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Metabolic reprogramming has been proposed to be a hallmark of cancer. Aside from 
the glycolytic pathway, the metabolic changes of cancer cells primarily involve amino 
acid metabolism. However, in glioma, the characteristics of the amino acid 
metabolism-related gene set have not been systematically profiled. In the present 
study, RNA sequencing expression data from 309 patients in the Chinese Glioma 
Genome Atlas database were included as a training set, while another 550 patients 
within The Cancer Genome Atlas database were used to validate. Consensus cluster-
ing of the 309 samples yielded two robust groups. Compared with Cluster1, Cluster2 
correlated with a better clinical outcome. We then developed an amino acid 
metabolism-related risk signature for glioma. Our results showed that patients in the 
high-risk group had dramatically shorter overall survival than low-risk counterparts in 
any subgroup, stratified by isocitrate dehydrogenase and 1p/19q status based on the 
2016 World Health Organization classification guidelines. The 30-gene signature 
showed better prognostic value than the traditional factors “age” and “grade” by ana-
lyzing the receiver operating characteristic curve with areas under curve of 0.966, 
0.692, 0.898 and 0.975, 0.677, 0.885 for 3-  and 5-year survival, respectively. 
Moreover, univariate and multivariate analysis showed that the 30-gene signature 
was an independent prognostic factor for glioma. Furthermore, Gene Ontology anal-
ysis and Gene Set Enrichment Analysis showed that tumors with a high risk score 
correlated with various aspects of the malignancy of glioma. In summary, we demon-
strated a novel amino acid metabolism-related risk signature for predicting prognosis 
for glioma.

K E Y W O R D S

amino acid metabolism, CGGA, glioma, prognosis, risk signature

www.wileyonlinelibrary.com/journal/cas
https://orcid.org/0000-0002-5119-2984
https://orcid.org/0000-0003-3451-8871
https://orcid.org/0000-0001-9256-0176
https://orcid.org/0000-0002-7008-6351
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wufan0510284@163.com
mailto:Taojiang1964@163.com


322  |     LIU et al.

1  | INTRODUC TION

Metabolic reprogramming, as both direct and indirect conse-
quences of oncogenic mutations, has been proposed to be a 
hallmark of cancer.1,2 Amino acid metabolism might represent an 
“Achilles heel” in cancer as a number of tumors acquire an altered 
dependency on some of these metabolic pathways.3-5 Amino acid 
metabolism involving serine, glycine and threonine and the carbon 
units they provide satisfies cell growth and proliferation, as well 
as the maintenance of cellular redox, genetic and epigenetic sta-
tus.6-8 Also, glutamine, as a super nutrient, plays surprising roles in 
supporting the biological hallmarks of malignancy.9,10 Additionally, 
several lines of evidences have shown that an individual amino 
acid metabolism-related gene plays a pivotal role in tumor pro-
gression. For instance, inhibition of glutaminase (GLS) with siRNA 
or small molecule inhibitor preferentially slows growth of glioma 
cells with mutant IDH 1.11 Yue et al12 found that oncogenic MYC 
selectively activates SLC7A5/SLC43A1 transcription and the MYC-
SLC7A5/SLC43A1 signaling circuit promotes essential amino acid 
transport and tumorigenesis. ASCT2 (encoded by SLC1A5) is a 
sodium-dependent neutral amino acid transporter, and pharma-
cological blockade of ASCT2 with V-9302 led to attenuated can-
cer cell growth, increased cell death and raised oxidative stress, 
which collectively contributed to antitumor responses in vitro and 
in mouse models in vivo.13 Nevertheless, currently, the character-
istic of the amino acid metabolism-related gene set has not been 
systematically profiled.

