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Metabolic	reprogramming	has	been	proposed	to	be	a	hallmark	of	cancer.	Aside	from	
the	glycolytic	pathway,	the	metabolic	changes	of	cancer	cells	primarily	involve	amino	
acid	 metabolism.	 However,	 in	 glioma,	 the	 characteristics	 of	 the	 amino	 acid	
metabolism-	related	gene	set	have	not	been	systematically	profiled.	 In	 the	present	
study,	RNA	 sequencing	expression	data	 from	309	patients	 in	 the	Chinese	Glioma	
Genome	Atlas	database	were	included	as	a	training	set,	while	another	550	patients	
within	The	Cancer	Genome	Atlas	database	were	used	to	validate.	Consensus	cluster-
ing	of	the	309	samples	yielded	two	robust	groups.	Compared	with	Cluster1,	Cluster2	
correlated with a better clinical outcome. We then developed an amino acid 
metabolism-	related	risk	signature	for	glioma.	Our	results	showed	that	patients	in	the	
high-	risk	group	had	dramatically	shorter	overall	survival	than	low-	risk	counterparts	in	
any	subgroup,	stratified	by	isocitrate	dehydrogenase	and	1p/19q	status	based	on	the	
2016	World	 Health	 Organization	 classification	 guidelines.	 The	 30-	gene	 signature	
showed	better	prognostic	value	than	the	traditional	factors	“age”	and	“grade”	by	ana-
lyzing	the	receiver	operating	characteristic	curve	with	areas	under	curve	of	0.966,	
0.692,	 0.898	 and	 0.975,	 0.677,	 0.885	 for	 3-		 and	 5-	year	 survival,	 respectively.	
Moreover,	univariate	and	multivariate	analysis	 showed	 that	 the	30-	gene	signature	
was	an	independent	prognostic	factor	for	glioma.	Furthermore,	Gene	Ontology	anal-
ysis	and	Gene	Set	Enrichment	Analysis	showed	that	 tumors	with	a	high	risk	score	
correlated	with	various	aspects	of	the	malignancy	of	glioma.	In	summary,	we	demon-
strated	a	novel	amino	acid	metabolism-	related	risk	signature	for	predicting	prognosis	
for	glioma.

K E Y W O R D S

amino	acid	metabolism,	CGGA,	glioma,	prognosis,	risk	signature

www.wileyonlinelibrary.com/journal/cas
https://orcid.org/0000-0002-5119-2984
https://orcid.org/0000-0003-3451-8871
https://orcid.org/0000-0001-9256-0176
https://orcid.org/0000-0002-7008-6351
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wufan0510284@163.com
mailto:Taojiang1964@163.com


322  |     LIU et aL.

1  | INTRODUC TION

Metabolic	 reprogramming,	 as	 both	 direct	 and	 indirect	 conse-
quences	 of	 oncogenic	 mutations,	 has	 been	 proposed	 to	 be	 a	
hallmark	of	cancer.1,2	Amino	acid	metabolism	might	represent	an	
“Achilles	heel”	in	cancer	as	a	number	of	tumors	acquire	an	altered	
dependency on some of these metabolic pathways.3-5	Amino	acid	
metabolism	involving	serine,	glycine	and	threonine	and	the	carbon	
units	 they	provide	satisfies	cell	growth	and	proliferation,	as	well	
as	the	maintenance	of	cellular	redox,	genetic	and	epigenetic	sta-
tus.6-8	Also,	glutamine,	as	a	super	nutrient,	plays	surprising	roles	in	
supporting	the	biological	hallmarks	of	malignancy.9,10	Additionally,	
several lines of evidences have shown that an individual amino 
acid	metabolism-	related	 gene	 plays	 a	 pivotal	 role	 in	 tumor	 pro-
gression.	For	instance,	inhibition	of	glutaminase	(GLS)	with	siRNA	
or	small	molecule	 inhibitor	preferentially	slows	growth	of	glioma	
cells	with	mutant	IDH	1.11 Yue et al12	found	that	oncogenic	MYC	
selectively activates SLC7A5/SLC43A1	transcription	and	the	MYC-	
SLC7A5/SLC43A1	signaling	circuit	promotes	essential	amino	acid	
transport	 and	 tumorigenesis.	 ASCT2	 (encoded	 by	 SLC1A5)	 is	 a	
sodium-	dependent	 neutral	 amino	 acid	 transporter,	 and	 pharma-
cological	blockade	of	ASCT2	with	V-	9302	led	to	attenuated	can-
cer	 cell	 growth,	 increased	cell	 death	and	 raised	oxidative	 stress,	
which collectively contributed to antitumor responses in vitro and 
in mouse models in vivo.13	Nevertheless,	currently,	the	character-
istic	of	the	amino	acid	metabolism-	related	gene	set	has	not	been	
systematically profiled.

In	our	study,	we	focused	on	gliomas,	 the	most	common	form	
of	 primary	malignant	 brain	 tumor,	which	 can	 be	 subdivided	 into	
grades	II-	IV	in	light	of	WHO	classification.	Compared	with	WHO	
Grades	 II-	III,	which	comprise	LGG,	GBM	WHO	IV	bears	a	dismal	
prognosis	 with	 median	 survival	 rates	 of	 14.6	months.14-16 The 
2016	WHO	classification	of	central	nervous	system	(CNS)	tumors	
combines	 molecular	 parameters	 and	 histology	 to	 define	 diffuse	
gliomas.17	Based	on	traditional	histopathology	but	enriched	with	
IDH	 and	 1p/19q	 codeletion	 status,	 gliomas	 could	 be	 classified	
into	 five	subtypes	 (three	LGG	and	two	GBM),	as	 follows:	 (i)	LGG	
with	wild-	type	IDH	(LGG-	IDHwt);	(ii)	LGG	with	IDH	mutation	and	
1p/19q	 non-	codeletion	 (LGG-	IDHmut-	noncodel);	 (iii)	 LGG	 with	
IDH	 mutation	 and	 1p/19q	 codeletion	 (LGG-	IDHmut-	codel);	 (iv)	
GBM	with	wild-	type	 IDH	 (GBM-	IDHwt);	 and	 (v)	 GBM	with	 IDH	
mutation	(GBM-	IDHmut).18,19	These	five	subtypes	of	glioma	show	
distinct	tumor	characteristics	and	OS	outcomes.

