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Abstract 

Chromobox 4 (CBX4) is a core component of polycomb-repressive complex 1 with important roles in cancer biology and tissue 
homeostasis. Aberrant expression of CBX4 has been implicated in several human malignancies. However, its role and underlying 
mechanisms in the tumorigenesis of lung adenocarcinoma (LUAD) have not been defined in vivo. Here, we found that expression of 
CBX4 was frequently up-regulated in human LUAD samples and correlated with poor patient survival. Importantly, genetic ablation 

of CBX4 greatly dampened lung tumor formation and improved survival in the Kras G12D /P53 

L/L ( KP ) autochthonous mouse model of 
LUAD. In addition, CBX4 depletion significantly inhibited proliferation and anchorage-independent growth of KP mouse embryonic 
fibroblasts. Moreover, ectopic CBX4 expression clearly promoted proliferation and anchorage-independent growth in both human 

and mouse LUAD cells, whereas silencing of CBX4 exerted opposite effects. Mechanistically, CBX4 promoted growth of LUAD cells 
through activation of the Wnt/ β-catenin pathway. Furthermore, expression levels of CBX4 were positively correlated with β-catenin 

in human LUAD samples. In conclusion, our data suggest that CBX4 plays an oncogenic role via the Wnt/ β-catenin pathway and 

could serve as a potential therapeutic target in LUAD. 
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Lung cancer is one of the leading causes of cancer-related death 
orldwide. Among the primary lung cancers, lung adenocarcinoma (LUAD) 

epresents the most frequent histologic subtype. Despite recent advancements 
n new interventions such as targeted therapies and immunotherapy, the 
verall survival of patients with LUAD remains at a very low level [1–3] . Great
fforts have been made to explore the mechanism underlying the pathogenesis 
f LUAD during the past decades; however, the detailed molecular events 
hat contribute to LUAD development and progression are still not fully 
nderstood. Therefore, it is urgently need to search for novel therapeutic 
argets for LUAD therapy. 
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Polycomb group (PcG) proteins are known as master transcriptional
repressors that form 2 dominant polycomb-repressive complexes (PRC),
PRC1 and PRC2. PcG proteins epigenetically modify chromatin to control
multiple physiological processes including stem cell self-renewal, DNA repair,
differentiation and senescence [4–8] . Growing evidence has revealed that PcG
proteins link to tumorigenesis, and serve as biomarkers for prognosis and
therapeutic response and also attractive targets for tumor intervention [9] . For
instance, pharmacologic inhibition of EZH2, the catalytic subunit of PRC2,
has been demonstrated to be a promising treatment in various types of cancer
including lung cancer [10–15] . Thus, exploring the roles of PcG proteins in
the development of LUAD may facilitate the discovery of new prognostic
biomarkers and potential therapeutic targets for patients with LUAD. 

As core components of PRC1, chromobox (CBX) family proteins
are involved in mediating the recruitment and stabilization of PRC1 to
target chromatin [ 16 , 17 ]. Though structural similarities and functional
redundancies are reported among CBX proteins, different members of CBX
family, such as CBX2, CBX7, and CBX8, have been documented to function
either as oncogenes or tumor suppressors in a cancer type-dependent manner
[18–24] . Up-regulation of CBX2 is observed in multiple cancer types that
predicts aggressive progression and worse overall survival [19] . CBX7 exhibits
tumor suppressor activity in thyroid, colon, and lung cancers, whereas plays
an oncogenic role in the gastric cancer [25] . CBX4 is a unique CBX family
member with respect to its E3 SUMO-protein ligase activity [ 26 , 27 ]. It
has been revealed that CBX4 promotes liver tumor angiogenesis through
HIF- α sumoylation and is an unfavorable prognostic factor for patients
with hepatocellular carcinoma [27] . CBX4 has the ability to impair tumor
metastasis via suppression of Runx2 expression through recruitment of
HDAC3 in colorectal carcinoma [28] . These findings indicate that the role
of CBX4 is tissue-dependent and varies with the type of malignancy. Using
established human lung cancer cell lines, Hu et al recently reported that CBX4
promotes the proliferation and metastasis in lung cancer [29] , supporting a
cancer-promoting role for CBX4 in lung cancer. While given the significant
differences among distinct histologic subtypes of lung cancer and between cell
model-based and animal model-based in vivo studies, whether CBX4 plays
a role in the initiation and development of autochthonous LUAD tumors in
vivo has yet to be determined. 

In the present study, we evaluated the expression status and clinical
relevance of CBX4 in LUAD patients. In addition, we comprehensively
analyzed the effects of CBX4 in a well-established autochthonous genetically
engineered mouse model (GEMM) of LUAD, and mouse embryonic
fibroblasts (MEFs) as well as human and mouse LUAD cells. We further
explored the mechanism of action of CBX4, which might shed a new light
on the pathogenesis of LUAD. 