In our study, we focused on gliomas, the most common form 
of primary malignant brain tumor, which can be subdivided into 
grades II-IV in light of WHO classification. Compared with WHO 
Grades II-III, which comprise LGG, GBM WHO IV bears a dismal 
prognosis with median survival rates of 14.6 months.14-16 The 
2016 WHO classification of central nervous system (CNS) tumors 
combines molecular parameters and histology to define diffuse 
gliomas.17 Based on traditional histopathology but enriched with 
IDH and 1p/19q codeletion status, gliomas could be classified 
into five subtypes (three LGG and two GBM), as follows: (i) LGG 
with wild-type IDH (LGG-IDHwt); (ii) LGG with IDH mutation and 
1p/19q non-codeletion (LGG-IDHmut-noncodel); (iii) LGG with 
IDH mutation and 1p/19q codeletion (LGG-IDHmut-codel); (iv) 
GBM with wild-type IDH (GBM-IDHwt); and (v) GBM with IDH 
mutation (GBM-IDHmut).18,19 These five subtypes of glioma show 
distinct tumor characteristics and OS outcomes.

In the present study, we conducted systematic and comprehen-
sive research on the characteristics of the amino acid metabolism-
related gene set in glioma. First, we demonstrated that amino acid 
metabolism-related gene sets could stratify the clinical and mo-
lecular characteristics of gliomas, highlighting their significance 
in the malignancy of glioma. Then, we developed an amino acid 
metabolism-related signature for glioma patients in the CGGA 
RNA sequencing (RNAseq) dataset, and validated in TCGA RNAseq 
dataset. Furthermore, the 30-gene-based risk signature was veri-
fied as an independent prognostic factor for gliomas, indicating an 

association between amino acid metabolism-related signature and 
prognosis. Finally, GO analysis and GSEA identified that a tumor 
with a higher risk score of amino acid metabolism-related signature 
was involved in many aspects of tumor progression, including cell 
division, angiogenesis, cell adhesion and immune response. These 
results might provide a new insight into the research of glioma ma-
lignancy and individual therapy.

2  | MATERIAL S AND METHODS

2.1 | Samples and data collection

We retrospectively collected whole-genome RNA-seq expression 
data and corresponding clinical and molecular information from 309 
patients (gender, age, IDH mutational status, status of loss of 1p/19q 
and methylguanine methyltransferase [MGMT] promoter methyla-
tion and survival information) from the CGGA database (http://www.
cgga.org.cn) as the training set.20,21 Tumor tissue samples were ob-
tained from patients with newly diagnosed glioma who were treated 
by the CGGA group. All tissues were independently diagnosed histo-
logically by two or more neuropathologists. Only samples containing 
above 80% tumor cells were selected for whole-genome expression 
profiling. OS was calculated from the date of diagnosis until death or 
the end of follow up. The study protocol was approved by the ethics 
committee of the Beijing Tiantan Hospital. We selected the TCGA-
RNAseq cohort as the validation set, which contains 683 samples 
(http://cancergenome.nih.gov/),22,23 and after eliminating cases in 
which clinical information was incomplete and lacked prognostic in-
formation, 550 samples were retained.

2.2 | Bioinformatics analysis

We carried out consensus clustering with the R programming lan-
guage (http://cran.r-project.org) to access expression patterns of 
amino acid metabolism-related genes from the CGGA and TCGA 
datasets. GO analysis and KEGG pathway analysis were carried out 
in DAVID (http://david.abcc.ncifcrf.gov/home.jsp) for functional an-
notation of the genes positively and negatively correlated with risk 
score in the two cohorts.24,25 GSEA (http://www.broadinstitute.
org/gsea/index.jsp) was carried out to determine whether con-
firmed gene sets were significantly distinct between the two groups 
(high risk score vs low risk score).24,26 We evaluated tumor purity 
of each sample using the ESTIMATE algorithm, which reflects the 
enrichment of stromal and immune cell gene signatures in a tran-
scriptional profile.27 Protein-protein interactions among 30 amino 
acid metabolism-related proteins were analyzed using the STRING 
database (http://www.string-db.org/).

2.3 | Statistical analysis

Amino acid metabolism-related gene sets (REACTOME_
METABOLISM_OF_AMINO_ACIDS_AND_DERIVATIVES) were first 
extracted from the Molecular Signatures Database v5.1 (MSigDB) 

http://www.cgga.org.cn
http://www.cgga.org.cn
http://david.abcc.ncifcrf.gov/home.jsp
http://www.broadinstitute.org/gsea/index.jsp
http://www.broadinstitute.org/gsea/index.jsp
http://www.string-db.org/
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(http://www.broad.mit.edu/gsea/msigdb/),20 which contained a 
total of 200 genes. After overlapping with genes in CGGA and TCGA 
RNA-seq datasets, 194 and 196 genes related to amino acid metabo-
lism, respectively, remained.