In	the	present	study,	we	conducted	systematic	and	comprehen-
sive	research	on	the	characteristics	of	the	amino	acid	metabolism-	
related	gene	set	 in	glioma.	First,	we	demonstrated	that	amino	acid	
metabolism-	related	 gene	 sets	 could	 stratify	 the	 clinical	 and	 mo-
lecular	 characteristics	 of	 gliomas,	 highlighting	 their	 significance	
in	 the	 malignancy	 of	 glioma.	 Then,	 we	 developed	 an	 amino	 acid	
metabolism-	related	 signature	 for	 glioma	 patients	 in	 the	 CGGA	
RNA	sequencing	(RNAseq)	dataset,	and	validated	in	TCGA	RNAseq	
dataset.	 Furthermore,	 the	 30-	gene-	based	 risk	 signature	 was	 veri-
fied	as	an	independent	prognostic	factor	for	gliomas,	 indicating	an	

association	between	 amino	 acid	metabolism-	related	 signature	 and	
prognosis.	 Finally,	 GO	 analysis	 and	 GSEA	 identified	 that	 a	 tumor	
with	a	higher	risk	score	of	amino	acid	metabolism-	related	signature	
was	 involved	 in	many	aspects	of	 tumor	progression,	 including	 cell	
division,	 angiogenesis,	 cell	 adhesion	 and	 immune	 response.	 These	
results	might	provide	a	new	insight	into	the	research	of	glioma	ma-
lignancy	and	individual	therapy.

2  | MATERIAL S AND METHODS

2.1 | Samples and data collection

We	 retrospectively	 collected	 whole-	genome	 RNA-	seq	 expression	
data	and	corresponding	clinical	and	molecular	information	from	309	
patients	(gender,	age,	IDH	mutational	status,	status	of	loss	of	1p/19q	
and	methylguanine	methyltransferase	 [MGMT]	promoter	methyla-
tion	and	survival	information)	from	the	CGGA	database	(http://www.
cgga.org.cn)	as	the	training	set.20,21 Tumor tissue samples were ob-
tained	from	patients	with	newly	diagnosed	glioma	who	were	treated	
by	the	CGGA	group.	All	tissues	were	independently	diagnosed	histo-
logically	by	two	or	more	neuropathologists.	Only	samples	containing	
above	80%	tumor	cells	were	selected	for	whole-	genome	expression	
profiling.	OS	was	calculated	from	the	date	of	diagnosis	until	death	or	
the end of follow up. The study protocol was approved by the ethics 
committee	of	the	Beijing	Tiantan	Hospital.	We	selected	the	TCGA-	
RNAseq	cohort	 as	 the	validation	 set,	which	contains	683	 samples	
(http://cancergenome.nih.gov/),22,23	 and	 after	 eliminating	 cases	 in	
which	clinical	information	was	incomplete	and	lacked	prognostic	in-
formation,	550	samples	were	retained.

2.2 | Bioinformatics analysis

We	carried	out	consensus	clustering	with	 the	R	programming	 lan-
guage	 (http://cran.r-	project.org)	 to	 access	 expression	 patterns	 of	
amino	 acid	 metabolism-	related	 genes	 from	 the	 CGGA	 and	 TCGA	
datasets.	GO	analysis	and	KEGG	pathway	analysis	were	carried	out	
in	DAVID	(http://david.abcc.ncifcrf.gov/home.jsp)	for	functional	an-
notation	of	the	genes	positively	and	negatively	correlated	with	risk	
score in the two cohorts.24,25	 GSEA	 (http://www.broadinstitute.
org/gsea/index.jsp)	 was	 carried	 out	 to	 determine	 whether	 con-
firmed	gene	sets	were	significantly	distinct	between	the	two	groups	
(high	 risk	 score	 vs	 low	 risk	 score).24,26 We evaluated tumor purity 
of	each	 sample	using	 the	ESTIMATE	algorithm,	which	 reflects	 the	
enrichment	of	 stromal	 and	 immune	 cell	 gene	 signatures	 in	 a	 tran-
scriptional profile.27	 Protein-	protein	 interactions	 among	 30	 amino	
acid	metabolism-	related	proteins	were	analyzed	using	the	STRING	
database	(http://www.string-db.org/).

2.3 | Statistical analysis

Amino	 acid	 metabolism-	related	 gene	 sets	 (REACTOME_
METABOLISM_OF_AMINO_ACIDS_AND_DERIVATIVES)	were	first	
extracted	 from	 the	Molecular	 Signatures	Database	 v5.1	 (MSigDB)	

http://www.cgga.org.cn
http://www.cgga.org.cn
http://david.abcc.ncifcrf.gov/home.jsp
http://www.broadinstitute.org/gsea/index.jsp
http://www.broadinstitute.org/gsea/index.jsp
http://www.string-db.org/
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(http://www.broad.mit.edu/gsea/msigdb/),20 which contained a 
total	of	200	genes.	After	overlapping	with	genes	in	CGGA	and	TCGA	
RNA-	seq	datasets,	194	and	196	genes	related	to	amino	acid	metabo-
lism,	respectively,	remained.

