
Neurobiological Mechanisms Supporting Experience-Dependent 
Resistance to Social Stress

Matthew A. Cooper1,*, Catherine T. Clinard1, and Kathleen E. Morrison2

1Department of Psychology, University of Tennessee, Knoxville, TN, 37996, USA

2Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 
Philadelphia, PA, 19104, USA

Abstract

Humans and other animals show a remarkable capacity for resilience following traumatic, stressful 

events. Resilience is thought to be an active process related to coping with stress, although the 

cellular and molecular mechanisms that support active coping and stress resistance remain poorly 

understood. In this review, we focus on the neurobiological mechanisms by which environmental 

and social experiences promote stress resistance. In male Syrian hamsters, exposure to a brief 

social defeat stressor leads to increased avoidance of novel opponents, which we call conditioned 

defeat. Also, hamsters that have achieved dominant social status show reduced conditioned defeat 

as well as cellular and molecular changes in the neural circuits controlling the conditioned defeat 

response. We propose that experience-dependent neural plasticity occurs in the prelimbic (PL) 

cortex, infralimbic (IL) cortex, and ventral medial amygdala (vMeA) during the maintenance of 

dominance relationships, and that adaptions in these neural circuits support stress resistance in 

dominant individuals. Overall, behavioral treatments that promote success in competitive 

interactions may represent valuable interventions for instilling resilience.
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INTRODUCTION

Stressors often generate adaptive behavioral and physiological responses that restore internal 

homeostasis. However, when stressors are perceived as uncontrollable, prolonged, or 

especially severe, they can lead to several negative health consequences, including major 
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depression, panic disorder, and post-traumatic stress disorder (PTSD) (Abelson et al., 2007, 

Meewisse et al., 2007, Heim et al., 2008). Only a portion of individuals exposed to stressful 

life events develop stress-related psychopathology, suggesting that a great deal of individual 

variation exists in vulnerability to the negative consequences of stress. More than two-thirds 

of people in the general population experience a traumatic event at some point in their 

lifetime, but only 10–20% develop PTSD (Galea et al., 2005, Thomas et al., 2010). 

Similarly, only 20–25% of individuals exposed to major stressful events develop major 

depression (Cohen et al., 2007). Understanding the neural circuits and cellular mechanisms 

that control stress vulnerability is an important step towards identifying novel targets for the 

prevention and treatment of stress-related psychopathology.

Resilience refers to an individual’s capacity to cope with stress and adversity so that they 

avoid the negative psychological and biological consequences that would otherwise impair 

physical and psychological well-being (Luthar et al., 2006). Resilience may be demonstrated 

by resistance to the negative effects of stress or by recovery to a normal state of functioning 

more quickly than expected following traumatic stress. It is important to distinguish between 

resistance to and recovery from stressful events, as these processes might involve separate 

brain regions, neurochemicals, and identifying biomarkers (Yehuda et al., 2006). In animal 

models, the distinction is not always clear, and resilience usually refers to a decrease in 

stress-induced changes in future behavior. This body of work indicates that resilience is not 

simply a passive response involving a failure to display the neuroendocrine, cellular, and 

molecular changes characteristic of susceptible individuals, but is also an active response 

that involves distinct neural circuits and cellular mechanisms (Russo et al., 2012).

In this review, we focus on neurobiological mechanisms controlling active processes that 

characterize resilient individuals. Several animal models of stress resilience focus on 

mechanisms underlying individual differences that are likely related to genetic and 

epigenetic factors. We briefly review literature on individual differences in stress 

vulnerability, although several excellent reviews have recently addressed this topic 

(Coppens et al., 2010, Russo et al., 2012, Wu et al., 2013). Here, we instead emphasize 

animal models that investigate mechanisms controlling experience-dependent forms of stress 

resistance with a focus on resistance to social defeat in Syrian hamsters. In cases of 

experience-dependent stress resilience, individuals exposed to specific environmental or 

social stimuli show a reduction in the effects of stress. We maintain that understanding the 

neurobiological mechanisms controlling the development of resilience should provide the 

foundation for future evidence-based interventions targeting those at risk for stress-related 

psychopathology.

INDIVIDUAL DIFFERENCES IN RESILIENCE

It is well recognized that only a subset of people develop mental health problems following 

exposure to traumatic and/or stressful events. Likewise, animals exhibit considerable 

variability in behavioral and physiological responses to stress, and the mechanisms 

underlying these individual differences have been explicitly studied to better understand the 

biological basis of resilience.
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Coping Styles

Individual differences in stress responses that are consistent over time and across contexts 

are referred to as coping styles (Koolhaas et al., 1999). Individual variation in aggressive 

behavior is associated with how rodents responded to a variety of challenging situations, 

with individuals employing either proactive or reactive coping styles. Proactive rats exhibit 

high levels of offensive aggression in a resident-intruder paradigm, active burying of a 

shock-probe in a defensive burying test, and high amounts of swimming during a forced 

swim test. In contrast, reactive rats exhibit low levels of offensive aggression, avoidance of a 

shock-probe, and high levels of floating (Koolhaas et al., 2007). Several neuroendocrine and 

neurochemical markers differentiate proactive and reactive individuals. Proactive rats 

display greater sympathetic nervous system reactivity but no difference in stress-induced 

plasma glucocorticoids compared to rats with a reactive coping style (Koolhaas et al., 2010). 

Also, proactive rats show increased sensitivity of 5-HT1a and 5-HT1b autoreceptors 

compared to reactive rats, indicating that they have enhanced tonic inhibitory control of the 

serotonin (5-HT) system (de Boer and Koolhaas, 2005).

Proactive and reactive coping styles have also been investigated in feral house mice bred for 

a bimodal distribution of attack latencies in a resident-intruder test. Mice bred for a long 

attack latency (LAL) are more vulnerable to the effects of chronic social defeat compared to 

mice bred for a short attack latency (SAL). Specifically, LAL mice showed a longer lasting 

body weight loss, a greater increase in corticosterone, and increased anxiety- and 

depression-like behavior following chronic social defeat compared to SAL mice (Veenema 

et al., 2003). The LAL mice also exhibited a lower hippocampal mineralocorticoid to 

glucocorticoid receptor ratio, which is characteristic of the hypothalamic-pituitary-adrenal 

(HPA) axis dysregulation often found in human depression (Veenema et al., 2003). The 

coping styles of LAL and SAL mice are also associated with differences in 5-HT signaling. 