Methods 

Mouse cohorts and treatment 

The Kras G12D and P53 L/L mice were originally generously provided by Dr.
Tyler Jacks, Dr. Kwok-Kin Wong, and Dr. Ronald A. DePinho, respectively.
Cbx4 L/L mice were generated and genotyped as described previously [30] . All
mice were housed in a specific pathogen-free environment at the Shanghai
Institute of Biochemistry and Cell Biology and treated in strict accordance
with protocols approved by the Institutional Animal Use Committee of the
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.
At an age of 8 weeks, Kras G12D /P53 L/L ( KP ) and Kras G12D /P53 L/L /Cbx4 L/L

( KPC ) mice were treated with 2 × 10 6 PFU Adeno-Cre by nasal inhalation
as previously described [31] . All mice were sacrificed for gross inspection and
pathologic examination. Lung tumors were dissected for molecular analyses.
Mice lung tissues were inflated and fixed in 4% formalin, embedded in
paraffin and sectioned for hematoxylin and eosin (H&E) staining. Tumor
ount was evaluated by microscopy and tumor size was analyzed using the
mage-J software. 

lasmids 

hCBX4 and mCbx4 expressing plasmids were cloned into the lentivirus
ased vector pCDH-CMV-MCS-EF1 vector. Human ShCBX4s knockdown 
lasmids were cloned into the MLP vector and mouse ShCBX4s knockdown
lasmids were cloned into the pLKO.1 vector. 

ell culture and viral infection 

We generated MEFs from 13.5 postcoitum embryos and grew them in
MEM medium containing 10% fetal bovine serum (FBS), 100 μg/mL

treptomycin and 100 mg/mL penicillin. The MEFs were then cultured for
t least 2 more passages before cells were used for various functional assays.
uman lung LUAD cell lines, HEK-293T, MEFs, and KP mouse LUAD

ells were cultured in DMEM containing 10% FBS. Lentiviral infection was
one as follows: HEK-293T cells were co-transfected with MLP, pLKO.1
r pCDH constructs and packaging plasmids. The progeny viruses released
rom HEK-293T cells were filtered, collected, and used to infect A549, NCI-

1299, NCI-H358, KP mouse LUAD cells, and MEFs. 

luorescence Activating Cell Sorter (FACS) assay 

For cell cycle analysis, virus-infected cells were harvested at 80%
onfluency and fixed with 75% ethanol. Then the cells were taken for
ropidium iodine (PI) staining and cell cycle was analyzed using flow
ytometry. 

-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 
ssay 

For the MTT assay, virus-infected cells were seeded in 96-well plate and
he viability of cells was measured daily for 5 d. Briefly, 20 μL of MTT
orking solution (5 mg/mL) was added into each well and incubated at
7 °C for 4 h. Then the supernatants were removed and the resultant MTT
ormazan was dissolved in 100 μL of dimethyl sulfoxide (DMSO). The
bsorbance was measured at the wavelengths of 570 nm and 630 nm. 

oft agar assay 

For soft agar colony formation assay, 3000 or 5000 virus-infected cells
ere resuspended in their respective growth medium containing an additional 
.2% agar and layered onto 1% agar beds in 6-well plates. Culture medium
as changed every 3 d for 4 wk before subjected to 0.005% crystal violet

taining. The number of colonies was evaluated by microscopy. 

eal-time polymerase chain reaction (PCR) assay 

RNA was extracted using Trizol (Invitrogen) following the manufacturer’s 
nstruction. RNA samples were reverse transcribed using Revert Aid First
trand cDNA Synthesis Kit (Fermentas). Genomic DNA from mice was
xtracted using Gentra Puregene Tissue Kit (Qiagen). cDNA was subjected
o quantitative real-time PCR with gene-specific primers using the 7500 Fast
eal-Time PCR System (Applied Biosystems) and the SYBR Green Master
CR mix (Invitrogen). Actin was served as an internal control. Primers used

n this study were listed in Table S1. 
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Western blot analysis 

Total protein lysate were prepared by homogenization in protein loading
buffer. Equal amounts of protein were separated by electrophoresis on
an SDS-PAGE gel and transferred onto PVDF membranes. Western blot
analysis was performed using the following antibodies: CBX4 from Santa
Cruz (1:500, SC-199929); β-catenin from Proteintech (1:1000, 51067-2-
AP); c-MYC from Abclonal (1:1000, A17332); CyclinD1 from CST (1:1000,
#2926); Tublin from DSHB (1:1000, E7); and Actin from Sigma-Aldrich
(1:1000, A1978). 