Univariate	Cox	regression	analysis	was	carried	out	to	assess	the	
prognostic	 value	 of	 genes	 associated	with	 amino	 acid	metabolism	
and	121	genes	correlating	with	survival	(P	<	0.05)	were	selected	to	
achieve	further	gene	signature	selection	and	risk-	based	classification	
in	the	training	datasets.	A	risk	signature	was	formulated	according	to	
the	Least	Absolute	Shrinkage	and	Selection	Operator	 (LASSO)	 re-
gression	algorithm.28-30 The penalty parameter λ was chosen based 
on	10-	fold	cross-	validation	within	the	training	set,	which	produced	
the	minimum	mean	cross-	validated	error	for	the	Cox	model.	Based	
on	 this,	30	genes	and	 their	 regression	coefficients	were	obtained.	
We	then	computed	the	risk	score	according	to	the	formula	followed	
in	the	training	and	validation	datasets.	

On	the	basis	of	the	median	risk	value,	patients	were	separated	
into	high-		and	low-	risk	groups	in	both	CGGA	and	TCGA	databases.	
Kaplan-	Meier	survival	curves	and	the	 log	rank	test	were	exploited	
to	 evaluate	 the	 prognostic	 significance.31 Differences in clinico-
pathological	features	between	groups	were	tested	by	Student’s	t or 
chi-	squared	tests.	Multivariate	Cox	regression	analyses	were	carried	
out	to	determine	independent	prognostic	factors,	and	the	statistical	
analyses	were	 conducted	using	SPSS	version	16.0	 software	 (SPSS	
Inc.,	 Chicago,	 IL,	 USA).	 P	 value	 <.05	 was	 regarded	 as	 statistically	
significant.

3  | RESULTS

3.1 | Stratification of gliomas based on amino acid 
metabolism- related gene sets

Amino	 acid	 metabolism-	related	 gene	 expression	 profiling	 of	 309	
samples	 was	 obtained	 from	 the	 CGGA	 RNAseq	 datasets,	 and	we	
analyzed	 the	 genes	 identified	 as	 having	 highly	 variable	 expres-
sion	among	the	samples.	Consensus	clustering	of	the	309	samples	
determined	 two	 robust	 clusters	 with	 clustering	 stability	 increas-
ing	between	k	=	2	and	k	=	10	 (Figure	1A-	D	and	Figure	S1).	We	ob-
served	 that	 consensus	 clustering	 determined	 striking	 differences	
in	the	clinical	and	molecular	features	of	the	two	glioma	subclasses	
(Figure	1E,	Table	S1).	 In	 the	 training	 cohort,	Cluster1	was	 strongly	
linked	with	older	age	at	diagnosis	(median	age	=	46,	P < .001),	clas-
sical	or	mesenchymal	subtypes	 (72.3%,	P < .001),	GBM	phenotype	
(71.8%,	P < .001),	IDH	wild	type	(72.9%,	P < .001)	and	1p/19q	non-	
codeletion	(96.3%,	P < .001).	Cluster2	cluster	mainly	represented	the	
proneural	or	neural	subtypes	(92.0%,	P < .001),	lower	grade	(88.5%,	
P < .001),	and	 IDH	mutational	status	 (81.3%,	P < .001).	These	find-
ings	were	validated	in	the	TCGA	datasets	(Figure	S2).	Furthermore,	
OS	analysis	showed	that	glioma	patients	with	the	Cluster1	subgroup	

had	 a	 better	 prognosis	 compared	 with	 the	 Cluster2	 subgroup	
(P < .001,	 log-	rank;	 Figure	1F).	 These	 results	 indicated	 that	 amino	
acid	metabolism-	related	gene	sets	were	involved	in	the	malignancy	
of	 gliomas	 and	 closely	 related	 to	 prognosis	 of	 patients.	According	
to	the	CGGA	cohort,	TCGA	samples	were	also	clearly	stratified	into	
two	different	prognostic	subgroups	(Figure	S2F).

3.2 | Identification of a 30- gene risk signature 
associated with amino acid metabolism

To	identify	an	amino	acid	metabolism-	related	gene	signature,	first,	
we	selected	121	genes	associated	with	OS	(P	<	.05)	by	univariate	Cox	
regression	analysis	 in	 the	training	cohort.	Then,	by	LASSO	regres-
sion	algorithm,	30	genes	were	selected	as	active	covariates	to	evalu-
ate	the	prognostic	value,	and	the	risk	scores	for	the	patients	in	the	
training	cohort	were	obtained	(Figure	2A,B).	To	assess	performance	
of	 the	 signature	 genes	 as	 classifier,	 we	 distinguished	 the	 training	
dataset	into	high-	risk	and	low-	risk	groups	by	using	the	median	risk	
score	as	the	cutoff	value,	and	found	a	significant	difference	 in	the	
clinical	and	molecular	features	between	the	two	groups	(Figure	2C	
and	Table	1).	In	comparison	with	the	low-	risk	group,	patients	in	the	
high-	risk	group	tended	to	be	older	 (P	<	.001).	As	shown	in	Table	1,	
classical	and	mesenchymal	subtypes	were	found	in	12.9%	and	73.5%	
of	 low-	risk	and	high-	risk	groups,	respectively	 (P	<	.001).	Moreover,	
we	found	that	GBM	accounted	for	a	large	proportion,	72.9%	of	the	
total,	 in	 the	high-	risk	group,	whereas	GBM	was	12.9%	 in	 the	 low-	
risk	group	(P	<	.001).	We	found	that	78.6%	and	24.5%	of	samples	in	
the	low-	risk	and	high-	risk	groups,	respectively,	were	found	to	carry	
IDH	mutations	 (P < .001).	 Loss	 of	 chromosome	 1p/19q	was	 found	
in	 24.6%	 and	 3.1%	 of	 low-	risk	 and	 high-	risk	 groups,	 respectively	
(P	<	.001).	Our	results	also	showed	that	MGMT	promoter	methyla-
tion	was	found	in	70.6%	and	42.8%	of	low-	risk	and	high-	risk	groups,	
respectively (P	<	.001).

