
iScience

Article

ll
OPEN ACCESS
TOP1 and R-loops facilitate transcriptional DSBs at
hypertranscribed cancer driver genes
OsamaHidmi, Sara

Oster, Jonathan

Monin, Rami I.

Aqeilan

ramiaq@mail.huji.ac.il

Highlights
Vulnerability to DSBs in

highly transcribed gene

bodies is mediated by

R-loops and TOP1

Gene body DSBs have a

distinct origin compared to

promoter regions

Co-transcriptional R-loops

play a role in trapping

TOP1cc

Hypertranscribed cancer

driver genes exhibit

enriched transcriptional

DSBs

Hidmi et al., iScience 27,
109082
March 15, 2024 ª 2024 The
Author(s).

https://doi.org/10.1016/

j.isci.2024.109082

mailto:ramiaq@mail.huji.ac.il
https://doi.org/10.1016/j.isci.2024.109082
https://doi.org/10.1016/j.isci.2024.109082
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2024.109082&domain=pdf


iScience

Article

TOP1 and R-loops facilitate transcriptional DSBs
at hypertranscribed cancer driver genes

Osama Hidmi,1 Sara Oster,1 Jonathan Monin,1 and Rami I. Aqeilan1,2,3,*

SUMMARY

DNA double-stranded breaks (DSBs) pose a significant threat to genomic integrity, and their generation
during essential cellular processes like transcription remains poorly understood. In this study, we employ
several techniques tomapDSBs, R-loops, and topoisomerase 1 cleavage complex (TOP1cc) to comprehen-
sively investigate the interplay between transcription, DSBs, topoisomerase 1 (TOP1), and R-loops. Our
findings reveal the presence of DSBs at highly expressed genes enriched with TOP1 and R-loops. Remark-
ably, transcription-associated DSBs at these loci are significantly reduced upon depletion of R-loops and
TOP1, uncovering the pivotal roles of TOP1 and R-loops in transcriptional DSB formation. By elucidating
the intricate interplay between TOP1cc trapping, R-loops, and DSBs, our study provides insights into
the mechanisms underlying transcription-associated genomic instability. Moreover, we establish a link
between transcriptional DSBs and early molecular changes driving cancer development, highlighting the
distinct etiology and molecular characteristics of driver mutations compared to passenger mutations.

INTRODUCTION

Double-stranded breaks (DSBs) represent the most detrimental form of DNA damage, necessitating prompt repair mechanisms to preserve

genome integrity. While cytotoxic levels of DSBs primarily result from external factors such as ionizing radiation and UV radiation, DSBs can

also arise naturally during physiological processes like transcription and replication.1

During transcription elongation, theDNA strand unwinds around the transcribing RNAPol II, significantly increasing the likelihoodof newly

transcribed RNA molecules annealing to their DNA template. This process gives rise to a unique nucleotide structure known as an R-loop,

composed of a DNA:RNA hybrid and a displaced single-stranded DNA.2 Short R-loops (<10 bp) play essential roles in various cellular pro-

cesses and are transiently formed during transcription, promptly resolved by the enzyme RNase H13 and RNA-DNA helicases. However,

longer R-loops have been implicated in jeopardizing genome integrity by promoting the generation of DSBs. The precise mechanisms

underlying the R-loop-mediated DSB formation are still poorly understood. One proposed mechanism suggests that R-loops expose the

displaced single-stranded DNA to endonucleases,4 rendering it more susceptible to single-stranded breaks (SSBs). Furthermore, specific en-

donucleases such as XPG, XPF, and FEN1 have been found to recognize R-loop structures, leading to cleavage of the single-stranded DNA

hybridized with RNA within the R-loop, resulting in SSBs. However, the process by which these SSBs are converted into DSBs remains

unknown.