RNA interference 

Human β-catenin small interference RNA (siRNA) and the control
siRNA were obtained from Shanghai GenePharma, Co., Ltd., Shanghai,
China. siRNA oligonucleotides were transfected in A549 by Lipofectamine
RNAi MAX (Invitrogen) following the manufacturer’s instructions. Two pairs
of siRNAs were used to perform experiments. siRNAs used in this study are
listed below: 

si β-catenin 1: 5 ′ -CCCUAGCCUUGCUUGUUAATT-3 ′ ; 
si β-catenin 2: 5 ′ -GGGUAAAUCAGUAAGAGGUTT-3 ′ ; 
si KRAS 1: 5 ′ -CCUUGACGAUACAGCUAAUTT-3 ′ ; 
si KRAS 2: 5 ′ -GGAUUCCUACAGGAAGCAATT-3 ′ . 

The scramble siRNA was used as control siRNA. The control siRNA
sequence is: 5 ′ -UUCUCCGAACGUGUCACGUTT-3 ′ . 

Immunofluorescence staining analysis 

Cells were fixed in 4% formaldehyde in phosphate-buffered saline (PBS)
buffer at room temperature for 10 min, washed with PBS buffer, and then
treated with PBST (PBS and 0.25% Triton X-100) for permeabilization. Cells
or frozen sections were blocked with PBSA (PBS and 3% BSA) for 30 min
and incubated with primary antibody overnight in PBSA at 4 °C. Primary
antibodies used in this study were: KI67 (1:300, SC-23900); β-catenin
(1:100, Proteintech-51067-2-AP). Cells were then washed with PBST and
incubated with secondary antibody diluted in PBSA for 1 h at room
temperature. Secondary antibodies used were Alexa Fluor 552 conjugated
goat anti-rabbit a dilution of 1:1000. DAPI was used to stain the nuclei.
Samples were mounted with Aqua-Poly/Mount (Polysciences). For analysis
of the KI67 staining, at least 10 fields were counted. 

Immunohistochemistry analysis 

Immunohistochemistry (IHC) was performed as described previously
[32] . Briefly, slides were deparaffinized in xylene and rehydrated sequentially
in ethanol. Slides were quenched in hydrogen peroxide (0.3%–3%) to block
endogenous peroxidase activity and then washed in PBS. And then the slides
were blocked in 5% normal murine serum for 30 min at 37 °C temperature.
Slides were then incubated overnight at 4 °C with primary antibody diluted
in blocking buffer. The avidin-biotin peroxidase complex method was used
and then the slides were counterstained with hematoxylin. The proliferation
rate was evaluated by counting KI67-positive nuclei following staining at
high-power field for more than 30 fields for each group and the method
was conducted as previously described [33] . For IHC staining, the stained
sections were evaluated in a blinded manner without prior knowledge of
the clinical information using the German immunoreactive score (IRS)
as described previously [ 32 , 34 ]. Briefly, the IRS was assigned considering
both the intensity of staining and the proportion of tumor cells with
positive staining. The intensity was scored as follows: no staining = 0;
weak staining = 1; moderate staining = 2; strong staining = 3. The extent
f stained cells: < 5% = 0; 5%–25% = 1; 25%–50% = 2; 50%–75% = 3;
5%–100% = 4. The final IRS was determined by multiplying the intensity 
nd extent of positivity score of stained cells, with the minimum score of
 and a maximum score of 12. CBX4 antibody for IHC was generated by
r. Guoliang Xu and described previously [30] ; KI67 (1:1000, SC-23900); 
leaved caspase-3 (1:200, CST #9661); β-catenin (1:2000, Proteintech- 
1067-2-AP); and VEGFR2 (CST #55B11). 

uman LUAD samples analysis 

A total of 72 pathologically confirmed human LUAD specimens and 7 
ormal lung specimens were collected in Fudan University Shanghai Cancer 
enter between January 2008 and December 2009 with written consents 
f patients and the approval from the Institute Research Ethics Committee. 
ll tumor specimens were taken at the time of surgical resection. Survival 
nalyses of 72 LUAD patients in the study cohort were performed based on
BX4 protein expression status using the Kaplan-Meier plotter analysis. The 
edian IRS value (IRS = 4) of intratumoral CBX4 expression was chosen as

he cut-off for differentiating between high and low CBX4 expression. An IRS 
f ≥4 was used to define tumors with high CBX4 expression and an IRS of
 4 was used to indicate tumors with low CBX4 expression. In addition, the

rognostic significance of CBX4 expression was further evaluated based on 
BX4 mRNA expression status in publicly available human LUAD datasets 

ontaining 719 patients using an online Kaplan-Meier plotter analysis tool 
 http://www.kmplot.com/lung) [35] . Patients were also divided into high and 
ow CBX4 expression subgroups with its median expression value as the cut- 
ff. 

