AFLT)

Treatment Analysis ERG5 G5D AFLT

F. oxysporum FMR 
9788+AMB

RNA- seq +5.04242 −3.84802 +2.8714

qRT- PCR +17.076 −5.760 +4.543

F. oxysporum FMR 
9788+PSC

RNA- seq = = =

qRT- PCR = = =

+Up- regulated gene.
˗Down- regulated gene.
=gene without differential expression as determined by RNA- seq 
analysis and/or qRT- PCR.

Fig. 3. Set of genes that belong to the most representative antifungal resistance categories with their respective genes expressed after 
exposure of F. oxysporum FMR 9788 and N. solani FMR 4391 to AMB and PSC (log2- fold change). Values are coloured from violet (up- 
regulated) to red (down- regulated) according to the colour scale.
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dISCuSSIon
After mapping the RNA- seq results to the reference genomes 
we noticed a low mapping rate of reads of N. solani, possibly 
because the two compared species, N. haematococca and  
N. solani, are phylogenetically distant [4, 47]. That result and 
the remarkable genomic differences in the transcriptomic 
profiles of N. solani in response to antifungal treatments in 
comparison to F. oxysporum support the divergence of the two 
genera, as has already been reported based on phylogenetic 
analyses and morphological characters [4, 48].

Several biological processes and genes previously linked to 
resistance mechanisms in other fungi such as A. fumigatus, 
Candida albicans and Cryptococcus neoformans [49], were 
differentially expressed in our treatments. We found unex-
pected, important negative regulation or no changes in genes 
related to ergosterol biosynthesis in most treatments. We were 
expecting an up- regulation of the ERG11 gene against PSC 
treatment like other fungal pathogens but did not find any 
up- regulated gene related to ergosterol synthesis. However, in 
F. oxysporum against AMB, we found ERG5, ERG6 and some 
cytochrome P450 monooxygenase isoforms up- regulated 
compared to controls. Interestingly, the ERG6 gene was 
down- regulated for F. oxysporum and N. solani under PSC 
treatment.

The up- regulation of ERG6 has been reported in clinical 
isolates of C. parasilopsis that are resistant to fluconazole; 
however, in isolates resistant to ITC and AMB, this gene was 
negatively regulated, mainly associated to a specific missense 
mutation [50]. Interestingly, the enzyme encoded by ERG6 
is not present in the cholesterol biosynthetic pathway in 
mammals, suggesting that it might be a good candidate for 
targeting fungal drugs [51].

The ERG5 gene is a member of the cytochrome P450 
enzymes family [52] and has been described as a catalytically 
self- sufficient fatty acid, hydroxylase membrane- bound in  
F. oxysporum [53], which catalyses the subterminal (omega-1 
to omega-3) hydroxylation of fatty acids. As mentioned for 
ERG6, the ERG5 gene product is exclusively recovered in the 
membrane fraction of the fungal cells [54]. In S. cerevisiae 
mutant strains with a deletion of this gene, the ergosterol 
biosynthesis decreases fourfold and strains showed a major 
susceptibility to ketoconazole (member of the azole family), 
indicating that ERG5 would participate in the azole resistance 
mechanism [55].

Considering that several cytochrome P450 members are 
important for ergosterol synthesis and virulence [56], it would 
be interesting to evaluate through knockout assays the role 
of ERG5 and ERG6 for these fungi as a possible therapeutic 
targets or to know their role in antifungal resistance, taking 
into account membrane binding and their function in the 
ergosterol pathway. Likewise, for both genes, experiments are 
needed to evaluate their potential involvement in antifungal 
resistance and therapeutic targetting.

In general, the negative regulation of ergosterol genes does 
not agree with the transcriptomic profiles obtained from other 

clinically relevant fungi in which those genes of ergosterol 
synthesis pathways are generally up- regulated when exposed 
to azoles, i.e. A. fumigatus [57], Candida albicans [39] and 
Trichophyton rubrum [58]. We hypothesize that repressing 
ergosterol biosynthesis in F. oxysporum and N. solani against 
azole treatment might be a mechanism for reducing the 
expression of the therapeutic target and thus decreasing the 
damage caused by antifungal agents in the environment [59].

As we mentioned, our study has revealed a small number of 
DEGs related to sterol synthesis for F. oxysporum during AMB 
treatment, which might be because AMB does not primarily 
target the ergosterol biosynthetic pathway. However, it has 
been suggested that in fungi this compound might provoke 
changes in some ergosterol biosynthesis genes, as occurs in  
A. fumigatus and C. albicans in response to AMB [2, 60]. 
Some researchers have proposed that the down- regulation 
of ergosterol biosynthesis genes in response to AMB and some 
azoles like voriconazole is due to an alternate use of sterols 
or sterol intermediates in the cell membrane [42]. Young et 
al. reported down- regulation of the ERG3 gene in clinical 
AMB- resistant isolates of C. lusitaniae [15], and Vincent et 
al. showed that the AMB MIC of C. albicans increased more 
than threefold by deleting ergosterol- related genes such as 
ERG2, ERG3, ERG6 and ERG11 [61].