In response to forced swim stress, SAL mice show decreased 5-HT concentrations in the 

frontal cortex, striatum, lateral septum, hippocampus, amygdala, and brain stem compared to 

LAL mice (Veenema et al., 2005). Consistent with proactive rats, SAL mice are 

characterized by enhanced somatodendritic 5-HT1a autoreceptor activity (de Boer et al., 

2009). In another animal model of coping styles, Wistar rats have also been bred for high 

(HAB) or low (LAB) anxiety-related behavior. LAB rats are characterized by increased 

inter-male aggression, reduced HPA axis activity to nonsocial stressors, and changes in 5-

HT neurotransmission (Veenema and Neumann, 2007). Thus, high aggression phenotypes 

are often associated with changes in the regulation of stress hormones and the 5-HT system 

that support a proactive coping style.

A proactive coping style, however, is not always beneficial. Coping styles may differ in 

behavioral flexibility insofar as animals with a reactive coping style appear more guided by 

environmental stimuli while animals with a proactive coping style seem more likely to 

develop routines. For example, in pigs proactive individuals have far more difficulty 

switching responses in a T-maze reversal learning test compared to reactive individuals 

(Bolhuis et al., 2004). Similarly, high-aggression hamsters show increased impulsivity 

compared to low-aggression hamsters as the former repeatedly bar press for immediate, 

small rewards, whereas the latter will delay responding for large rewards (Cervantes and 
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Delville, 2009). Overall, the neurochemical and neuroendocrine changes that support a 

proactive coping style may promote stress resilience and appear adaptive in some context 

but lead to behavioral inflexibility and impulsivity in others. Interestingly, in some cases a 

flexible coping strategy may be advantageous compared to a consistent active or passive 

coping strategy. Rats can be categorized as active or passive copers based on whether they 

exhibit many or few escape attempts during a series of supine restraint tests, respectively. 

Further, rats that are categorized as active in one trial and passive in another trail are 

categorized as flexibility copers. When active, passive, and flexible copers are tested in an 

effort-based reward model in which rats are trained for four weeks to adjust foraging 

strategies to maximize rewards, flexible copers exhibit improved performance on a spatial 

learning task and changes in floating duration on a forced swim test compared to active and 

passive copers (Bardi et al., 2012, Lambert et al., 2014). Also, rats with a flexible coping 

style exhibit an increased dehydroepiandrosterone (DHEA) / corticosterone ratio, elevated 

neuropeptide Y immunoreactivity in the CA1 layer of the hippocampus, and a greater 

number of immature neurons in the dentate gyrus following effort-based reward training 

compared to active and passive copers (Bardi et al., 2012, Lambert et al., 2014). In sum, a 

proactive coping style may produce context-dependent advantages, although individuals 

with a flexible coping style may show more adaptive responses to contingency training.

Chronic Social Defeat

Chronic social defeat in mice is another model system for investigating individual 

differences in coping with stress. In this model, C57 mice are exposed to social defeat for 5–

10 min on 10 consecutive days and are rotated to a new opponent’s cage daily where they 

maintain sensory contact via a perforated divider (Golden et al., 2011). This protocol leads 

to an array of long-lasting stress-induced changes in behavior, although about one-third of 

mice fail to show the full range of behavioral changes and are categorized as resilient 

(Berton et al., 2006). Mice that are susceptible to the effects of chronic social defeat exhibit 

increased social avoidance, decreased sucrose preference, increased cocaine-conditioned 

place preference, decreased circadian amplitude of body temperature, social hyperthermia, 

and weight loss, whereas resilient mice do not (Krishnan et al., 2007). It is important to note 

that resilient mice are not devoid of stress-related symptoms as both resilient and susceptible 

mice exhibit anxiety-like behavior on an elevated plus maze, stress-induced polydipsia, and 

stress-induced elevation of corticosterone (Krishnan et al., 2007). The neural circuitry 

regulating responses to chronic social defeat has been well-characterized, including cellular 

and molecular adaptations in the mesolimbic dopamine system. Following chronic social 

defeat, susceptible mice show increased brain-derived neurotrophic factor (BDNF) 

expression in the nucleus accumbens (NAc) compared to resilient mice, and local 

knockdown of BDNF in dopaminergic neurons from the ventral tegmental area blocks 

defeat-induced social avoidance (Berton et al., 2006). Susceptible mice also show increased 

firing rates of dopamine cells in the ventral tegmental area, whereas resilient mice exhibit an 

up-regulation of K+ channels which normalizes firing within the mesolimbic dopamine 

system (Krishnan et al., 2007). Similarly, resilience in mice is associated with increased 

expression of a glutamate AMPA receptor subunit that reduces calcium influx and overall 

conductance of AMPA channels within medium spiny neurons in the NAc (Vialou et al., 

2010). Finally, optogenetic stimulation of ventral tegmental neurons projecting to the NAc 
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induces a susceptible phenotype in mice previously resistant to the effects of chronic social 

defeat, and optogenetic inhibition of this pathway induces resilience (Chaudhury et al., 

2013).

Other brain regions, such as the ventral medial prefrontal cortex (vmPFC), regulate certain 

aspects of susceptibility to the effects of chronic social defeat. Optogenetic stimulation of 

the vmPFC reduces depression-like behavior, but not anxiety-like behavior, in susceptible 

mice (Covington et al., 2010). vmPFC activity likely regulates resistance to the depressive 

effects of chronic social defeat by providing top-down inhibition to several limbic and brain 

stem targets. Optogenetic stimulation of vmPFC terminals within the dorsal raphe nucleus 

(DRN) has been shown to decrease defeat-induced social avoidance (Challis et al., 2014). In 

addition, following chronic social defeat, resilient mice show increased firing rates in the 

vmPFC and suppression of amygdala oscillatory activity at social interaction testing (Kumar 

et al., 2014). Likewise, vmPFC projections to the NAc regulate stress-induced depressive-

like behavior as well as motivation for drugs of abuse (Britt et al., 2012, Vialou et al., 2014). 