tatistical analysis 

Data were presented as mean ± standard error of the mean unless 
therwise indicated. Differences was determined using the Student’s t test 
r 1-way analysis of variance (2-sided) in multiple groups, with the Tukey- 
ramer multiple comparison test for post hoc comparisons. Kaplan-Meier 

nalysis with log-rank test was used to assess patients’ survival between 
ubgroups. Spearman correlation analysis was used to evaluate the correlation 
etween CBX4 and β-catenin expression in human LUAD. All statistical 
nalyses were carried out using GraphPad Prism 5 software, and P value 
 0.05 was considered to be statistically significant. 

esults 

BX4 expression is frequently up-regulated in human LUAD tissues and 
orrelates with unfavorable prognosis 

To determine the clinical relevance of CBX4 in LUAD, we first 
nalyzed the mRNA levels of the CBX4 between paired LUAD tissues and 
djacent normal lung counterparts using TGGA-LUAD datasets. CBX4 were 
ignificantly increased in cancerous tissues compared to adjacent normal 
issues ( Figure 1 A). Real-time PCR analyses showed that most (8 out of
0) human LUAD samples harbored up-regulated CBX4 expression in 
omparison with normal lungs ( Figure 1 B). IHC analysis of 79 human tissue
amples including 72 LUADs and 7 normal lungs further confirmed that 
evels of CBX4 protein were elevated in majority of the LUAD tissues relative
o normal lung counterparts ( Figure 1 C,D). Importantly, survival analysis 
f the 72 LUAD patients revealed that patients with high intratumoral 
BX4 expression had a significantly shorter survival time than those with 

ow CBX4 expression ( Figure 1 E). We further evaluated the prognostic 
alue of CBX4 expression in publicly available human LUAD datasets 
ontaining 719 patients using an online Kaplan-Meier plotter analysis tool 
 http://www.kmplot.com/lung) [35] and observed similar results ( Figure 1 F). 

http://www.kmplot.com/lung
http://www.kmplot.com/lung
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Fig. 1. CBX4 expression is frequently up-regulated in human LUAD tissues and correlates with unfavorable prognosis. (A) Lung cancer TGGA database 
analyses of the CBX4 mRNA expression in human in lung adenocarcinomas (LUAD) and normal lung (NL). (B) Real-time PCR analysis of the CBX4 mRNA 

expression in paired lung adenocarcinoma tissues and adjacent normal lung counterparts. (C) Representative IHC staining of CBX4 in LUAD samples. Scale 
bar: 100 μm. (D) Statistical analysis of CBX4 staining in human lung LUAD (N = 72) and NL samples (N = 7). (E) Kaplan-Meier curves for overall survival 
of the 72 LUAD patients in the study cohort according to CBX4 protein expression status. Patients were divided into high and low CBX4 expression subgroups 
with its median IRS value as the cut-off. (F) Kaplan-Meier curves for overall survival of 719 LUAD patients using a publicly available online Kaplan-Meier 
plotter analysis tool ( http://www.kmplot.com/lung) according to CBX4 mRNA expression status. Patients were also divided into high and low CBX4 expression 
subgroups with its median expression value as the cut-off. Data are shown as means ± SEM. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001. 
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While, no significant survival difference were observed between high and low
CBX4 expression in patients with lung squamous cell carcinoma (LUSC)
(Figure S1). These data indicate the potential functional importance of CBX4
overexpression in LUAD. 

Genetic ablation of CBX4 greatly dampens tumorigenesis and prolongs 
survival in the KP autochthonous mouse model of LUAD 

The Kras G12D /P53 L/L ( KP ) mouse model is a well-established
autochthonous model for the study of LUAD tumorigenesis [36] . We
then checked the protein levels of CBX4 in the primary tumors from KP
model. Consistent with the findings from human LUAD samples, the
protein levels of CBX4 were also increased in the cancerous tissues compared
with adjacent normal tissues from KP mice ( Figure 2 A). 
To determine the role of CBX4 in LUAD tumorigenesis in vivo, we
rossed Cbx4 L/L mice with KP mice to generate the Kras G12D /P53 L/L /Cbx4 L/L 

 KPC ) mice. The resultant KPC or KP mice were administrated with
deno-Cre through nasal inhalation to induce lung tumors as previously
escribed ( Figure 2 B) [37] . Eight weeks post Ade-Cre treatment, multiple
umor nodules could easily be seen on the surface of the lungs of KP mice
 Figure 2 C). In contrast, only few tumor nodules could be observed on the
urface of lungs of KPC mice ( Figure 2 C). Importantly, deletion of CBX4
ignificantly prolonged the survival of KP mice (median survival times: 16.9
eeks in KPC mice vs 8.3 weeks in KP mice, P < 0.001; Figure 2 D).
istopathologic analysis showed that KP mice developed multiple cancerous 