During transcription elongation, the movement of RNA Pol II induces the generation of negative and positive supercoiling behind and

ahead of the transcription bubble, respectively.5,6 The resolution of these supercoiling events is crucial for maintaining efficient transcription,

particularly at highly transcribed genes.6 Topoisomerase 1 (TOP1) plays a central role in the resolution of both positive and negative super-

coiling. Through its catalytic domain, TOP1 introduces transient SSBs in the DNA, allowing for the relaxation of supercoils. Subsequently, the

brokenDNA strands are re-ligated.7,8 Normally, the formation of a transient topoisomerase cleavage complex (TOP1cc) ensures that theDNA

is cut and rapidly rejoined, resulting in no persistent DNA damage. However, if TOP1 becomes trapped in its catalytic state, whether due to

physiological or pathological factors, the single-stranded DNA remains nicked, and the TOP1cc complex bound to the DNA needs to be

removed through the tyrosyl-DNA phosphodiesterase 1 excision pathway for proper repair of the break to occur.9,10

Mutations are recognized as the primary driving force behind tumorigenesis, leading to the dysregulation of cellular processes and the

development of cancer.11 The prevailing consensus is that these mutations arise spontaneously during physiological conditions, and the

observed bias in the mutational profile of cancer cells obtained from patients is attributed to the selective advantage conferred by specific

mutations through the process of Darwinian evolution.12,13 Functionally significant mutations, known as ‘‘driver mutations,’’ occur in genes

referred to as ‘‘driver genes,’’ whereas non-functional frequent mutations are classified as ‘‘passenger mutations.’’ Computational tools

have been developed to distinguish drivermutations frompassengermutations based on their deviation from randombackgroundmutations
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and their downstream effects.14–16 Despite these advancements, our understanding of the underlying etiology of cancer mutations, partic-

ularly the differences between mutations that contribute to cancer fitness and those that do not, remains limited.

To detect DNADSBs, various methods have been employed. Antibodies against DNA damagemarkers such as anti-g-H2AX have proven

valuable in assessing changes in DNA damage under different treatments and conditions. However, while these antibodies provide valuable

information regarding DNA damage, they do not offer precise localization of the break sites within the genome. Chromatin immunoprecip-

itation sequencing (ChIP-seq) assays utilizing such antibodies can help identify the genomic regions associated with these breaks. Nonethe-

less, due to the broad distribution of g-H2AX, which can extend over several kilobase pairs around the break site, it may not provide the

desired high-resolution detection of the exact break site. In this study, we employed a recently developed technique known as in-suspension

break labeling in situ and sequencing (sBLISS)17 to address these limitations. sBLISS enables the detection of DSBs with single-nucleotide

resolution, providing highly precise information about the location of breaks across the genome. Notably, sBLISS exhibits excellent discrim-

ination between DSBs occurring at proximal genomic locations, thereby enhancing our ability to study transcriptional DSBs. Moreover, the

effectiveness of sBLISS in detecting physiological DSBs has been confirmedpreviously,18 further highlighting its potency as a powerful tool for

investigating transcriptional DSBs.

In this study, we employed a comprehensive approach utilizingmultiple omic techniques, namely sBLISS, ChIP-seq, and DNA-RNA immu-

noprecipitation sequencing (DRIP-seq), to elucidate the intricate mechanism underlying the generation of physiological DSBs during tran-

scription. Through the integration of these complementary methodologies, we uncovered a novel mechanism involving the interplay of tran-

scription, R-loops, TOP1, and TOP1cc in facilitating the formation of DSBs at active genomic regions, particularly within highly transcribed

oncogenes.

RESULTS

Physiological breaks are enriched at highly transcribed genes

In our previous work, we observed enrichment of physiological DSBs in active genomic regions such as promoters, insulators, and super-en-

hancers using BLISS.18 To further unravel the underlying mechanism governing physiological DSBs, we employed the recently developed

sBLISS method17 to comprehensively map the distribution of DSBs across the genome in untreated MCF-7 breast cancer luminal cells.

Comparative analysis of observed breaks with expected breaks in various chromatin states revealed a significantly higher observed-to-ex-

pected ratio at active promoters, strong enhancers, transcription elongation sites, and transcription transition regions, while repressed

regions exhibited a considerably lower ratio (Figure 1A). This heightened enrichment of breaks in active regions, compared to the expected

distribution, further substantiates the association between transcription and the generation of DSBs in these genomic loci. To further validate

the relationship between transcription and DSBs, we quantified gene expression using the CEL-seq RNA sequencing (RNA-seq) technique,19

and correlated it with the corresponding break density for each gene. Interestingly, our analysis, incorporating both gene expression data we

generated and previously published RNA-seq data for MCF-7 cells, unveiled a positive correlation between gene expression and break den-

sity (Figures 1B, 1C, S1A, S1B, and S1D‒S1K), suggesting that highly transcribed genes exhibit a propensity for increased DSB density. Addi-

tionally, gene ontology analysis of the top 400 genes with the highest number of breaks in MCF-7 cells revealed enrichment in biological pro-

cesses such as translation, gland morphogenesis, and response to estradiol, which are known to be highly active in breast epithelial tissue

(Figure S1C). This finding further underscores the association between active genes and elevated break densities.