Univariate Cox regression analysis was carried out to assess the 
prognostic value of genes associated with amino acid metabolism 
and 121 genes correlating with survival (P < 0.05) were selected to 
achieve further gene signature selection and risk-based classification 
in the training datasets. A risk signature was formulated according to 
the Least Absolute Shrinkage and Selection Operator (LASSO) re-
gression algorithm.28-30 The penalty parameter λ was chosen based 
on 10-fold cross-validation within the training set, which produced 
the minimum mean cross-validated error for the Cox model. Based 
on this, 30 genes and their regression coefficients were obtained. 
We then computed the risk score according to the formula followed 
in the training and validation datasets. 

On the basis of the median risk value, patients were separated 
into high- and low-risk groups in both CGGA and TCGA databases. 
Kaplan-Meier survival curves and the log rank test were exploited 
to evaluate the prognostic significance.31 Differences in clinico-
pathological features between groups were tested by Student’s t or 
chi-squared tests. Multivariate Cox regression analyses were carried 
out to determine independent prognostic factors, and the statistical 
analyses were conducted using SPSS version 16.0 software (SPSS 
Inc., Chicago, IL, USA). P value <.05 was regarded as statistically 
significant.

3  | RESULTS

3.1 | Stratification of gliomas based on amino acid 
metabolism-related gene sets

Amino acid metabolism-related gene expression profiling of 309 
samples was obtained from the CGGA RNAseq datasets, and we 
analyzed the genes identified as having highly variable expres-
sion among the samples. Consensus clustering of the 309 samples 
determined two robust clusters with clustering stability increas-
ing between k = 2 and k = 10 (Figure 1A-D and Figure S1). We ob-
served that consensus clustering determined striking differences 
in the clinical and molecular features of the two glioma subclasses 
(Figure 1E, Table S1). In the training cohort, Cluster1 was strongly 
linked with older age at diagnosis (median age = 46, P < .001), clas-
sical or mesenchymal subtypes (72.3%, P < .001), GBM phenotype 
(71.8%, P < .001), IDH wild type (72.9%, P < .001) and 1p/19q non-
codeletion (96.3%, P < .001). Cluster2 cluster mainly represented the 
proneural or neural subtypes (92.0%, P < .001), lower grade (88.5%, 
P < .001), and IDH mutational status (81.3%, P < .001). These find-
ings were validated in the TCGA datasets (Figure S2). Furthermore, 
OS analysis showed that glioma patients with the Cluster1 subgroup 

had a better prognosis compared with the Cluster2 subgroup 
(P < .001, log-rank; Figure 1F). These results indicated that amino 
acid metabolism-related gene sets were involved in the malignancy 
of gliomas and closely related to prognosis of patients. According 
to the CGGA cohort, TCGA samples were also clearly stratified into 
two different prognostic subgroups (Figure S2F).

3.2 | Identification of a 30-gene risk signature 
associated with amino acid metabolism

To identify an amino acid metabolism-related gene signature, first, 
we selected 121 genes associated with OS (P < .05) by univariate Cox 
regression analysis in the training cohort. Then, by LASSO regres-
sion algorithm, 30 genes were selected as active covariates to evalu-
ate the prognostic value, and the risk scores for the patients in the 
training cohort were obtained (Figure 2A,B). To assess performance 
of the signature genes as classifier, we distinguished the training 
dataset into high-risk and low-risk groups by using the median risk 
score as the cutoff value, and found a significant difference in the 
clinical and molecular features between the two groups (Figure 2C 
and Table 1). In comparison with the low-risk group, patients in the 
high-risk group tended to be older (P < .001). As shown in Table 1, 
classical and mesenchymal subtypes were found in 12.9% and 73.5% 
of low-risk and high-risk groups, respectively (P < .001). Moreover, 
we found that GBM accounted for a large proportion, 72.9% of the 
total, in the high-risk group, whereas GBM was 12.9% in the low-
risk group (P < .001). We found that 78.6% and 24.5% of samples in 
the low-risk and high-risk groups, respectively, were found to carry 
IDH mutations (P < .001). Loss of chromosome 1p/19q was found 
in 24.6% and 3.1% of low-risk and high-risk groups, respectively 
(P < .001). Our results also showed that MGMT promoter methyla-
tion was found in 70.6% and 42.8% of low-risk and high-risk groups, 
respectively (P < .001).