Recently, cholecystokinin (CCK) activity in the vmPFC was shown to mimic the increased 

anxiety-like and depression-like behavior characteristic of chronic social defeat. Optogenetic 

stimulation of vmPFC projections to the basolateral amygdala (BLA) blocked the 

anxiogenic effect on the elevated-plus maze of CCK administration into the vmPFC, 

whereas stimulation of vmPFC-NAc projections blocked CCK-induced social avoidance and 

sucrose preference deficits, but not anxiety-like behavior (Vialou et al., 2014). These 

findings indicate that separate axonal projections from the vmPFC regulate the various 

behavioral consequences of chronic social defeat. Also, because vmPFC-NAc projections 

appear to control stress-induced social avoidance in mice, this behavior may reflect a 

decreased motivation for social behavior rather than increased social anxiety.

Whether resilient mice have a proactive coping style as described above is unknown, but it 

seems likely that a resilient phenotype represents a tradeoff in which adaptive responses 

occur in some domains but not others. In a mouse model of acute social defeat, resilient 

mice show behavioral deficits not observed in susceptible mice. In this model, mice are 

exposed to four brief social defeat episodes on two consecutive days and resilient mice, 

which are characterized by reduced social avoidance, exhibit enhanced conditioned fear and 

severe deficits in fear extinction (Meduri et al., 2013). Overall, individual differences in 

behavioral and physiological responses to stress indicate that resilience is a stable trait 

controlled by specific neurobiological mechanisms that are dependent on interactions with 

the environment.

EXPERIENCE-DEPENDENT RESILIENCE

While a great deal of research indicates that adverse experiences increase vulnerability to the 

effects of future stress, past experience can also promote resilience. Here, we discuss several 

environmental factors that have been shown to generate resistance to the deleterious effects 

of subsequent stressors, including stressor controllability (Maier and Watkins, 2010), 

environmental enrichment (van Praag et al., 2000), brief maternal separation (Lyons et al., 

2010), voluntary exercise (Greenwood and Fleshner, 2011) and social dominance (Morrison 

et al., 2012). Several of these models have identified the vmPFC as a key neural substrate 
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underlying stress resilience, and there is a large literature indicating that the vmPFC 

modulates behavioral and physiological responses to stressors. In many mammalian species, 

including humans, the vmPFC sends axonal projections to several limbic and brain stem 

structures (Ongur and Price, 2000, Vertes, 2006). These projections provide top-down 

control over stress-related cognitive and emotional behavior as well as the neuroendocrine 

stress response. For example, the vmPFC regulates the acquisition and extinction of 

conditioned fear via projections to both the BLA and the intercalated cells within the 

amygdala (Herry et al., 2010, Amir et al., 2011, Cho et al., 2013). Also, the vmPFC projects 

to anterior portions of the bed nucleus of the stria terminalis (BNST) where activation of 

GABAergic cells projecting to the paraventricular nucleus of the hypothalamus inhibit the 

neuroendocrine stress response (Radley and Sawchenko, 2011). It is important to note, 

however, that the mechanisms by which the vmPFC regulates stress resilience likely 

dependent on the type of stressor, the behavioral and physiological responses, and type of 

environmental factors that induce resilience.

Essential Role for the vmPFC

Learned helplessness is a model in which exposure to an uncontrollable stressor leads to 

exaggerated fear, deficits in escape behavior, and reduced social exploration. However, 

exposure to escapable tailshock immunizes rats from the development of learned 

helplessness when they are later exposed to inescapable tailshock (Maier and Watkins, 

2010). Pharmacological inactivation of the vmPFC during escapable tailshock blocks its 

immunizing effect on learned helplessness (Amat et al., 2006), whereas pharmacological 

activation of the vmPFC during inescapable tailshock promotes an immunizing effect on 

learned helplessness (Amat et al., 2008). Resistance to learned helplessness strongly 

depends on the activity of neurons within the prelimbic (PL) cortex that send axonal 

projections to the DRN. The PL cortex is a subregion of the vmPFC and prior experience 

with escapable tailshock has been shown to increase stress-induced c-Fos immunoreactivity 

in DRN-projecting PL neurons (Baratta et al., 2009). These findings are consistent with the 

framework that PL neurons projecting to the DRN activate GABAergic interneurons and 

thereby inhibit DRN serotonergic activity (Celada et al., 2001, Varga et al., 2001, Vertes, 

2004). Also, prior experience with escapable, but not inescapable, stress increases intrinsic 

membrane excitability in PL neurons, suggesting that synaptic plasticity within the PL 

cortex is critical for the immunizing effect of escapable stress exposure (Varela et al., 2012). 

Similarly, blockade of NMDA receptors and the extracellular signal-regulated kinase (ERK) 

cascade within the PL prevents the immunizing effect of stressor controllability, suggesting 

that synaptic plasticity within the PL is necessary for rats to learn this form of stress 

resistance (Christianson et al., 2014).

Environmental enrichment is another experience known to mitigate the deleterious effects of 

stress in humans and other animals (Rosenzweig and Bennett, 1996, Salmon, 2001, Francis 

et al., 2002). Environmental enrichment has been shown to increase neurotrophin 

expression, dendritic branching, and neurogenesis in the hippocampus (van Praag et al., 

2000, Faherty et al., 2003, Lambert et al., 2005). Importantly, three weeks of environmental 

enrichment reduces social avoidance in mice following chronic social defeat and neural 

plasticity in the hippocampus is critical for this effect. When transgenic mice with 
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conditionally suppressed neurogenesis in the dentate gyrus are housed in an enriched 

environment, they fail to show stress resistance following chronic social defeat and instead 

exhibit defeat-induced changes in social avoidance, depression-like, and anxiety-like 

behavior characteristic of mice housed in an impoverished environment (Schloesser et al., 

2010). The infralimbic (IL) cortex, which is subregion of the vmPFC, is another neural 

substrate controlling the ability of environmental enrichment to confer stress resistance 

(Lehmann and Herkenham, 2011). Although enriched housing leads to increased ΔFosB 

immunoreactivity in both the PL and IL cortices following chronic social defeat, lesions of 

the IL, but not the PL, prevent environmental enrichment-induced stress resistance in defeat 

mice.