esions in the lungs at 8 weeks after Adeno-Cre treatment, whereas fewer
nd smaller cancerous lesions could be detected in the lungs of KPC mice
 Figure 2 E). Quantitative analysis confirmed that both tumor number and

http://www.kmplot.com/lung


226 Chromobox 4 facilitates tumorigenesis of lung adenocarcinoma Z. Wang et al. Neoplasia Vol. 23, No. xxx 2021 

Fig. 2. Genetic deletion of CBX4 alleviates tumorigenesis and prolongs survival in the KP autochthonous mouse model of LUAD. (A) Representative IHC 

staining of CBX4 and H&E staining in lung sections from KP mice. Scale bar: 500 μm (left); 50 μm (middle and right). (B) A scheme for Adeno-Cre virus 
treatment in KP and KPC mouse model. (C) Representative photographs of lungs of KP and KPC mice after inhalation of Adeno-Cre at 8 wk. Arrows indicate 
tumor lesions. (D) Kaplan-Meier survival curves of the KP mice group (n = 13) and the KPC mice group (n = 18) after Adeno-Cre treatment. The P value 
was determined using the log-rank test. (E) Representative H&E staining in lung sections from KP and KPC mice. Scale bar: 500 μm (left); 50 μm (right). 
(F and G) Quantification of average tumor number per mouse (F) or tumor area per mouse (G) in lung sections from KP and KPC mice. (H) Representative 
IHC staining of CBX4 in lung sections from KP and KPC mice. Scale bar: 500 μm (left); 50 μm (right). (I) Representative IHC staining of KI67 in lung 
sections from KP and KPC mice. Scale bar: 500 μm (left); 50 μm (right). (J) Percentage of KI67 positive staining in lung tumors from KP and KPC mice. (K) 
Representative IHC staining of cleaved caspase-3 (CC3) in lung sections from KP and KPC mice. Scale bar: 500 μm (left); 50 μm (right). (L) Percentage of 
CC3 positive staining in lung tumors from KP and KPC mice. The percentage of KI67 and CC3 staining were quantified by counting 50 views in 4 mice per 
group. Data are shown as means ± SEM. ∗∗P < 0.01, ∗∗∗P < 0.001. 
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the tumor area were dramatically reduced in KPC vs KP mice ( Figure 2 F,G).
As expected, tumors from KPC mice barely expressed CBX4 ( Figure 2 H).
Further IHC analysis revealed that deletion of CBX4 greatly suppressed
the proliferation of cancer cells, as indicated by decreased Ki67 staining
in KPC mice compared with KP mice ( Figure 2 I,J). While no substantial
differences in the staining of cleaved caspase-3 (CC3), a marker of apoptosis,
were observed between the 2 groups ( Figure 2 K,L). Thus, results from the
autochthonous GEMM of LUAD strongly suggest an oncogenic role of
CBX4 in the tumorigenesis of LUAD. 

CBX4 is essential for anchorage-independent growth of KP MEFs 

To further evaluate the oncogenic activity of CBX4, we generated MEFs
from the KP, KPC, and wide-type ( WT ) mice. The MEFs were infected
with Adeno-Cre to activate Kras G12D with concurrent knockout P53 and
Cbx4 at the genomic DNA level. Consistent with previous studies, WT
MEFs quickly underwent senescence within a few passages, whereas KP
EFs exhibited enhanced proliferative properties and developed resistance to 
ellular senescence [38] . Immunofluorescence staining analysis showed that 
P MEFs had increased percentages of Ki67 positive cells compared with WT 

EFs, which could be reduced following CBX4 depletion ( Figure 3 A,B). 
ell cycle analysis revealed that KP MEFs had increased percentages of cells 

n S and G2/M phases compared with WT controls, which can be abrogated
fter CBX4 was deleted ( Figure 3 C,D). MTT assay showed that knockout
f CBX4 suppressed the increased cell growth in KP MEFs ( Figure 3 E).
oreover, soft agar assay demonstrated that CBX4 deficiency profoundly 

nhibited the anchorage- independent growth in KP MEFs ( Figure 3 F,G). 
hese data from MEFs experiments further confirm the oncogenic role of 
BX4. 