To validate the 30 amino acid metabolism-related risk signature 
in other populations, we formulated the risk scores for each patient 
in TCGA database based on the 30-gene coefficients derived from 
the training dataset. Consistent with the above results, we also 
found that there was significant difference between the two groups 
in an independent validation cohort (Figure S3 and Table 1). In brief, 
compared to the low-risk group, the high-risk group tended to com-
prise the patients with poor prognostic features.

3.3 | Identification of 30-gene signature for 
prognostication in glioma

In view of the close correlation between risk groups and clin-
icopathological features, we sought to assess the prognos-
tic value of the risk score. In all gliomas, patients were assigned 
to two groups according to the median risk score. Our results 
showed that patients in the high-risk group (n = 155) had dra-
matically shorter OS than their low-risk counterparts (n = 154) in 
the training cohort (median OS = 9.0 vs 37.9 months; P < .0001; 
Figure 3A). Moreover, we explored the prognostic value of risk 

Risk score=exprgene(1)×coefficientgene(1)+exprgene(2)×coefficientgene(2)

+⋯+exprgene(n)×coefficientgene(n)
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score in gliomas of different grades and found that OS differed significantly between high-risk and low-risk groups in WHO grade 
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F IGURE  1 Amino acid-related gene sets could classify the clinical and molecular features of gliomas. A,B, Consensus clustering matrix 
of 309 CGGA samples for k = 2 and k = 3. C, Consensus clustering CDF for k = 2 to k = 10. D, Relative change in area under CDF curve 
according to various k values. E, Heat map and clinicopathological features of the two clusters defined by the amino acid-related gene sets. 
F, Survival analysis of Cluster 1 and Cluster 2 subgroups in CGGA samples. CDF, cumulative distribution function; CGGA, Chinese Glioma 
Genome Atlas; Codel, codeletion; IDH, isocitrate dehydrogenase; MGMT, methylguanine methyltransferase; Noncodel, noncodeletion; OS, 
overall survival

F IGURE  2  Identification of 30-gene risk signature for OS by LASSO regression analysis in CGGA datasets. A, Partial likelihood deviance 
as function of regularization parameter λ in the training dataset. Each red point marks a λ value along regularization paths, and gray error 
bars represent confidence intervals for the cross-validated error rate. Left vertical dotted line marks the minimum error, whereas the right 
vertical dotted line marks the largest λ value, the error of which is within 1 SD of the minimum. Horizontal row of numbers above the plot 
marks the gene number in each condition upon shrinkage and selection based on linear regression. Results of 30 genes selected and their 
regression coefficients by LASSO are shown in (B). C, Heat map shows the association of risk scores and clinicopathological features based 
on the 30-gene risk signature. CGGA, Chinese Glioma Genome Atlas; Codel, codeletion; IDH, isocitrate dehydrogenase; LASSO, Least 
Absolute Shrinkage and Selection Operator; MGMT, methylguanine methyltransferase; Noncodel, noncodeletion; OS, overall survival; 
TCGA, The Cancer Genome Atlas
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II (median OS = 26.5 vs 56.8 months; P = .0024), grade III (median 
OS = 11.4 vs 33.6 months; P < .0001) and GBM (median OS = 7.2 vs 
12.7 months; P < .0001; Figure 3B-D).

The 2016 update to the WHO proposed a classification strategy 
and, thus, gliomas were classified into five subtypes based on tradi-
tional histopathology and the status of IDH and 1p/19q codeletion. 
Given that these five glioma subtypes showed distinct tumor char-
acteristics and OS outcomes, we determined whether the risk score 
had prognostic value in the five various populations. For LGG, survival 
time of the high-risk group was remarkably shorter than that of the 
low-risk group in LGG-IDHmut-noncodel (P < .0001; Figure 4A) and 
LGG-IDHwt (P < .0001; Figure 4B), whereas there was no significant 
difference in LGG-IDHmut-codel (P = .1175; Figure 4C). For both 
GBM-IDHwt and GBM-IDHmut, there were significant differences in 
OS between the two risk groups (P < .0001; P = .0015, respectively; 
Figure 4D,E).