To	validate	the	30	amino	acid	metabolism-	related	risk	signature	
in	other	populations,	we	formulated	the	risk	scores	for	each	patient	
in	TCGA	database	based	on	the	30-	gene	coefficients	derived	from	
the	 training	 dataset.	 Consistent	 with	 the	 above	 results,	 we	 also	
found	that	there	was	significant	difference	between	the	two	groups	
in	an	independent	validation	cohort	(Figure	S3	and	Table	1).	In	brief,	
compared	to	the	low-	risk	group,	the	high-	risk	group	tended	to	com-
prise	the	patients	with	poor	prognostic	features.

3.3 | Identification of 30- gene signature for 
prognostication in glioma

In	 view	 of	 the	 close	 correlation	 between	 risk	 groups	 and	 clin-
icopathological	 features,	 we	 sought	 to	 assess	 the	 prognos-
tic	 value	 of	 the	 risk	 score.	 In	 all	 gliomas,	 patients	were	 assigned	
to	 two	 groups	 according	 to	 the	 median	 risk	 score.	 Our	 results	
showed	 that	 patients	 in	 the	 high-	risk	 group	 (n	=	155)	 had	 dra-
matically	 shorter	OS	 than	 their	 low-	risk	counterparts	 (n	=	154)	 in	
the	 training	 cohort	 (median	 OS	=	9.0	 vs	 37.9	months;	 P < .0001; 
Figure	3A).	 Moreover,	 we	 explored	 the	 prognostic	 value	 of	 risk	

Risk score=exprgene(1)×coefficientgene(1)+exprgene(2)×coefficientgene(2)

+⋯+exprgene(n)×coefficientgene(n)
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score	 in	 gliomas	 of	 different	 grades	 and	 found	 that	 OS	 differed	 significantly	between	high-	risk	and	low-	risk	groups	in	WHO	grade	
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F IGURE  1 Amino	acid-	related	gene	sets	could	classify	the	clinical	and	molecular	features	of	gliomas.	A,B,	Consensus	clustering	matrix	
of	309	CGGA	samples	for	k	=	2	and	k	=	3.	C,	Consensus	clustering	CDF	for	k	=	2	to	k	=	10.	D,	Relative	change	in	area	under	CDF	curve	
according	to	various	k	values.	E,	Heat	map	and	clinicopathological	features	of	the	two	clusters	defined	by	the	amino	acid-	related	gene	sets.	
F,	Survival	analysis	of	Cluster	1	and	Cluster	2	subgroups	in	CGGA	samples.	CDF,	cumulative	distribution	function;	CGGA,	Chinese	Glioma	
Genome	Atlas;	Codel,	codeletion;	IDH,	isocitrate	dehydrogenase;	MGMT,	methylguanine	methyltransferase;	Noncodel,	noncodeletion;	OS,	
overall survival

F IGURE  2  Identification	of	30-	gene	risk	signature	for	OS	by	LASSO	regression	analysis	in	CGGA	datasets.	A,	Partial	likelihood	deviance	
as	function	of	regularization	parameter	λ	in	the	training	dataset.	Each	red	point	marks	a	λ	value	along	regularization	paths,	and	gray	error	
bars	represent	confidence	intervals	for	the	cross-	validated	error	rate.	Left	vertical	dotted	line	marks	the	minimum	error,	whereas	the	right	
vertical	dotted	line	marks	the	largest	λ	value,	the	error	of	which	is	within	1	SD	of	the	minimum.	Horizontal	row	of	numbers	above	the	plot	
marks	the	gene	number	in	each	condition	upon	shrinkage	and	selection	based	on	linear	regression.	Results	of	30	genes	selected	and	their	
regression	coefficients	by	LASSO	are	shown	in	(B).	C,	Heat	map	shows	the	association	of	risk	scores	and	clinicopathological	features	based	
on	the	30-	gene	risk	signature.	CGGA,	Chinese	Glioma	Genome	Atlas;	Codel,	codeletion;	IDH,	isocitrate	dehydrogenase;	LASSO,	Least	
Absolute	Shrinkage	and	Selection	Operator;	MGMT,	methylguanine	methyltransferase;	Noncodel,	noncodeletion;	OS,	overall	survival;	
TCGA,	The	Cancer	Genome	Atlas
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II	 (median	OS	=	26.5	vs	56.8	months;	P	=	.0024),	grade	III	 (median	
OS	=	11.4	vs	33.6	months;	P	<	.0001)	and	GBM	(median	OS	=	7.2	vs	
12.7	months;	P	<	.0001;	Figure	3B-	D).