Mildly stressful experiences are also able to promote the development of resilience. 

Experiences that are challenging but not overwhelming in childhood can promote coping 

skills and reduce stress reactivity in adulthood (Khoshaba and Maddi, 1999, Gunnar et al., 

2009). In rodent models, 15 min of maternal separation increases the licking and other 

affiliative behavior displayed by mothers after reunion with pups. Postnatal handling, which 

is designed to mimic maternal behavior, has been shown to decrease behavioral and 

endocrine responses to stress in adulthood (Levine, 1962, Bhatnagar and Meaney, 1995). 

Rat pups exposed to postnatal handling show increased glucocorticoid receptor expression in 

the hippocampus and frontal cortex, which enhances sensitivity to glucocorticoid negative 

feedback (Meaney et al., 1989). Furthermore, handled rat pups show decreased CRF mRNA 

expression in the paraventricular nucleus of the hypothalamus and central amygdala and also 

decreased CRF receptor density in the locus coeruleus (Francis et al., 1999). Non-human 

primate models further support the notion that mild early life stress promotes the 

development of resilience. Squirrel monkeys exposed to intermittent maternal separation 

early in life show fewer behavioral indications of anxiety, increased novel object 

exploration, and diminished stress-induced levels of cortisol and adrenocorticotropic 

hormone (Parker et al., 2004, Parker et al., 2007). Separated monkeys also exhibit increased 

grey and white matter in the vmPFC compared to non-separated controls indicating that the 

process of coping with mild early life stress increases myelination and volume of the 

vmPFC (Katz et al., 2009). Overall, mild early life stressors and their associated behavioral 

responses can induce neural plasticity in the limbic system and HPA axis which may 

inoculate individuals against stressors encountered later in life.

Rats allowed to run voluntarily on home cage running wheels for six weeks fail to develop 

learned helplessness following inescapable stress (Dishman et al., 1997, Greenwood et al., 

2003). A great deal of research has delineated the cellular and molecular mechanisms by 

which voluntary wheel running promotes resistance to inescapable stress. For instance, 

voluntary wheel running increases ΔFosB immunoreactivity in the NAc (Greenwood et al., 

2011), increases BDNF mRNA expression in the hippocampus and amygdala (Greenwood 

et al., 2009), increases 5-HT1a autoreceptor mRNA expression in the dorsal raphe nucleus 

(Greenwood et al., 2005), and decreases 5-HT2c receptor mRNA expression in the 

amygdala and posterior dorsal medial striatum (Greenwood et al., 2012). Interestingly, 

lesions of the vmPFC do not eliminate the protective effects of wheel running on the 

development of learned helplessness (Greenwood et al., 2013). These findings indicate that 

while voluntary exercise promotes resistance to learned helplessness, this effect is 
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independent of top-down inhibition from the vmPFC. Rather the protective effects of 

exercise appear dependent on neural plasticity within the 5-HT system and the 

desensitization of 5-HT2c receptors appears critical for exercise-induced resilience. 

Injection of higher doses of a 5-HT2c receptor agonist into either the BLA or dorsal striatum 

are required to enhance fear and interfere with escape behavior of physically active rats 

compared to sedentary rats (Greenwood et al., 2012).

In sum, several environmental factors can generate structural and functional plasticity in the 

vmPFC that supports resistance to the behavioral and physiological effects of stress. 

However, not all forms of experience-dependent stress resilience require the vmPFC (for a 

review see Christianson and Greenwood, 2014). In addition to exercise, safety signals 

mitigate the consequences of uncontrollable stress although they do not require 

neurotransmission in the vmPFC. Pharmacological inactivation of the vmPFC during 

uncontrollable tail-shocks accompanied by safety signals fails alter the protective effect of 

safety signals on subsequent social exploration, whereas bilateral lesions of the posterior 

insular cortex prevent the protective effect of safety signals (Christianson et al., 2008). 

Altogether, these findings indicate that the use of multiple animal models with a range of 

environmental factors will be required to delineate the biological bases of experience-

dependent stress resilience.

Aggression and Social Defeat in Syrian Hamsters

Syrian (sometimes called golden) hamsters are sexually monomorphic, solitary, burrow-

living rodents native to southern Turkey and northern Syria (Gattermann et al., 2008). Both 

male and female hamsters are highly aggressive in resident-intruder models in a laboratory 

setting (Payne, 1973, Floody and Pfaff, 1977). Hamster aggressive behavior is easily 

quantified and highly ritualized such that animals are rarely wounded in brief aggressive 

encounters. Hamsters also have excellent individual recognition and form stable dominance 

relationships in dyadic encounters (Ferris et al., 1987, Bath and Johnston, 2007). For these 

reasons Syrian hamsters have been an ideal model species for the study of aggression and 

social conflict (Albers et al., 2002, Huhman, 2006).

Kim Huhman and colleagues first noticed that acute social defeat in Syrian hamsters leads to 

long-term changes in agonistic behavior. They found that male hamsters exposed to a single 

social defeat in the home cage of a larger opponent abandon their species-typical territorial 

aggression and instead produce submissive and defensive behavior even when tested in their 

own home cage with a non-aggressive intruder. They called this defeat-induced change in 

agonistic behavior conditioned defeat and hypothesized that it was an ethologically relevant 

form of conditioned fear (Potegal et al., 1993, Huhman et al., 2003). This hypothesis appears 

largely correct, and several lines of evidence now indicate that similar cellular and 

molecular mechanisms in the BLA regulate the acquisition of conditioned defeat and 

conditioned fear. Viral vector-mediated up-regulation of cAMP response element binding 

(CREB) protein in the BLA prior to social defeat enhances the acquisition of conditioned 

defeat (Jasnow et al., 2005). Also, the acquisition of conditioned defeat is disrupted by the 

pharmacological blockade of either NR2b subunits of NMDA receptors (Day et al., 2011), 

protein synthesis (Markham and Huhman, 2008), or Trk receptors (Taylor et al., 2011). A 
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similar set of cellular and molecular mechanisms in the BLA regulate the acquisition of 

conditioned fear in rats and mice (Schafe and LeDoux, 2000, Josselyn et al., 2001, 

Rodrigues et al., 2001, Rattiner et al., 2004). However, important differences exist between 

conditioned defeat and conditioned fear. Social defeat is a multisensory stimulus that is not 

paired with a conditioned stimulus in a straightforward manner, and the conditioned defeat 

response appears to combine both fear and anxiety-like behavior (Bader et al., 2014, Clinard 

et al., 2015). Overall, the complexity of social defeat models, such as conditioned defeat, 

leads to a great deal of individual variation in behavioral and physiological responses and 

generates the diversity needed for studies of vulnerability.