Meanwhile, the signature value showed significant differ-
ences between samples stratified by WHO grade in the CGGA 
and TCGA cohorts (Figure 5A and Figure S5A). Such being the 
case, gliomas were classified into five principal groups on the 
basis of IDH status and 1p/19q codeletion status. Based on  
the critical molecular markers IDH and 1p/19q, we investigated the 
distribution of the 30-gene signature in patients stratified by IDH 
status among distinct WHO grades (Figure 5B-D and Figure S5B-
D) and 1p/19q codeletion status in LGG-IDH mutation patients 
(Figure 5E and Figure S5E). Verhaak et al32 have identified four clini-
cally relevant subtypes (neural, proneural, classical, mesenchymal) of 
GBM characterized by abnormalities in platelet derived growth fac-
tor receptor alpha (PDGFRA), IDH1, epidermal growth factor recep-
tor (EGFR) and neurofibromin 1 by an integrated genomic analysis. 
Therefore, we explored the distribution of TCGA subtypes for GBM 
in the CGGA and TCGA cohorts (Figure 5F and Figure S5F).

TABLE  1 Correlation between 30-gene-based risk scores and clinicopathological factors of glioma patients in the two cohorts

Features

Training set CGGA RNA-seq cohort (n = 309) Validation set TCGA RNA-seq cohort (n = 550)

Low-risk score 
(n = 154)

High-risk score 
(n = 155) P-value Low-risk score (n = 275) High-risk score (n = 275) P-value

Age

Mean (range) 40 (10-75) 47 (8-81) <.001 40 (14-87) 56 (21-89) <.001

Gender

Female 62 53 .113 119 112 .390

Male 92 102 156 163

TCGA subtype

Pro 65 34 <.001 237 108 <.001

Neural 69 7 28 5

Classical 17 52 9 132

Mes 3 62 1 30

WHO grade

II 95 9 <.001 160 31 <.001

III 34 33 115 96

IV 25 113 0 148

IDH status

WT 33 117 <.001 17 195 <.001

Mut 121 38 258 80

1p/19q status

Codel 32 4 <.001 134 3 <.001

Noncodel 98 124 141 266

NA 24 27 0 6

MGMT promoter status

Unmethy 32 79 <.001 30 105 <.001

Methy 77 59 245 138

NA 45 17 0 32

Bold type indicates a statistically significant difference ( P value < .05).
CGGA, Chinese Glioma Genome Atlas; Codel, codeletion; IDH, isocitrate dehydrogenase; Mes, mesenchymal; Methy, methylated; MGMT, methylgua-
nine methyltransferase; Mut, mutation; NA, not applicable; Noncodel, noncodeletion; Pro, proneural; TCGA, The Cancer Genome Atlas; Unmethy, 
unmethylated; WHO, World Health Organization; WT, wildtype.
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3.4 | Prognostic validity of the 30-gene signature 
for glioma

Subsequently, we investigated the specificity and sensitivity of risk 
score in the prediction of 3- and 5-year survival by analyzing the ROC 

curve, and compared the 30-gene signature with traditional “age” and 
“grade”. The 30-gene signature showed striking prognostic validity, 
with AUC of 0.966 and 0.975 for 3- and 5-year survival, respectively, 
which were higher than for the traditional factors (Figure 3E,F), un-
derscoring the superior predictive value of the 30-gene signature.