To investigate the nature of these transcriptional DSBs, we selected the top 1,000 highly expressed genes and the bottom 1,000 lowly

expressed genes based on CEL-seq data and calculated the ratio of observed to expected breaks for each gene. Consistent with our pre-

dictions, highly expressed genes exhibited a substantially higher ratio (�7-fold) compared to lowly expressed genes (<1) (Figure 1D). More-

over, when analyzing the distribution of break densities across the gene body of these genes (Figure 1E), we observed an elevated break

density at the gene body of highly transcribed genes in comparison to lowly transcribed genes, with prominent peaks at the transcription

start site (TSS) and transcription termination site (TTS) (Figure 1E).

To address the possibility that the observed DSBs are a consequence of replication and/or transcription-replication collisions, we repli-

cated the experiment usingMCF-7 cells synchronized in theG1 phase of the cell cycle (Figures S2A and S2B). Remarkably, we obtained similar

results (Figures S2C and S2D), further substantiating the transcription-dependent nature of these DSBs. These data clearly suggest that phys-

iological DSBs are more enriched at active regions, specifically at highly transcribed genes, and point toward transcription as a direct or

indirect cause of physiological DSBs.

Transcriptional DSBs are associated with TOP1

The presence of TOP1 at regulatory elements such as insulators, promoters, and enhancers, particularly those exhibiting high break density,

has been previously reported.18,20 To directly assess the involvement of TOP1 in transcriptional DSB formation, we examined the correlation

between TOP1 levels and gene expression using our previously published TOP1 ChIP-seq data.18 Remarkably, we observed a positive cor-

relation between TOP1 levels and the expression ofmoderately and highly expressed genes (Figures 2A, 2B, and S3A). Additionally, we found

a significant enrichment of breaks at TOP1 peaks throughout the genome (Figure 2C). Furthermore, when comparing the ratio of observed to

expected breaks, high TOP1-enriched genes exhibited a substantially higher ratio (�12-fold) compared to low TOP1-enriched genes (Fig-

ure 2D). To further validate the significance of TOP1, we performed TOP1 knockdown using siRNA (Figure S3B) and evaluated the impact

on DNA breaks using immunofluorescence staining. As depicted in Figures 2E and 2F, TOP1-depleted MCF7 cells displayed a significant
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decrease in g-H2AX and 53BP1 foci per nucleus compared to siRNA control-transfected cells. These findings collectively underscore the

crucial role of TOP1 in transcriptional DSB formation.

Transcriptional DSBs are associated with R-loops

R-loops, known for their detrimental impact on genome integrity, are facilitated by the transcriptional machinery. Given the link between

TOP1 and R-loops, which was further supported by correlating TOP1 levels with R-loop levels (Figure S3C), we proceeded to investigate

the role of R-loops in transcriptional DSB formation. Correlating R-loop levels, using published DRIP-seq data from untreated MCF-7 cells

(GEO: GSE81851), with gene expression revealed a positive correlation in the top 50% expressed genes (Figures 3A, 3B, and S3D). Mapping

break enrichment at R-loop peaks demonstrated an elevated break enrichment at these sites (Figure 3C). Furthermore, comparing the

observed-to-expected ratio of breaks between genes enriched or depleted in R-loops showed that R-loop-enriched genes had a higher ratio

(�9-fold) compared to those lacking R-loops (Figure 3D).

To investigate the impact of R-loop depletion on global DSBs, we overexpressedRNaseH1, an enzyme responsible for degrading the RNA

component of R-loops,3 in MCF-7 cells and performed immunofluorescence staining for 53BP1 and g-H2AX (Figures 3E and 3F). Intriguingly,

cells overexpressing RNase H1 displayed fewer g-H2AX and 53BP1 foci per nucleus compared to control cells, indicating the involvement of

R-loops in the formation of physiological DSBs.