BX4 exerts an oncogenic role in both human and mouse LUAD cells 

To determine the roles of CBX4 in malignant phenotypes of LUAD cells 
n vitro, we checked the expression of CBX4 in multiple human LUAD cell
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Fig. 3. CBX4 is essential for anchorage-independent growth of KP MEFs. (A) KI67 staining in WT, KP, and KPC MEFs. Scale bar: 500 μm. (B) Quantification 
of the KI67 staining in WT, KP, and KPC MEFs. (C and D) FACS assay of cell cycle distributions of MEFs isolated from the WT, KP, and KPC mice. (E) 
MTT analysis of cell proliferation in MEFs isolated from the WT, KP, and KPC mice. (F and G) Colony formation abilities of MEFs isolated from the WT, 
KP, and KPC mice were determined by soft agar assay. Data are shown as means ± SEM. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, ns means no significance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C
p

i
i  

d
o  

o  

W  

o  

o
 

v  

t  

m  

m  

w  

A  
lines ( Figure 4 A). We constructed stable CBX4-overexpressed cell models
in 2 human LUAD cell lines, A549 and NCI-H1299, which have relative
middle or low levels of endogenous CBX4, respectively ( Figure 4 A–C).
Consistently, ectopic expression of CBX4 promoted cell growth and also
colony formation in soft agar in each cell line ( Figure 4 D–F). We also
employed a KP tumor-derived cell line named L574, which was established
previously by our lab [39] , repeated these experiments and obtained similar
results ( Figure 4 B–F). These findings indicate that CBX4 is sufficient to
promote growth of LUAD cells. 

To further determine the requirement of CBX4 in the malignant
phenotypes of LUAD cells in vitro, we constructed stable CBX4-depleted
cell models in A549 and NCI-H358, which have middle or high levels
of endogenous CBX4 ( Figure 4 A), using 2 lentivirus-mediated shRNAs
targeting CBX4. The knockdown efficiency was confirmed by real-time
qPCR and western blot analysis ( Figure 5 A,B). Not surprisingly, knockdown
of CBX4 resulted in reduced cell growth and soft agar colony formation
capacity in both cell lines ( Figure 5 C–E). In addition, similar results were
also observed in the KP tumor-derived L574 cells ( Figure 5 ). These results
suggest that CBX4 acts as an oncogenic driver in both human and mouse

LUAD cells. l  
BX4 facilitates growth of LUAD cells through the Wnt/ β-catenin 

athway 

Previous study reported that CBX4 promotes tumor growth through 
ncreasing transcriptional activity of HIF-1 α to enhance tumor angiogenesis 
n hepatocellular carcinoma [27] . To assess whether CBX4 facilitates LUAD
evelopment via promoting tumor angiogenesis, we evaluated the expression 
f VEGF in tumors from KP and KPC mice. Though increased expression
f VEGF was noted in tumors from KP and KPC mice when compared to
T mice, no major changes in expression levels of VEGF or VEGFR2 were

bserved between tumors from KP and KPC mice (Figure S2), indicative of
ther mechanism. 

The Wnt/ β-catenin pathway has been implicated in the pathogenesis of
arious types of cancers including LUAD [40–44] . Interestingly, we found
hat protein levels of β-catenin were greatly reduced in the tumors from KPC
ice vs KP mice ( Figure 6 A), indicating that the Wnt/ β-catenin pathway
ight be involved in mediating the CBX4’s action. To test this hypothesis,
e evaluated the levels of β-catenin and found that knockdown of CBX4 in
549 cells greatly reduced β-catenin expression at both RNA and protein

evels ( Figure 6 B–D). In addition, the expression levels of the β-catenin
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Fig. 4. Ectopic expression of CBX4 promotes proliferation and anchorage-independent growth in both human and mouse LUAD cells. (A) The expression 
of CBX4 in multiple human LUAD cell lines. (B and C) Real-time PCR (B) and western blot (C) analysis of A549, NCI-H1299, and L574 ( KP mouse lung 
cancer cell line) cells with or without ectopic expression of CBX4. ACTIN or GAPDH is used as a loading control. (D) MTT analysis of cell proliferation in 
A549, NCI-H1299, and L574 cells with or without ectopic expression of CBX4. (E and F) Colony formation ability of A549, NCI-H1299, and L574 cells 
with or without ectopic expression of CBX4 was determined by soft agar assay. Data are shown as means ± SEM. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

D

p
a
c
c
o
[
D
m  

d
f

downstream target genes, c-Myc and cyclinD1, were also down-regulated
in CBX4-depleted cells ( Figure 6 B,C). Conversely, ectopic CBX4 expression
clearly up-regulated the levels of β-catenin as well as its downstream targets c-
Myc and cyclinD1 in A549 cells ( Figure 6 E–G). These results confirmed the
positive regulation of β-catenin by CBX4. More important, knockdown of
β-catenin through siRNA not only markedly inhibited the expression of β-
catenin as well as its downstream targets c-Myc and cyclinD1 ( Figure 6 H–I),
but also abrogated the effects of CBX4 on cell growth and colony formation
in soft agar ( Figure 6 J–L). Furthermore, a positive correlation between the
expression of CBX4 and β-catenin was also observed in human LUAD
samples at both the RNA and protein levels ( Figure 6 M–O). Taken together,
these data support the notion that CBX4 contributes to tumorigenesis of
LUAD through activation of the Wnt/ β-catenin pathway. 
iscussion 