The	2016	update	to	the	WHO	proposed	a	classification	strategy	
and,	thus,	gliomas	were	classified	into	five	subtypes	based	on	tradi-
tional	histopathology	and	the	status	of	 IDH	and	1p/19q	codeletion.	
Given	 that	 these	 five	 glioma	 subtypes	 showed	distinct	 tumor	 char-
acteristics	and	OS	outcomes,	we	determined	whether	the	risk	score	
had	prognostic	value	in	the	five	various	populations.	For	LGG,	survival	
time	of	the	high-	risk	group	was	remarkably	shorter	than	that	of	the	
low-	risk	 group	 in	 LGG-	IDHmut-	noncodel	 (P	<	.0001;	 Figure	4A)	 and	
LGG-	IDHwt	(P	<	.0001;	Figure	4B),	whereas	there	was	no	significant	
difference	 in	 LGG-	IDHmut-	codel	 (P = .1175;	 Figure	4C).	 For	 both	
GBM-	IDHwt	and	GBM-	IDHmut,	there	were	significant	differences	in	
OS	between	the	two	risk	groups	(P < .0001; P	=	.0015,	respectively;	
Figure	4D,E).

Meanwhile,	 the	 signature	 value	 showed	 significant	 differ-
ences	 between	 samples	 stratified	 by	 WHO	 grade	 in	 the	 CGGA	
and	 TCGA	 cohorts	 (Figure	5A	 and	 Figure	S5A).	 Such	 being	 the	
case,	 gliomas	 were	 classified	 into	 five	 principal	 groups	 on	 the	
basis	 of	 IDH	 status	 and	 1p/19q	 codeletion	 status.	 Based	 on	 
the	critical	molecular	markers	IDH	and	1p/19q,	we	investigated	the	
distribution	of	 the	30-	gene	signature	 in	patients	 stratified	by	 IDH	
status	 among	 distinct	WHO	 grades	 (Figure	5B-	D	 and	 Figure	S5B-	
D)	 and	 1p/19q	 codeletion	 status	 in	 LGG-	IDH	 mutation	 patients	
(Figure	5E	and	Figure	S5E).	Verhaak	et	al32 have identified four clini-
cally	relevant	subtypes	(neural,	proneural,	classical,	mesenchymal)	of	
GBM	characterized	by	abnormalities	in	platelet	derived	growth	fac-
tor	receptor	alpha	(PDGFRA),	IDH1,	epidermal	growth	factor	recep-
tor	(EGFR)	and	neurofibromin	1	by	an	integrated	genomic	analysis.	
Therefore,	we	explored	the	distribution	of	TCGA	subtypes	for	GBM	
in	the	CGGA	and	TCGA	cohorts	(Figure	5F	and	Figure	S5F).

TABLE  1 Correlation	between	30-	gene-	based	risk	scores	and	clinicopathological	factors	of	glioma	patients	in	the	two	cohorts

Features

Training set CGGA RNA- seq cohort (n = 309) Validation set TCGA RNA- seq cohort (n = 550)

Low- risk score 
(n = 154)

High- risk score 
(n = 155) P- value Low- risk score (n = 275) High- risk score (n = 275) P- value

Age

Mean	(range) 40	(10-	75) 47	(8-	81) <.001 40	(14-	87) 56	(21-	89) <.001

Gender

Female 62 53 .113 119 112 .390

Male 92 102 156 163

TCGA	subtype

Pro 65 34 <.001 237 108 <.001

Neural 69 7 28 5

Classical 17 52 9 132

Mes 3 62 1 30

WHO	grade

II 95 9 <.001 160 31 <.001

III 34 33 115 96

IV 25 113 0 148

IDH	status

WT 33 117 <.001 17 195 <.001

Mut 121 38 258 80

1p/19q	status

Codel 32 4 <.001 134 3 <.001

Noncodel 98 124 141 266

NA 24 27 0 6

MGMT	promoter	status

Unmethy 32 79 <.001 30 105 <.001

Methy 77 59 245 138

NA 45 17 0 32

Bold	type	indicates	a	statistically	significant	difference	(	P	value	<	.05).
CGGA,	Chinese	Glioma	Genome	Atlas;	Codel,	codeletion;	IDH,	isocitrate	dehydrogenase;	Mes,	mesenchymal;	Methy,	methylated;	MGMT,	methylgua-
nine	methyltransferase;	Mut,	mutation;	NA,	not	applicable;	Noncodel,	noncodeletion;	Pro,	proneural;	TCGA,	The	Cancer	Genome	Atlas;	Unmethy,	
unmethylated;	WHO,	World	Health	Organization;	WT,	wildtype.
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3.4 | Prognostic validity of the 30- gene signature 
for glioma

Subsequently,	we	investigated	the	specificity	and	sensitivity	of	risk	
score	in	the	prediction	of	3-		and	5-	year	survival	by	analyzing	the	ROC	

curve,	and	compared	the	30-	gene	signature	with	traditional	“age”	and	
“grade”.	The	30-	gene	signature	showed	striking	prognostic	validity,	
with	AUC	of	0.966	and	0.975	for	3-		and	5-	year	survival,	respectively,	
which	were	higher	than	for	the	traditional	factors	(Figure	3E,F),	un-
derscoring	the	superior	predictive	value	of	the	30-	gene	signature.