The expression of submissive and defensive behavior during conditioned defeat testing 

requires neural activity in the central nucleus of the amygdala (CeA) and BNST. Injection of 

the GABAa agonist muscimol into the CeA (Jasnow and Huhman, 2001) or BNST 

(Markham et al., 2009) reduces the expression of conditioned defeat. Corticotropin-releasing 

factor (CRF) is a key neurochemical in the CeA-BNST neural circuit promoting the 

expression of conditioned defeat. Blockade of CRF receptors in the BNST reduces the 

expression of conditioned defeat (Jasnow et al., 2004). Importantly, unilateral lesions of the 

CeA and blockade of CRF receptors in the contralateral BNST also reduce the expression of 

conditioned defeat. The effects of CRF on the expression of conditioned defeat appear to be 

mediated by CRF type-2 receptors. Systemic blockade of CRF type-1 receptors does not 

reduce the expression of conditioned defeat (Jasnow et al., 1999), whereas selective 

blockade of CRF type-2 receptors in the BNST does (Cooper and Huhman, 2005). These 

results are consistent with data from other models showing that CRF signaling in a CeA-

BNST neural circuit regulates stress-induced fear and anxiety (Lee and Davis, 1997, 

Hammack et al., 2010, Gafford et al., 2012).

The conditioned defeat model has important similarities to, but also some differences with, 

learned helplessness (Hammack et al., 2011). Similar to learned helplessness, hamsters 

appear to ‘give up’ unnecessarily following exposure to acute social defeat. However, the 

conditioned defeat response is not dependent on the controllability of the defeat stressor as 

animals exposed to escapable or inescapable defeat exhibit similar levels of social avoidance 

(McCann et al., 2014). Thus, it appears that the psychological aspects of losing generate a 

physiological stress response and dramatically alter subsequent agonistic behavior (Huhman 

et al., 1992). A great deal of research indicates that uncontrollable tailshock increases 5-HT 

activity in the DRN, desensitizes DRN 5-HT1a autoreceptors, and thereby promotes learned 

helplessness (Maier and Watkins, 2005, Rozeske et al., 2011). Because 5-HT1a 

autoreceptors provide negative feedback on 5-HT neurons within the DRN, their down-

regulation would be expected to elevate 5-HT output and stress-related behavior. We, and 

others, have shown that acute social defeat increases c-Fos expression in select DRN 

subregions in both hamsters and rats (Gardner et al., 2005, Cooper et al., 2009, Paul et al., 

2011). We have also found that social defeat in hamsters reduces mRNA expression for 5-

HT1a autoreceptors in the DRN (Cooper et al., 2009). Furthermore, pharmacological 

activation of DRN 5-HT1a autoreceptors would be expected to decrease 5-HT output and 

stress-related behavior, and we found that activation of DRN 5-HT1a receptors either prior 

to social defeat or prior to conditioned defeat testing reduces the acquisition and expression 

of conditioned defeat, respectively (Cooper et al., 2008). The role of CRF in the DRN is 
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another point of contrast between conditioned defeat and learned helplessness. The 

activation of DRN CRF type-2 receptors promotes the acquisition of learned helplessness 

(Hammack et al., 2003), whereas the activation of DRN CRF type-1 receptors appears to 

promote the acquisition of conditioned defeat (Cooper and Huhman, 2007). In sum, both 

acute social defeat and uncontrollable tail shock appear to sensitize the DRN so that a larger 

serotonin response is generated when animals are challenged at testing. While much 

progress has been made understanding the neural circuitry underlying the acquisition and 

expression of conditioned defeat, our laboratory has begun using this model to examine 

mechanisms controlling vulnerability and resistance.

Resistance to Conditioned Defeat

We have documented considerable individual variation in the amount of submissive and 

defensive behavior male hamsters display following acute social defeat. After ruling out 

several husbandry-related variables, we hypothesized that success in aggressive encounters 

when hamsters are group-housed as they grow might lead to experience-dependent neural 

plasticity that reduces conditioned defeat in young adults. This possibility is consistent with 

research showing that winners and losers display different physiological responses to 

aggressive encounters. In hamsters, we have shown that dominant individuals have 

increased vasopressin 1a receptors in the lateral ventromedial hypothalamus (Cooper et al., 

2005) and increased 5-HT1a receptor mRNA expression in the DRN compared to 

subordinates (Cooper et al., 2009). Also, subordinate hamsters show elevated plasma 

cortisol and reduced plasma testosterone following repeated agonistic encounters, whereas 

dominant hamsters show a transient increase in testosterone that habituates with repeated 

encounters (Huhman et al., 1991). Similarly, in a visible burrow system, dominant rats 

display initial increases in testosterone and corticosterone which diminish over several days, 

whereas subordinates show a gradual decrease in testosterone and increase in cortisol over 

several days (Hardy et al., 2002). Finally, dominant Anolis lizards exhibit elevated 5-HT 

concentrations in the amygdala, whereas subordinates show elevated dopamine 

concentrations in the amygdala (Ling et al., 2009).