It is important to mention that cell- wall- related genes such as 
glucan- associated synthesis were up- regulated in F. oxysporum 
after AMB treatment. Glucan is an important compound for 
the integrity and stability of the cell wall and it is also a unique 
component to fungi, which makes this cell- wall component 
an attractive drug target [62].

In response to the stress and oxidative damage caused by 
the action of AMB [12], F. oxysporum had an up- regulation 
of genes related with detoxification processes, response 
and tolerance to oxidative stress, such as NADPH oxidase, 
glutathione S- transferase, and NAD- dependent aldehyde 
dehydrogenase [63]. This upregulated expression profile is 
comparable to data reported for A. fumigatus in response to 
AMB treatment [42], in which the main change was in several 
heat- shock proteins that were up- regulated [41]. However, 
thioredoxin- like proteins were down- regulated in our AMB 
treatment. These enzymes modulate the AMB response in 
A. fumigatus to offset the oxidative damage caused by the 
drug [42]. Additionally, thioredoxin has been reported to 
be involved in C. albicans pathogenesis [64] as well as in  
A. fumigatus [65].

Concerning the genes involved in the stress response, we 
identified that F. oxysporum exposed to PSC showed two 
genes that encode short- chain dehydrogenase and FAD- 
dependent monooxygenase that were down- regulated, while 
N. solani exposed to PSC showed that the genes encoding 
l- glyceraldehyde reductase, oxidoreductase and cell wall 
SED1 were up- regulated. This pattern was different in 
Cryptococcus neoformans in response to fluconazole, where 
superoxide dismutase and nitric oxide dioxygenase genes 
were up- regulated [66]. The above results suggest that in 
F. oxysporum, the antioxidant enzyme production or the 
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oxidative stress response are not the main mechanisms for 
the adaptation to the environmental changes caused by PSC 
exposure. A similar inference can be made in the case of  
N. solani in both antifungal treatments.

Interestingly, the benzoate 4- monooxygenase encoding 
gene (CYP53) exhibited an important up- regulation in the 
two fungi treated with PSC. This gene encodes the CYP450 
enzymes family involved in the phenolic detoxification [67] 
and it is widely distributed in relevant pathogenic fungi 
such as A. fumigatus, A. niger, Rhodothorula minuta and 
Gibberella zeae [67, 68]. This enzyme family is unique in the 
fungi kingdom as it does not have homologues in higher 
eukaryotes. It might, therefore, be a possible candidate drug 
target against pathogenic fungi. Cochliobolus lunatus had 
been evaluated previously against different natural anti-
fungal phenolic compounds and showed an inhibition of the 
CYP53A15 activity and of fungal growth [69]. The present 
study seems to indicate that, at an early stage in response to 
PSC treatment, efflux pumps are not an important resist-
ance mechanism for F. oxysporum and N. solani as we did 
not observe an increased expression of the main transporter 
genes previously linked to resistance in fungal pathogens. 
This contrasts with previous studies on azole responses in 
other human and plant pathogenic fungi, which suggested 
drug tolerance in Fusarium was due to up- regulation of ABC 
transporters [41] as an effective efflux mechanism [23, 70] 
thus reducing the intracellular concentrations of the azole, i.e. 
Fusarium graminearum exposed to tebuconazole expressed a 
total of 54 putative ABC transporter proteins [22].

However, our study demonstrated important changes in 
several efflux pumps genes in their transcriptional expres-
sion levels in F. oxysporum in response to AMB. This is a 
striking phenomenon because efflux pumps have never so 
far been related to AMB resistance in fungi, although they 
have indeed been identified in parasite pathogens. Purkait et 
al. reported that AMB- resistant Leishmania strains displayed 
an increase in the level of expression of MDR1, a member of 
the ATP- binding cassette (ABC) [71]. Specific studies need to 
be developed that will corroborate the relationship of these 
efflux pumps as possible mediators of F. oxysporum resistance 
or perhaps increased tolerance when exposed to AMB.

Considering all findings, the present study highlights three 
main facts. Firstly, from a clinical perspective, it is important 
to determine the role of the ERG5, ERG6 and CYP53 genes 
in Fusarium spp. that are exposed to antifungal compounds 
in order to consider them as possible therapeutic targets. 
Secondly, in the context of novel studies, it is necessary to 
evaluate, corroborate, characterize and analyse the role of 
MFS efflux pumps in F. oxysporum and their possible role in 
resistance to AMB. Thirdly, there is a marked difference in 
the transcriptional response between the two species studied.

Finally, considering that mutations in ERG3, ERG6 and 
ERG11 have been linked to AMB and azole resistance in 
other fungi [1], we can suggest that the presence of one or 
several point mutations in these strains might be causing the 
negative regulation of the ergosterol biosynthetic pathway. We 

consider it important to carry out genomic analyses in order 
to corroborate, or not, this hypothesis.
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