F IGURE  3 Prognostic	significance	of	the	30-	gene	signature-	derived	risk	scores	in	different	WHO	grades.	Prognosis	efficiency	of	the	
30-	gene	risk	signature	in	all	grades	(A),	grade	II	(B),	grade	III	(C)	and	GBM	(D)	from	the	CGGA	datasets.	P-	value	shown	in	each	panel	is	
determined	by	a	log-	rank	test	between	the	two	groups.	E,F,	ROC	curves	indicating	the	sensitivity	and	specificity	of	predicting	3-		and	5-	y	
survival	with	the	amino	acid	metabolism-	related	signature	in	the	CGGA	datasets.	CGGA,	Chinese	Glioma	Genome	Atlas;	GBM,	glioblastoma;	
OS,	overall	survival;	ROC,	receiver	operating	characteristic;	WHO,	World	Health	Organization
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3.5 | Univariate and multivariate analysis shows 
prognostic value of 30- gene signature

To	further	explore	whether	the	risk	score	was	an	independent	prog-
nostic	 factor	of	prognosis	 in	glioma,	we	carried	out	univariate	and	
multivariate	Cox	 regression	 analyses	 in	 the	CGGA	cohort.	 Results	
showed	 that	 the	 30-	gene	 signature	was	 independently	 correlated	
with	 OS	 by	 adjusting	 for	 clinicopathological	 factors	 (age,	 gender,	
WHO	 grade,	 TCGA	 subtype,	 IDH	 status,	MGMT	 promoter	 status	

and	1p/19q	status;	Table	2).	Consistently,	the	local	immune-	related	
risk	signature	was	validated	as	an	independent	factor	after	Cox	re-
gression	analyses	in	TCGA	cohort	(Table	S2).

3.6 | Functional annotation of 30- gene signature

To	explore	the	potentially	altered	functional	characteristics	associ-
ated	with	the	30-	gene	signature,	GO	analysis	was	carried	out	to	study	
differences	 in	 biological	 processes	 between	 the	 two	 risk	 groups.	

F IGURE  4 Prediction	of	outcome	in	diverse	cohorts	stratified	by	IDH	mutation	and	1p/19q	codeletion	status.	Kaplan-	Meier	survival	
curves	for	LGG	patients	with	IDH-	wild	type	(A),	IDH-	mutation	but	not	the	1p/19q	codeletion	(B)	and	IDH-	mutation	with	1p/19q	codeletion	
(C),	classified	into	two	groups	based	on	30-	gene	signature-	derived	risk	scores.	Kaplan-	Meier	survival	curves	also	show	the	prognostic	value	
of	GBM	patients	with	IDH-	wild	type	(D)	and	IDH-	mutation	(E)	in	the	CGGA	cohort.	P-	value	is	the	result	of	a	log-	rank	test	between	the	two	
groups	shown	in	each	panel.	CGGA,	Chinese	Glioma	Genome	Atlas;	Codel,	codeletion;	GBM,	glioblastoma;	IDH,	isocitrate	dehydrogenase;	
LGG,	lower-	grade	glioma;	OS,	overall	survival
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F IGURE  5 Associations	between	the	amino	acid-	related	signature	and	other	features	in	CGGA	datasets.	Distribution	of	the	amino	acid-	
related	gene	signature	in	patients	stratified	by	WHO	grade	(A),	IDH1	status	in	each	grade	(B-	D),	1p/19q	status	in	IDH	mutation-	LGG	(E)	and	
TCGA	subtypes	in	GBM	(F).	*P < .05;	**P < .01;	****P < .0001;	ns,	not	significant.	CGGA,	Chinese	Glioma	Genome	Atlas;	Codel,	codeletion;	
GBM,	glioblastoma;	IDH,	isocitrate	dehydrogenase;	LGG,	lower-	grade	glioma;	TCGA,	The	Cancer	Genome	Atlas;	WHO,	World	Health	
Organization
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First,	we	demonstrated	1346	high-	risk	score	positively	related	genes	
(P < .05)	 and	 922	 negatively	 related	 genes	 (P < .05)	 using	 Pearson	
correlation	analysis.	Genes	upregulated	in	the	high-	risk	group	were	
primarily	involved	in	tumor	progression,	including	“extracellular	ma-
trix	organization”,	“cell	division”,	“angiogenesis”,	“cell	adhesion”,	“ap-
optotic	process”	and	“immune	response”.	In	contrast,	downregulated	
genes	 in	 the	high-	risk	 group	were	 closely	 related	 to	neurogenesis,	
such	as	“chemical	synaptic	transmission”,	“learning”,	“neurotransmit-
ter	secretion”	and	“nervous	system	development”	(Figure	6A).

Moreover,	 GO	 analysis	 was	 implemented	 to	 explore	 the	 differ-
ences	in	KEGG	pathway	between	the	high-		and	low-	risk	score	groups.	
We	found	that	positively	related	genes	were	mainly	enriched	in	KEGG	
terms	including	“ECM-	receptor	interaction”,	“cell	cycle”,	“focal	adhe-
sion”	and	“TNF	signaling	pathway”,	whereas	the	negatively	correlated	
genes	were	enriched	in	terms	including	“retrograde	endocannabinoid	
signaling”,	“insulin	secretion”	and	“dopaminergic	synapse”	(Figure	6B).	
These	results	were	validated	in	TCGA	cohort	(Figure	S6).

Next,	 GSEA	 analyses	 were	 carried	 out	 for	 validation,	 show-
ing	 that	 the	 high-	risk	 groups	 were	 positively	 associated	 with	
regulation	of	 innate	immune	response	(P	<	.001)	and	response	to	
tumor necrosis factor (P	<	.001),	negatively	with	 synaptic	 signal-
ing	(P	<	.001)	and	regulation	of	neurotransmitter	levels	(P < .001; 
Figure	6C).

4  | DISCUSSION

Fast-	growing	tumor	cells	largely	draw	energy	out	of	typically	in-
creasing	aerobic	glycolysis,	a	phenomenon	known	as	the	Warburg	
effect.1,12	 Aside	 from	 the	 glycolytic	 pathway,	 the	 metabolic	
changes	of	cancer	cells	primarily	involve	amino	acid	metabolism.3 

A	 previous	 study	 has	 identified	 a	 glucose-	related	 risk	 signature	
for	the	malignancy	of	glioma	and	the	survival	of	patients	through	
bioinformatic	 profiling.20	 Also,	metabolomic	 investigations	 have	
provided	novel	biomolecular	 insights	 into	the	aggressive	pheno-
type	 of	 the	 malignancy	 of	 brain	 tumors.24,33,34	 However,	 there	
continues	to	be	a	gap	in	systematically	understanding	the	charac-
teristics	of	the	amino	acid	metabolism-	related	gene	set	in	glioma.