The beneficial effects of winning may first occur during adolescence when animals freely 

switch offensive and defensive roles during social play. In Syrian hamsters, the neural 

circuitry controlling social play during adolescence matures into the neural circuitry 

controlling adult aggression (Delville et al., 2003, Cheng et al., 2008). Also, social play is 

critical for the structural maturation of the prefrontal cortex and necessary for the 

development of competent social behavior in adulthood. Restricting social play in juvenile 

rats disrupts species-typical social behavior in adulthood (Hol et al., 1999, van den Berg et 

al., 1999). Also, restricting social play alters dendritic morphology in brain regions that 

regulate coping with stress such as the mPFC (Bell et al., 2010). Overall, social play may 

alter vulnerability to the effects of social stress in adulthood by organizing specific neural 

circuits that mediate stress-related behavior and coping.

To address whether dominant hamsters show less conditioned defeat than subordinates, we 

developed a model in which male hamsters are briefly paired with the same individual each 

day for two weeks so that they develop a stable dominance relationship. After this training, 
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all animals are exposed to acute social defeat and subsequent conditioned defeat testing. In 

our initial study, we found that dominants exhibit less submissive and defensive behavior 

during conditioned defeat testing than do subordinates and controls that lack dominant or 

subordinate status (Morrison et al., 2011). In subsequent studies, we found that dominants 

show less conditioned defeat than do subordinates but that controls show an intermediate 

amount of submissive and defensive behavior and do not differ significantly from either 

dominants or subordinates (Morrison et al., 2012). Together, these findings suggest that 

dominants show resistance to conditioned defeat and subordinates show susceptibility. 

Another feature in this model is that dominant individuals often counter-attack resident 

aggressors during social defeat exposure while subordinates and controls very rarely 

counter-attack. While dominant animals may initially attack resident aggressors during 

social defeat episodes, they invariably lose the fight and then exhibit similar rates of 

submissive and defensive behavior compared to subordinates. The initial period of fighting 

back against resident aggressors suggests an active coping style in dominant individuals. In 

rats, some individuals cope with social defeat stress by actively defending themselves and 

counter-attacking aggressors, while others exhibit a passive strategy characterized by 

immobility and low aggression (Koolhaas et al., 2007). Rats that exhibit active coping 

behavior during social defeat show reduced plasma corticosterone and less c-Fos 

immunoreactivity in several brain regions compared to rats with passive coping behavior 

(Walker et al., 2009). These findings suggest that actively coping with a social challenge 

might reduce neuroendocrine and neurochemical responses to stress and prevent the 

development of stress-induced fear and anxiety. Consistent with this idea, elevated offensive 

aggression has been associated with increased struggling during a forced swim test 

(Veenema et al., 2004), increased shock probe burying (Koolhaas et al., 2010), and 

increased active avoidance in a shuttle box (Benus et al., 1989). Although coping styles are 

thought to be stable traits, aggressive experience has been shown to change them. For 

example, rats that initially respond to acute social defeat with a proactive coping style will 

shift towards a passive coping style following repeated social defeat (Paul et al., 2011). 

Whether experience in a dominance relationship produces stable coping styles across 

behavioral domains has yet to be determined.

The extent of the behavioral changes observed in conditioned defeat does not appear linked 

to changes in HPA axis activity. We collected blood plasma at several time points after 

social defeat and found that defeated animals show elevated cortisol levels compared to non-

defeated animals. Surprisingly, however, plasma cortisol levels were not significantly 

different among groups with previous dominant exposure, previous subordinate exposure, or 

controls (Figure 1). These findings are consistent with other research showing that blocking 

glucocorticoid synthesis during social defeat does not alter the acquisition of conditioned 

defeat (Cooper and Huhman, 2010). Although glucocorticoid feedback appears to have a 

limited role in conditioned defeat, the activation of CRF type-1 and type-2 receptors can 

alter the acquisition and expression of conditioned defeat as noted earlier. However, changes 

in the expression of CRF type-1 and type-2 receptors following aggressive interactions do 

not appear to account for vulnerability or resistance to conditioned defeat. McCann et al. 

(2013) recently found that dominant, subordinate, and control hamsters do not differ in CRF 

type-1 and type-2 receptor density in the amygdala, lateral septum, BNST, hypothalamus, or 
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DRN. These findings, although somewhat preliminary, suggest that the resilience conferred 

by previous dominant status is not mediated via adaptions in glucocorticoid release or 

central CRF receptors.

Resistance to conditioned defeat in dominant hamsters is an active process characterized by 

increased neural activity in a multi-node circuit that includes brain regions associated with 

aggression and coping. We examined c-Fos immunoreactivity following social defeat and 

found that dominants showed increased neural activation in several brain regions including 

the IL cortex, ventral medial amygdala (vMeA), ventral lateral septum, and lateral 

ventromedial hypothalamus (Morrison et al., 2012). While not quantified in the initial paper, 

we subsequently analyzed c-Fos immunoreactivity in DRN tissue and found that 

subordinates showed increased neural activation in ventral portions of the rostral and caudal 

DRN (Gerhard et al., 2012; Figure 2). Together, these data indicate that reduced conditioned 

defeat in dominants is associated with elevated defeat-induced neural activity in several 

regions of the forebrain, including the IL cortex, whereas increased conditioned defeat in 

subordinates is associated with elevated defeat-induced neural activity in the DRN. Because 

the vmPFC is critical for other forms of experience-dependent stress resilience, we tested 

whether neural activity in the vmPFC was necessary for resistance to conditioned defeat in 

dominants. We found that pharmacological inactivation of the vmPFC prior to social defeat 

reinstates the full conditioned defeat response in dominants, although it does not increase 

conditioned defeat in subordinates or social status controls (Morrison et al., 2013). These 

findings are consistent with previous research showing that injection of a higher dose of 

muscimol into the vmPFC enhances the acquisition of conditioned defeat (Markham et al., 

2012). In this study, however, injection of the protein synthesis inhibitor anisomycin into the 

vmPFC did not alter the acquisition of conditioned defeat. Collectively, these findings 

suggest that increased vmPFC neural activity during social defeat may reduce the 

acquisition of conditioned defeat in dominant hamsters by reducing defeat-induced neural 

plasticity in vmPFC projection regions.