F IGURE  3 Prognostic significance of the 30-gene signature-derived risk scores in different WHO grades. Prognosis efficiency of the 
30-gene risk signature in all grades (A), grade II (B), grade III (C) and GBM (D) from the CGGA datasets. P-value shown in each panel is 
determined by a log-rank test between the two groups. E,F, ROC curves indicating the sensitivity and specificity of predicting 3- and 5-y 
survival with the amino acid metabolism-related signature in the CGGA datasets. CGGA, Chinese Glioma Genome Atlas; GBM, glioblastoma; 
OS, overall survival; ROC, receiver operating characteristic; WHO, World Health Organization
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3.5 | Univariate and multivariate analysis shows 
prognostic value of 30-gene signature

To further explore whether the risk score was an independent prog-
nostic factor of prognosis in glioma, we carried out univariate and 
multivariate Cox regression analyses in the CGGA cohort. Results 
showed that the 30-gene signature was independently correlated 
with OS by adjusting for clinicopathological factors (age, gender, 
WHO grade, TCGA subtype, IDH status, MGMT promoter status 

and 1p/19q status; Table 2). Consistently, the local immune-related 
risk signature was validated as an independent factor after Cox re-
gression analyses in TCGA cohort (Table S2).

3.6 | Functional annotation of 30-gene signature

To explore the potentially altered functional characteristics associ-
ated with the 30-gene signature, GO analysis was carried out to study 
differences in biological processes between the two risk groups. 

F IGURE  4 Prediction of outcome in diverse cohorts stratified by IDH mutation and 1p/19q codeletion status. Kaplan-Meier survival 
curves for LGG patients with IDH-wild type (A), IDH-mutation but not the 1p/19q codeletion (B) and IDH-mutation with 1p/19q codeletion 
(C), classified into two groups based on 30-gene signature-derived risk scores. Kaplan-Meier survival curves also show the prognostic value 
of GBM patients with IDH-wild type (D) and IDH-mutation (E) in the CGGA cohort. P-value is the result of a log-rank test between the two 
groups shown in each panel. CGGA, Chinese Glioma Genome Atlas; Codel, codeletion; GBM, glioblastoma; IDH, isocitrate dehydrogenase; 
LGG, lower-grade glioma; OS, overall survival
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F IGURE  5 Associations between the amino acid-related signature and other features in CGGA datasets. Distribution of the amino acid-
related gene signature in patients stratified by WHO grade (A), IDH1 status in each grade (B-D), 1p/19q status in IDH mutation-LGG (E) and 
TCGA subtypes in GBM (F). *P < .05; **P < .01; ****P < .0001; ns, not significant. CGGA, Chinese Glioma Genome Atlas; Codel, codeletion; 
GBM, glioblastoma; IDH, isocitrate dehydrogenase; LGG, lower-grade glioma; TCGA, The Cancer Genome Atlas; WHO, World Health 
Organization
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First, we demonstrated 1346 high-risk score positively related genes 
(P < .05) and 922 negatively related genes (P < .05) using Pearson 
correlation analysis. Genes upregulated in the high-risk group were 
primarily involved in tumor progression, including “extracellular ma-
trix organization”, “cell division”, “angiogenesis”, “cell adhesion”, “ap-
optotic process” and “immune response”. In contrast, downregulated 
genes in the high-risk group were closely related to neurogenesis, 
such as “chemical synaptic transmission”, “learning”, “neurotransmit-
ter secretion” and “nervous system development” (Figure 6A).

Moreover, GO analysis was implemented to explore the differ-
ences in KEGG pathway between the high- and low-risk score groups. 
We found that positively related genes were mainly enriched in KEGG 
terms including “ECM-receptor interaction”, “cell cycle”, “focal adhe-
sion” and “TNF signaling pathway”, whereas the negatively correlated 
genes were enriched in terms including “retrograde endocannabinoid 
signaling”, “insulin secretion” and “dopaminergic synapse” (Figure 6B). 
These results were validated in TCGA cohort (Figure S6).

Next, GSEA analyses were carried out for validation, show-
ing that the high-risk groups were positively associated with 
regulation of innate immune response (P < .001) and response to 
tumor necrosis factor (P < .001), negatively with synaptic signal-
ing (P < .001) and regulation of neurotransmitter levels (P < .001; 
Figure 6C).

4  | DISCUSSION

Fast-growing tumor cells largely draw energy out of typically in-
creasing aerobic glycolysis, a phenomenon known as the Warburg 
effect.1,12 Aside from the glycolytic pathway, the metabolic 
changes of cancer cells primarily involve amino acid metabolism.3 

A previous study has identified a glucose-related risk signature 
for the malignancy of glioma and the survival of patients through 
bioinformatic profiling.20 Also, metabolomic investigations have 
provided novel biomolecular insights into the aggressive pheno-
type of the malignancy of brain tumors.24,33,34 However, there 
continues to be a gap in systematically understanding the charac-
teristics of the amino acid metabolism-related gene set in glioma.