In	 the	 present	 study,	 for	 the	 first	 time,	 we	 built	 an	 amino	 acid	
metabolism-	related	 risk	 signature	 to	predict	 the	prognosis	of	glioma.	
RNAseq	expression	data	from	309	patients	in	the	CGGA	database	were	
included	as	the	training	set,	whereas	another	550	patients	with	TCGA	
database	were	used	to	validate.	First,	the	309	samples	were	apparently	
clustered	 into	 two	distinct	subclasses	 (k	=	2),	and	 the	 two	subclasses	
showed	significant	differences	in	clinical	and	molecular	features	in	both	
the	CGGA	and	TCGA	cohort.	However,	for	k	=	3,	the	area	under	the	cu-
mulative	distribution	function	(CDF)	curve	was	increased	by	more	than	
0.1-	fold	that	of	k	=	2	(Figure	1C,D),	and	we	found	the	ratio	of	samples	in	
the	third	subclass	was	very	small	(Figure	1B).	It	also	meant	that	for	k	>	2,	
clustering	stability	did	not	improve	significantly.

Next,	we	developed	a	30-	gene-	based	risk	signature	to	determine	
the	status	of	amino	acid	metabolism	in	glioma	patients.	We	observed	
that	the	high-	risk	group	was	closely	associated	with	 IDH	wildtype,	
1p/19q	noncodeletion,	higher	WHO	grades	and	worse	TCGA	sub-
types	(classical	and	mesenchymal)	(Figures	2C	and	5,	Figure	S2C	and	
S5),	which	 implies	that	the	amino	acid	metabolism-	related	risk	sig-
nature	may,	to	some	extent,	result	in	the	poor	prognosis	of	patients	
with IDH	wildtype,	1p/19q	noncodeletion,	higher	WHO	grades	and	
worse	TCGA	subtypes.

We	further	showed	that	the	30-	gene	signature	could	predict	the	
prognosis	of	glioma	regardless	of	WHO	grade	and	the	five	subgroups	
of	WHO	2016	classification	based	on	the	stratification	of	IDH	and	

Variables

Univariate analysis Multivariate analysis

HR 95% CI P- value HR 95% CI P- value

Age 1.038 1.022-	1.053 <.001 0.995 0.979-	1.012 .593

Gender 1.187 0.841-	1.675 .330 NA NA NA

WHO	grade 3.469 2.709-	4.443 <.001 1.090 0.738-	1.610 .666

TCGA	subtype 1.936 1.642-	2.282 <.001 0.880 0.687-	1.127 .310

IDH	status 0.229 0.159-	0.331 <.001 0.770 0.391-	1.514 .448

MGMT	
promoter 
status

0.529 0.374-	0.750 <.001 0.989 0.644-	1.517 .959

1p/19q	status 0.165 0.067-	0.404 <.001 0.970 0.362-	2.596 .951

Risk	score 4.077 3.326-	4.999 <.001 3.825 2.830-	5.171 <.001

Bold	type	indicates	a	statistically	significant	difference	(	P	value	<	.05).
Variables	with	prognostic	significance	in	univariate	Cox	regression	analysis	were	included	in	further	
multivariate	Cox	analysis.
Gender	(female	and	male);	WHO	grade	(II,	III	and	IV);	TCGA	subtype	(neural,	proneural,	mesenchy-
mal	and	classical);	IDH	status	(mutant	and	wildtype);	MGMT	promoter	status	(methylated	and	un-
methylated);	1p/19q	status	(codeletion	and	non-	codeletion);	Risk	score	(low	and	high).	CI,	confidence	
interval;	CGGA,	Chinese	Glioma	Genome	Atlas;	HR,	hazard	 ratio;	 IDH,	 isocitrate	dehydrogenase;	
MGMT,	methylguanine	methyltransferase;	NA,	not	applicable;	OS,	overall	survival.

TABLE  2 Uni-		and	multivariate	Cox	
regression	analysis	of	the	clinical	features	
and	30-	gene-	based	risk	score	for	OS	in	
CGGA	datasets
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1p/19q	status	in	the	CGGA	cohort	(Figures	3A-	D	and	4).	Then,	ROC	
curves	were	carried	out	to	compare	the	prognostic	values	between	
the	30-	gene	signature	and	traditional	factors	“age”	and	“grade”,	with	

AUC	of	0.966,	0.692,	0.898	and	0.975,	0.677,	0.885	for	3-		and	5-	year	
survival,	respectively	(Figure	3E,F).	These	results	suggested	that	the	
30-	gene	signature	could	better	predict	the	prognosis	of	glioma.