One limitation of using dominance relationships as an experimental variable is that subjects 

cannot be randomly assigned to groups, and animals may have pre-existing differences that 

influence both the formation of dominance relationships and the display of conditioned 

defeat. To test whether reduced conditioned defeat in dominants is an experience-dependent 

form of stress resistance, we investigated the time course of changes in c-Fos 

immunoreactivity and the conditioned defeat response. Dominant hamsters showed less 

conditioned defeat than did subordinates after 14 days of dominance experience, but 

dominants and subordinates did not significantly differ in conditioned defeat after 1 or 7 

days of interactions (Morrison et al., 2014). Similarly, we found that dominants showed 

elevated neural activation in the IL, PL, and vMeA after 14 days of dominance experience 

compared to subordinates and social status controls but not after 1 or 7 days of interactions. 

Importantly, the time course for the development of conditioned defeat resistance matched 

the time course for changes in defeat-induced neural activation in key brain regions that we 

have shown to be critical for social stress-induced changes in behavior. Altogether, our 

results suggest that the maintenance of dominant social status leads to experience-dependent 

neural plasticity that supports elevated neural activity in the vmPFC and vMeA during social 

defeat and that these changes may confer resistance to conditioned defeat.
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Because the BLA is the main neural substrate controlling the acquisition of conditioned 

defeat, we expect that experience-dependent changes in the vmPFC and vMeA are 

integrated by the BLA (Figure 3). Elevated c-Fos immunoreactivity in the vmPFC of 

dominant hamsters is consistent with the prefrontal cortex providing inhibitory control over 

the amygdala, although elevated c-Fos immunoreactivity in the vMeA of dominants is 

inconsistent with MeA afferents increasing BLA activity. One possibility is that elevated c-

Fos immunoreactivity in the vMeA represents activation of local inhibitory GABAergic 

circuits, while another possibility is that elevated c-Fos immunoreactivity in the vMeA 

reflects the engagement of neural circuits that do not project directly to the BLA. Ultimately, 

future research will be needed to identify cellular and molecular signals in the vmPFC and 

vMeA that change during the 14 day maintenance of dominance relationships and support 

the development of resistance to conditioned defeat.

Winning and Testosterone

Because dominant individuals gain resistance to conditioned defeat after repeatedly winning 

aggressive encounters, it is possible that changes in testosterone signaling modulate the 

development of conditioned defeat resistance. In humans, the experience of personal 

success, as well as a feeling of dominance in competitive situations, is associated with 

increased testosterone concentrations (Booth et al., 1989, Schaal et al., 1996, Suay et al., 

1999). In numerous other species, winners of competitive interactions and social challenges 

also exhibit increased plasma testosterone (Wingfield et al., 1987, Cavigelli and Pereira, 

2000, Yang and Wilczynski, 2002, Oyegbile and Marler, 2005). The connection between 

fluctuating levels of testosterone and aggression has been described in the challenge 

hypothesis, which states that testosterone levels rise and facilitate aggression during 

challenges that occur in a reproductive context such as territory formation, dominance 

disputes, and mate guarding (Wingfield et al., 1990, Wingfield et al., 2000). Winning 

aggressive encounters also increases the probability of winning future aggressive 

encounters, which is referred to as the winner effect (Dugatkin and Earley, 2004). The 

winner effect has been demonstrated in a wide variety of species including mammals 

(Oyegbile and Marler, 2005), fish (Oliveira et al., 2009), reptiles (Schuett et al., 1996), and 

insects (Moore et al., 1988). California mice are an excellent model species in which to 

examine both the challenge hypothesis and winner effect. In male California mice, winning 

multiple agonistic encounters creates a post-victory surge in plasma testosterone (Oyegbile 

and Marler, 2005), and castration prevents the winner effect (Trainor and Marler, 2001). 

These findings suggest a winner-challenge effect in which winning an aggressive encounter 

leads to a transient increase in testosterone that increases the probability of winning future 

encounters. Also, the winner-challenge effect appears to be mediated by androgen receptors. 

Testosterone injection after an agonistic encounter increases aggression in future encounters, 

and inhibition of the aromatase enzyme does not block the effect of testosterone injections 

(Trainor et al., 2004). Consistent with this idea, winning in an aggressive encounter 

increases the expression of androgen, but not progestin, receptors in brain regions associated 

with agonistic behavior (Fuxjager et al., 2010).

Reduced plasma testosterone and androgen receptor activity has been associated with 

elevated stress-related behavior in humans and other animals. Reduced plasma testosterone 
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has been associated with major depression in some studies (McHenry et al., 2014), and 

testosterone supplementation has been shown to decrease symptoms of depression and 

promote active coping (Pope et al., 2003). Although plasma testosterone does not differ 

between soldiers with and without PTSD, soldiers with PTSD and comorbid depression or 

alcohol dependence have lower testosterone compared to those with PTSD without 

comorbid conditions (Karlovic et al., 2012). Also, a polymorphism in the gene coding for 

5α-reductase (SRD5A2), which reduces the conversion of testosterone to 

dihydrotestosterone, has been associated with the severity of post-traumatic stress symptoms 

and risk for PTSD diagnosis in men, but not women (Gillespie et al., 2013). In rodents, 

castration increases anxiety-like behavior compared to intact rats in the open field (Adler et 

al., 1999), elevated plus-maze (Bitran et al., 1993), and defensive burying task (Frye and 

Seliga, 2001). Also, testosterone replacement reduces fear and anxiety-like behavior (Bitran 

et al., 1993, Bouissou and Vandenheede, 1996, Frye and Seliga, 2001). In the conditioned 

defeat model, castrated male hamsters treated with testosterone or dihydrotestosterone 

exhibit more aggression and less submission at testing compared to estradiol treated animals, 

which suggests that chronic androgen treatment decreases conditioned defeat (Solomon et 

al., 2009).