In the present study, for the first time, we built an amino acid 
metabolism-related risk signature to predict the prognosis of glioma. 
RNAseq expression data from 309 patients in the CGGA database were 
included as the training set, whereas another 550 patients with TCGA 
database were used to validate. First, the 309 samples were apparently 
clustered into two distinct subclasses (k = 2), and the two subclasses 
showed significant differences in clinical and molecular features in both 
the CGGA and TCGA cohort. However, for k = 3, the area under the cu-
mulative distribution function (CDF) curve was increased by more than 
0.1-fold that of k = 2 (Figure 1C,D), and we found the ratio of samples in 
the third subclass was very small (Figure 1B). It also meant that for k > 2, 
clustering stability did not improve significantly.

Next, we developed a 30-gene-based risk signature to determine 
the status of amino acid metabolism in glioma patients. We observed 
that the high-risk group was closely associated with IDH wildtype, 
1p/19q noncodeletion, higher WHO grades and worse TCGA sub-
types (classical and mesenchymal) (Figures 2C and 5, Figure S2C and 
S5), which implies that the amino acid metabolism-related risk sig-
nature may, to some extent, result in the poor prognosis of patients 
with IDH wildtype, 1p/19q noncodeletion, higher WHO grades and 
worse TCGA subtypes.

We further showed that the 30-gene signature could predict the 
prognosis of glioma regardless of WHO grade and the five subgroups 
of WHO 2016 classification based on the stratification of IDH and 

Variables

Univariate analysis Multivariate analysis

HR 95% CI P-value HR 95% CI P-value

Age 1.038 1.022-1.053 <.001 0.995 0.979-1.012 .593

Gender 1.187 0.841-1.675 .330 NA NA NA

WHO grade 3.469 2.709-4.443 <.001 1.090 0.738-1.610 .666

TCGA subtype 1.936 1.642-2.282 <.001 0.880 0.687-1.127 .310

IDH status 0.229 0.159-0.331 <.001 0.770 0.391-1.514 .448

MGMT 
promoter 
status

0.529 0.374-0.750 <.001 0.989 0.644-1.517 .959

1p/19q status 0.165 0.067-0.404 <.001 0.970 0.362-2.596 .951

Risk score 4.077 3.326-4.999 <.001 3.825 2.830-5.171 <.001

Bold type indicates a statistically significant difference ( P value < .05).
Variables with prognostic significance in univariate Cox regression analysis were included in further 
multivariate Cox analysis.
Gender (female and male); WHO grade (II, III and IV); TCGA subtype (neural, proneural, mesenchy-
mal and classical); IDH status (mutant and wildtype); MGMT promoter status (methylated and un-
methylated); 1p/19q status (codeletion and non-codeletion); Risk score (low and high). CI, confidence 
interval; CGGA, Chinese Glioma Genome Atlas; HR, hazard ratio; IDH, isocitrate dehydrogenase; 
MGMT, methylguanine methyltransferase; NA, not applicable; OS, overall survival.

TABLE  2 Uni- and multivariate Cox 
regression analysis of the clinical features 
and 30-gene-based risk score for OS in 
CGGA datasets
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1p/19q status in the CGGA cohort (Figures 3A-D and 4). Then, ROC 
curves were carried out to compare the prognostic values between 
the 30-gene signature and traditional factors “age” and “grade”, with 

AUC of 0.966, 0.692, 0.898 and 0.975, 0.677, 0.885 for 3- and 5-year 
survival, respectively (Figure 3E,F). These results suggested that the 
30-gene signature could better predict the prognosis of glioma.