F IGURE  6 Altered	functional	characteristics	related	to	the	30-	gene	signature.	A,B,	Functional	annotation	of	genes	positively	(red	bar	
chart)	or	negatively	(green	bar	chart)	correlated	with	the	risk	score	using	GO	terms	of	biological	processes	(A)	and	KEGG	pathway	(B).	C,	
Gene	set	enrichment	analysis	(GSEA)	shows	that	higher	risk	score	was	positively	associated	with	immune	response	and	negatively	correlated	
with	synaptic	signaling	and	neurotransmitter	levels.	Codel,	codeletion;	NES,	normalized	enrichment	score;	Noncodel,	noncodeletion.	Orange	
and	green	bars	represent	P-	value,	and	the	blue	dots	represent	the	1/3	gene	count
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In	 the	validation	 cohort,	 in	 contrast	with	WHO	grade	 II	 and	 III,	
the	 30-	gene	 signature	 predicted	 poor	 overall	 prognosis	 for	 GBM	
(Figure	S4A-	D).	 One	 possible	reason	is	that	 there	 were	 distinct	 dif-
ferences	in	the	distribution	of	grades	and	subtypes	between	CGGA	
and	TCGA	cohorts.	As	shown	in	Table	S3,	GBM	patients	in	the	CGGA	
cohort	 accounted	 for	44.7%	of	 the	 total,	whereas	GBM	accounted	
for	 a	 proportion	 of	 26.9%	 in	 TCGA	 cohort.	 LGG	were	 divided	 into	
three	subgroups	based	on	the	status	of	IDH	and	1p/19q	codeletion.	
As	for	LGG-	IDHwt,	glioma	patients	in	the	high-	risk	group	had	a	poorer	
prognosis	 than	 those	 with	 low-	risk	 score,	 with	 a	 significant	 differ-
ence (P = .001).	However,	for	LGG-	IDHmut-	codel	and	LGG-	IDHmut-	
noncodel,	the	OS	of	high-risk	patients	tended	to	be	worse,	although	
the	 difference	 showed	 no	 significance	 (P > .05)	 (Figure	S4E-	G).	We	
considered	that	if	the	sample	sizes	were	increased,	there	might	be	a	
statistical	difference	in	GBM	and	these	subtypes.

Of	note,	we	 identified	 that	 the	 amino	acid	metabolism-	related	
risk	signature	remained	an	independent	prognostic	factor	after	ad-
justment	of	clinical	and	molecular	features.	There	is	great	potential	
for the status of amino acid metabolism to refine the clinicopatho-
logical	 features	of	accurate	prognostication,	 so	combining	 the	 risk	
signature	and	other	 features	could	better	predict	 the	prognosis	of	
glioma.

Functional	annotation	of	the	30-	gene	signature	showed	that	bio-
logical	functions	of	angiogenesis,	cell	adhesion	and	immune	response	
may	contribute	to	patients’	high	risk	and	poor	clinical	outcome.	Low-	
purity	gliomas	were	characterized	by	intensive	local	immune	pheno-
types	and	correlated	with	a	poor	prognosis.23	Therefore,	we	applied	
the	ESTIMATE	algorithm	to	predict	tumor	purity	using	gene	expres-
sion profiles26	and	found	a	significant	increase	in	ESTIMATE	scores	
in	the	high-	risk	group	(Figure	S7),	indicating	that	a	greater	presence	
of inflammatory microenvironment components is associated with 
progressive	tumorigenesis.27

In	addition,	we	analyzed	the	30-	amino	acid	metabolism-	related	
genes	and	proteins	in	detail.	DAVID	functional	annotation	was	car-
ried	 out	 to	 determine	 the	 biological	 process	 in	 which	 each	 gene	
selected	 as	 30-	risk	 signature	 is	 involved	 (Figure	S8A).	Our	 results	
showed	that	a	group	of	genes	 (including	PSMC6,	PSMD12,	PSMB4,	
PSMC2,	PSME4 and PSMB2)	engaged	in	similar	biological	processes,	
such	as	“regulation	of	cellular	amino	acid	metabolic	process”,	“NIK/
NF-	kappaB	signaling”,	“TNF/T-	cell	receptor	mediated	signaling	path-
way”	 and	 “protein	 polyubiquitination”	 etc.	 Five	 genes	 (CBS,	 PAH,	
OAT,	GPT and BCAT2)	 among	 them	 participated	 in	 “cellular	 amino	
acid	biosynthetic	process”.	We	 still	 found	 some	genes	 that	played	
roles	in	certain	amino	acid	metabolic	processes.	For	instance,	ODC1 
took	 part	 in	 the	 “polyamine	 metabolic	 process”,	 and	 AADAT and 
GCLC	were	involved	in	the	“glutamate	metabolic	process”.	Moreover,	
we	analyzed	the	protein-	protein	 interaction	network	for	30-	amino	
acid	 metabolism-	related	 genes/proteins	 using	 the	 STRING	 data-
base	 (Figure	S8B).	Further	molecular	mechanisms	as	 to	how	 these	
genes	affect	the	progression	of	glioma	remain	to	be	studied	in	our	
follow-	up	work.

In	 conclusion,	 we	 identified	 that	 the	 amino	 acid	 metabolism-	
related	gene	set	could	distinguish	the	clinical	and	molecular	features	

of	gliomas.	We	then	developed	a	30-	amino	acid	metabolism-	related	
gene	expression-	based	risk	signature,	which	was	strongly	related	to	
the	OS	of	glioma	patients	in	the	five	subgroups	of	WHO	2016	clas-
sification	for	patients	based	on	the	stratification	of	IDH	and	1p/19q	
status,	 and	confirmed	 that	 the	30-	risk	 signature	 could	better	pre-
dict	 OS	 for	 glioma	 than	 traditional	 factors.	Moreover,	 we	 carried	
out	 functional	 annotation	of	 the	positive	 and	negative	amino	acid	
metabolism-	related	gene	in	glioma.	Furthermore,	the	risk	signature	
could	contribute	to	understanding	the	carcinogenesis	and	develop-
ment	of	glioma,	as	well	as	providing	new	insight	into	the	therapeu-
tic	targets	for	glioma	patients.	In	short,	we	identified	a	novel	amino	
acid	metabolism-	related	risk	signature	for	predicting	the	prognosis	
of	glioma.
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