Animals that actively cope with stressful events and exhibit less stress-related fear and 

anxiety may have greater activation of androgen receptors. For example, rats that exhibit an 

active coping strategy on the defensive burying test show elevated plasma testosterone and a 

larger number of androgen receptor immune-positive cells in the MeA and BNST (Linfoot et 

al., 2009). Likewise, male rats carrying a feminizing mutation of the androgen receptor show 

increased anxiety on the elevated plus maze and open field (Zuloaga et al., 2011, Hamson et 

al., 2014). Several recent studies also indicate that androgens may promote structural 

plasticity in brain regions such as the hippocampus and mPFC. Androgens increase the 

survival of newborn neurons in the hippocampus of adult male rats by acting directly 

through nuclear androgen receptors (Spritzer and Galea, 2007, Hamson et al., 2013). Also, 

gonadal hormones act on androgen, as well as estrogen, receptors to increase spine synapse 

formation in the mPFC (Hajszan et al., 2007, Hajszan et al., 2008). Altogether, these 

findings suggest that testosterone may act on androgen receptors in select brain regions to 

generate the structural neural plasticity that supports a reduction in stress-induced changes in 

behavior. In our model of conditioned defeat resistance, we propose that the maintenance of 

dominance relationships increases plasmatestosterone, sensitizes androgen receptors in 

select brain regions, and thereby reduces the conditioned defeat response.

CONCLUSIONS

There is no universal neurobiological mechanism or neural circuit controlling stress 

resilience. The neurochemical and neuroendocrine signals that promote proactive coping 

styles support adaptive responses in some environmental context but not others. Several 

animal models indicate that the vmPFC is a key node within a neural circuit underlying 

stress resilience, although the activity of the vmPFC is not essential for all types of 

resilience. Experience-dependent neural plasticity within the vmPFC appears dependent on 

the environmental factors that promote stress resistance. Also, the role of specific efferent 

projections from the vmPFC likely depends on the type of stressor, as well as the behavioral 
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and physiological response. Consequently, a wide variety of research using an array of 

animal models, theoretical perspectives, and technical approaches is needed to build a 

comprehensive understanding of the biological bases of resilience.

Our data indicate that hamsters with previous experience winning fights show increased 

neural activation in the vmPFC and vMeA during social defeat stress. Neural activity in the 

vmPFC during social defeat is necessary for the resistance to conditioned defeat found in 

dominant hamsters. Future research will be needed to determine whether neural projections 

from the vmPFC to the amygdala reduce the acquisition of conditioned defeat and/or 

whether vmPFC projections to brain regions such as the BNST or DRN reduce the 

expression of conditioned defeat. In addition, testosterone is also a good candidate to 

modulate neural plasticity during establishment and maintenance of dominance relationships 

and changes in testosterone or testosterone-sensitive signaling may promote stress 

resistance. Currently, there are no available interventions to promote stress resistance. Our 

research indicates that behavioral treatments that promote winning and/or personal success 

would be a viable first step toward instilling resilience to the social stress that is pervasive in 

our society.
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Abbreviations

BDNF brain-derived neurotrophic factor

BLA basolateral amygdala

BNST bed nucleus of the stria terminalis

CeA central nucleus of the amygdala

CRF corticotropin-releasing factor

CREB cAMP response element binding

DHEA dehydroepiandrosterone

DRN dorsal raphe nucleus

ERK extracellular signal-regulated kinase

HPA hypothalamic-pituitary-adrenal

HAB high anxiety-related behavior

IL infralimbic cortex

LAB low anxiety-related behavior

LAL long attack latency

MeA medial amygdala
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NAc nucleus accumbens

NMDA N-methyl-D-aspartate

PL prelimbic cortex

PTSD post-traumatic stress disorder

SAL short attack latency

vmPFC ventral medial prefrontal cortex

5-HT serotonin;
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Highlights

• Stress resilience is an active process that involves distinct neural circuits

• Experience-dependent neural plasticity in key brain regions supports resilience

• Dominant hamsters show resistance to the effects of social defeat

• Neural plasticity in vmPFC circuits supports stress resistance in dominant 

hamsters
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Figure 1. 
Plasma cortisol levels are shown for dominant (N = 10), subordinate (N = 10), social status 

(SS, N = 10), and no-defeat (ND, N = 9) control animals following social defeat. Social 

defeat, regardless of prior social status, elevated plasma cortisol compared to ND controls 

(F(3,35) = 4.95, p = .006). Dominants, subordinates, and SS controls do not significantly 

differ in cortisol levels at either 0 or 60 min following social defeat. * indicates significantly 

different compared to all other subjects at the same time point (p < .05).
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Figure 2. 
The number (mean ± SE) of c-Fos immuno-positive cells are shown for dominants (N = 11), 

subordinates (N = 11), social status (SS, N = 12), and no-defeat (ND, N = 10) control 

animals in the dorsal raphe nucleus (DRN) 60 min following social defeat. A) In ventral 

portions of the rostral DRN subordinates show increased c-Fos immunoreactivity compared 

to dominants and ND controls (F(3,40) = 7.28, p = .001). B) In ventral portions of the caudal 

DRN subordinates show increased c-Fos immunoreactivity compared to dominants and ND 

controls (F(3,40) = 4.09, p = .014). Similar trends were found in dorsal portions of the rostral 
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and caudal DRN, although the main effects of social status were marginally significant (p = .

06 and p = .11, respectively). * indicates significantly different compared to dominants and 

ND controls (p < .05).
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Figure 3. 
Brain circuitry implicated in the acquisition and expression of conditioned defeat in Syrian 

hamsters. We propose that the BLA integrates neural signals from the limbic forebrain and 

brain stem regarding social defeat stress and signals to downstream structures that regulate 

behavioral and physiological responses. Also, we propose that experience-dependent 

changes in neural signals from the PLC, ILC, and MeA regulate resistance to conditioned 

defeat in dominant hamsters. Green arrows represent neural circuits activated during social 

defeat that increase the acquisition of conditioned defeat. Blue arrows represent neural 

circuits activated during social defeat that decrease the acquisition of conditioned defeat. 

Red arrows represent neural circuits activated during behavioral testing which increase the 

expression of the conditioned defeat response. BLA, basolateral amygdala; BNST, bed 

nucleus of the stria terminalis; cc, corpus callosum; CeA, central amygdala; DRN, dorsal 

raphe nucleus; IL, infralimbic cortex; MeA, medial amygdala; PL, prelimbic cortex; VH, 

ventral hippocampus.
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