F IGURE  6 Altered functional characteristics related to the 30-gene signature. A,B, Functional annotation of genes positively (red bar 
chart) or negatively (green bar chart) correlated with the risk score using GO terms of biological processes (A) and KEGG pathway (B). C, 
Gene set enrichment analysis (GSEA) shows that higher risk score was positively associated with immune response and negatively correlated 
with synaptic signaling and neurotransmitter levels. Codel, codeletion; NES, normalized enrichment score; Noncodel, noncodeletion. Orange 
and green bars represent P-value, and the blue dots represent the 1/3 gene count
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In the validation cohort, in contrast with WHO grade II and III, 
the 30-gene signature predicted poor overall prognosis for GBM 
(Figure S4A-D). One possible reason is that there were distinct dif-
ferences in the distribution of grades and subtypes between CGGA 
and TCGA cohorts. As shown in Table S3, GBM patients in the CGGA 
cohort accounted for 44.7% of the total, whereas GBM accounted 
for a proportion of 26.9% in TCGA cohort. LGG were divided into 
three subgroups based on the status of IDH and 1p/19q codeletion. 
As for LGG-IDHwt, glioma patients in the high-risk group had a poorer 
prognosis than those with low-risk score, with a significant differ-
ence (P = .001). However, for LGG-IDHmut-codel and LGG-IDHmut-
noncodel, the OS of high-risk patients tended to be worse, although 
the difference showed no significance (P > .05) (Figure S4E-G). We 
considered that if the sample sizes were increased, there might be a 
statistical difference in GBM and these subtypes.

Of note, we identified that the amino acid metabolism-related 
risk signature remained an independent prognostic factor after ad-
justment of clinical and molecular features. There is great potential 
for the status of amino acid metabolism to refine the clinicopatho-
logical features of accurate prognostication, so combining the risk 
signature and other features could better predict the prognosis of 
glioma.

Functional annotation of the 30-gene signature showed that bio-
logical functions of angiogenesis, cell adhesion and immune response 
may contribute to patients’ high risk and poor clinical outcome. Low-
purity gliomas were characterized by intensive local immune pheno-
types and correlated with a poor prognosis.23 Therefore, we applied 
the ESTIMATE algorithm to predict tumor purity using gene expres-
sion profiles26 and found a significant increase in ESTIMATE scores 
in the high-risk group (Figure S7), indicating that a greater presence 
of inflammatory microenvironment components is associated with 
progressive tumorigenesis.27

In addition, we analyzed the 30-amino acid metabolism-related 
genes and proteins in detail. DAVID functional annotation was car-
ried out to determine the biological process in which each gene 
selected as 30-risk signature is involved (Figure S8A). Our results 
showed that a group of genes (including PSMC6, PSMD12, PSMB4, 
PSMC2, PSME4 and PSMB2) engaged in similar biological processes, 
such as “regulation of cellular amino acid metabolic process”, “NIK/
NF-kappaB signaling”, “TNF/T-cell receptor mediated signaling path-
way” and “protein polyubiquitination” etc. Five genes (CBS, PAH, 
OAT, GPT and BCAT2) among them participated in “cellular amino 
acid biosynthetic process”. We still found some genes that played 
roles in certain amino acid metabolic processes. For instance, ODC1 
took part in the “polyamine metabolic process”, and AADAT and 
GCLC were involved in the “glutamate metabolic process”. Moreover, 
we analyzed the protein-protein interaction network for 30-amino 
acid metabolism-related genes/proteins using the STRING data-
base (Figure S8B). Further molecular mechanisms as to how these 
genes affect the progression of glioma remain to be studied in our 
follow-up work.

In conclusion, we identified that the amino acid metabolism-
related gene set could distinguish the clinical and molecular features 

of gliomas. We then developed a 30-amino acid metabolism-related 
gene expression-based risk signature, which was strongly related to 
the OS of glioma patients in the five subgroups of WHO 2016 clas-
sification for patients based on the stratification of IDH and 1p/19q 
status, and confirmed that the 30-risk signature could better pre-
dict OS for glioma than traditional factors. Moreover, we carried 
out functional annotation of the positive and negative amino acid 
metabolism-related gene in glioma. Furthermore, the risk signature 
could contribute to understanding the carcinogenesis and develop-
ment of glioma, as well as providing new insight into the therapeu-
tic targets for glioma patients. In short, we identified a novel amino 
acid metabolism-related risk signature for predicting the prognosis 
of glioma.
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