PcG proteins are crucial epigenetic regulators that control multiple 
hysiological processes including stem cell self-renewal, differentiation, 
nd senescence. PcG proteins are identified in several families of protein 
omplexes including PRC1 and PRC2. The recruitment of PRC1 to 
hromatin is thought to be mediated in part by the conserved chromodomain 
f CBX family proteins including CBX2, CBX4, CBX6, CBX7, and CBX8 
4–8] . Dysregulation of PcG proteins has been linked to tumorigenesis. 
espite of structural similarities and functional redundancies, different 
embers of CBX family were found to play distinct roles in a tissue type-

ependent manner [4–8] . Up to now, the clinical relevance and biological 
unction of CBX family proteins in lung cancer remain incompletely 
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Fig. 5. Depletion of CBX4 impairs proliferation and anchorage-independent growth in both human and mouse LUAD cells. (A and B) Real-time PCR (A) 
and western blot (B) analysis of A549, NCI-H358, and L574 cells with or without CBX4 knockdown. (C) MTT analysis of cell proliferation in the A549, 
NCI-H358, and L574 cells with or without CBX4 knockdown. (D and E) Colony formation ability of the A549, NCI-H358, and L574 cells with or without 
CBX4 knockdown was determined by soft agar assay. Data are shown as means ± SEM. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001. 
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understood. In the present study, we find that CBX4 expression is frequently
up-regulated in LUAD tissues and correlates with poor patient outcome.
Through integrative analysis of LUAD GEMM, MEFs as well as human and
mouse LUAD cell lines, we provide strong evidence to suggest an oncogenic
activity for CBX4 in the tumorigenesis of LUAD. Moreover, our results reveal
that CBX4 facilitates LUAD development via the Wnt/ β-catenin pathway. 

Aberrant expression and prognostic significance of CBX4 has been
documented in several human malignancies including liver cancer, colorectal
cancer, and breast cancer as well as lung cancer [ 27 , 29 , 45 , 46 ]. In fact, during
the course of the present study, Hu et al independently reported the ability
of CBX4 to promote the proliferation and metastasis in lung cancer [29] . Of
note, the in vivo validation in their study was performed using xenografts
of established human lung cancer cell lines in nude mice. Though tumor
cell lines-based in vivo work is a valid approach, it also has some inherent
limitations. The process of tumorigenesis could not be faithfully modelled
y subcutaneous injection of established cancer cell lines, probably due to
he lack of its natural microenvironment and differences in growth kinetics
f such tumors, which makes the cell line-based models less physiological
elevant than autochthonous cancer models. In fact, GEMMs can more
aithfully recapitulate histopathologic and molecular features of human 
isease and have a better predictive power for drug response [ 47 , 48 ]. Indeed,
onflict results regarding gene functions in cancer between cell model-based
nd mouse model-based studies has been documented in literatures [49] .
hus, it is necessary and important to characterize the role of CBX4 in

umorigenesis using autochthonous GEMMs of LUAD. To address this, we
mploy the well-established KP mouse model and demonstrate that genetic
blation of Cbx4 profoundly attenuated lung tumor formation and improved
urvival in mice. These results not only are in accordance with Hu’s study,
ut also provide direct in vivo evidence for CBX4 involvement in LUAD
umorigenesis. 
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Similar to Hu’s findings, we also observe the frequently up-regulation of
CBX4 in human LUAD tissues. In addition, we find that CBX4 expression
was also up-regulated in the lung tumors from KP mice, which is consistent
with the results from clinical samples. We perform KRAS knockdown
experiment and find that depletion of KRAS did not disturb the CBX4
expression in A549 cells (Figure S3). Besides, we did not observe an obvious
up-regulation of CBX4 in tumors from Kras G12D mice compared with
adjacent normal tissues (Figure S4). These results indicate that mutant KRAS
may not be responsible for the CBX4 up-regulation in KP mice. Future
efforts will be needed to dissect the molecular basis for CBX4 up-regulation
in LUAD. Moreover, we perform survival analysis and observe a significant
association between increased CBX4 expression and poor patient survival
both in our cohort and publicly available human LUAD datasets. Thus, our
results indicate that increased CBX4 expression may predict worse prognosis
of patients with LUAD. The unfavorable prognostic value of CBX4 in LUAD
reported here are in accordance with previous observations in liver and breast
cancers [ 27 , 46 ]. While we did not observe a correlation between CBX4
expression and survival of patients with LUSC, implying that this PRC1 core
component may not be a prognostic indicator in LUSC. Whether CBX4 is
also functionally important in LUSC requires future investigations. 

To further determine the oncogenic activity of CBX4 in LUAD,
we evaluate the effects of CBX4 ablation on growth and malignant
transformation abilities of MEFs isolated from KP mice. The facts that CBX4
deficiency markedly inhibited anchorage-independent growth of KP MEFs in
soft agar suggest that CBX4 is essential for the malignant transformation of
KP MEFs. In agreement with the results from MEFs, our gain-of-function
and loss-of-function experiments performed in different human and mouse
LUAD cells consistently demonstrated an oncogenic activity of CBX4 in
LUAD cells . All these in vivo and in vitro functional studies unambiguously
support that CBX4 is an important regulator involved in LUAD initiation
and development, which may at least partially explain the unfavorable
prognostic significance of CBX4 in LUAD. 

PRC1 has been shown to repress a number of nonlineage-specific
transcription factors that directly affect β-catenin/Tcf transcriptional activity,
by which preserves Wnt/ β-catenin activity in adult stem cells to maintain
intestinal homeostasis and supports tumor formation [50] . Interestingly,
we find that depletion of CBX4 greatly suppressed the expression of β-
catenin in KP mice. In addition, knockdown of CBX4 markedly inhibited
β-catenin and its downstream targets c-Myc and cyclinD1 both at mRNA
and protein levels, whereas ectopic expression of CBX4 did the opposite.
More important, we demonstrate that knockdown of β-catenin efficiently
blocked the oncogenic property of CBX4. Furthermore, we observe a positive
correlation between CBX4 and β-catenin expression in human LUAD
samples at both the mRNA and protein levels, which is in agreement with
our in vivo and in vitro findings. In our system, we also observe that CBX4
could positively regulate BIM-1 expression, in line with the findings from
Hu’s study (data not shown). While to our knowledge, the current study is the
Fig. 6. CBX4 exerts oncogenic properties in LUAD cells through the Wnt/ β-cat
from KP and KPC mice. Scale bar: 500 μm (left); 50 μm (right). (B) Real-time 
in A549 with or without CBX4 knockdown. (C) Western blot analysis of β-cate
without CBX4 knockdown. (D) IF staining of β-catenin in A549 cells with or w
of β-catenin and its downstream targets c-Myc and CyclinD1 in A549 with or
its downstream targets c-Myc and CyclinD1 in A549 cells with or without CB
CBX4 overexpression. (H) Real-time PCR analysis of β-catenin and its downstrea
treated with or without si β-catenin. (I) Western blot analysis of β-catenin and its
A549 cells treated with or without si β-catenin. (J) MTT analysis of cell prolifer
si β-catenin. (K and L) Colony formation ability of control or CBX4-overexpresse
assay. (M) The correlation of CBX4 and CTNNB1 ( β-catenin) expression in cl
IHC staining of CBX4 and β-catenin in 2 human LUAD samples. Scale bar: 1
expression in the 72 human LUAD samples. Data are shown as means ± SEM. ∗
rst to report the regulation of the Wnt/ β-catenin pathway by CBX4. Given
he complexity of mechanisms underlying LUAD tumorigenesis, we cannot 
ule out the potential involvement of other signaling cascades in this process.
evertheless, our results highlight the functional importance of the Wnt/ β-

atenin pathway in mediating CBX4’s action in LUAD. Further studies
ill be necessary to elucidate the mechanisms by which CBX4 activates the
nt/ β-catenin pathway. 
CBX4 has been reported to have E3 SUMO-protein ligase activity that

acilitates SUMO1 conjugation by UBE2I, and contributes to sumoylation 
f HNRNPK, a p53/TP53 transcriptional co-activator [ 51 , 52 ]. A recent
tudy revealed that CBX4 has the ability to facilitate VEGF expression
nd promote angiogenesis in hepatocellular carcinoma through HIF-1 α
umoylation, thereby enhancing its transcriptional activity [27] . While in
his study, we did not observe a major change in VEGF or VEGFR2
xpression between lung tumors from KP and KPC mice. And the levels
f HIF-1 α were not significantly changed either in CBX4-overexpressed or
epleted A549 cells compared to controls (Figure S5), implying that the
xact function of CBX4 in LUAD and in liver cancer may be different. In
act, CBX4 has been reported to act as a tumor suppressor in colorectal
ancer [28] . Thus, the discrepant effects of CBX4 in different cancers indicate
hat its biological function is tissue-dependent and varies with the type of
alignancy. Currently, it is unclear whether the observed effects of CBX4 on
nt/ β-catenin pathway as well as LUAD tumorigenesis is related to its E3

UMO-protein ligase activity. More efforts should be warranted to dissect it
nto details in the future. 

onclusions 

Here we provide direct in vivo evidence and in vitro validation
ighlighting the importance of CBX4 in the tumorigenesis of LUAD, which
xerts its oncogenic activities via activation of the Wnt/ β-catenin pathway
nd could serve as a potential therapeutic target in LUAD. 
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