TOP1 knockdown and RNase H1 overexpression decrease break enrichment specifically at the gene body of highly

transcribed genes

To unravel the intricate involvement of TOP1 and R-loops in the formation of transcriptional DSBs, we conducted two different manipulations

in MCF-7 cells. Our investigations centered around depleting TOP1 in cells overexpressing RNase H1, as well as control cells (Figures S4A–

S4C). By utilizing the sBLISS technique, we meticulously mapped the changes in DSBs across various genomic regions.

A B

C

D

E

Figure 1. Breaks are enriched at highly expressed genes

(A) The distribution of DSBs in breast cancer MCF7 cells along ChromHMM-defined chromatin states of human mammary epithelial cells (HMEC).

(B) A zoomed log scaled scatterplot showing a positive correlation between break density and expression levels; each dot represents a gene, and for each gene

break density and expression were measured and normalized to gene size.

(C) Mean expression (TPM) positively correlates with break density, genes were grouped into 22 groups with increasing break enrichment, the 22nd group being

the group with the highest mean break enrichment.

(D) Ratio of observed breaks vs. expected breaks at highly and low expressed genes.

(E) Plot showing break density at gene body of the 1,000 most transcribed genes (continuous line) and 1,000 least transcribed genes (dashed line). sBLISS

experiments were done in duplicates, and CEL-seq was done in quadruplicates. P-values were calculated by chi-square test and correlation coefficients by

Spearman’s correlation test. ***p < 0.001. The expected number of breaks in a set of regions is calculated based on the assumption that breaks are

distributed randomly across the genome.
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In our initial analysis, we explored break enrichment in distinct chromatin states andmade an interesting observation. Specifically, regions

associated with transcription elongation chromatin state exhibited a notable reduction in break frequency in the manipulated samples

compared to the control group (Figure 4A). This finding prompted us to further investigate the impact of RNase H1 overexpression and

TOP1 knockdown on highly active regions, with a particular focus on the top 1,000 expressed genes identified through CEL-seq analysis

of these MCF-7 cells.

Remarkably, our investigation revealed a consistent pattern in highly transcribed genes. These genes displayed amarked decrease in DSB

enrichment upon TOP1depletion and/or RNaseH1 overexpression (Figures 4B, 4E, and S4D). In contrast, we observed no significant effect on

the break density of low-expressed genes (Figures 4B and S4D). Furthermore, genes enriched with R-loops exhibited a substantial reduction

in break enrichment following RNase H1 overexpression and/or TOP1 knockdown, while genes lacking R-loops showed no significant change

(Figure 4C). Similarly, genes enriched with TOP1 exhibited a significant decrease in break density compared to genes devoid of TOP1

(Figure 4D).

Of particular interest, the impact of TOP1 knockdown and/or RNaseH1 overexpression was particularly pronounced in break-prone genes.

We defined break-prone genes as the top 2,000 genes exhibiting the highest break enrichment in the untreated sample, and intriguingly,

both TOP1 knockdown and RNase H1 overexpression led to a significant decrease in break enrichment in these genes (Figure 4F).

We delved deeper into the distribution of breaks along the gene body upon TOP1 depletion and/or RNase H1 overexpression. Strikingly,

our analysis demonstrated a consistent reduction in break density within the gene body and TTS of highly expressed genes, while the break

density at TSS remained largely unaffected (Figures 4G and S4E). These findings provide strong evidence supporting the notion that the

vulnerability to DSBs of gene bodies in highly transcribed genes is mediated by R-loops and TOP1. Moreover, our observations align with

previous reports suggesting the catalytic activity of TOP1 specifically at gene bodies, rather than the TSS.20

Fragility of estradiol-responsive genes is mediated by R-loops and TOP1

To investigate the impact of increased transcription on global DNA damage, MCF-7 cells were treated with estradiol (E2) to induce transcrip-

tion. Immunofluorescence staining for g-H2AX and 53BP1 was performed to assess DNA damage levels (Figures 5A and 5B). As expected,

A B C

D E F

Figure 2. Transcriptional DSBs are associated with TOP1

(A) A log scaled scatterplot showing positive correlation between expression and TOP1 levels for the top 50% expressed genes; each dot represents a gene, and

each color represents a gene group used in B.

(B) Median of expression (TPM) correlates with TOP1 levels, for the top 50% expressed genes.

(C) Heatmap of break density at TOP1-binding regions across the genome, the plot shows DSBs at the center of TOP1 peaks.

(D) Ratio of observed breaks to expected breaks for low TOP1 and high TOP1 genes.

(E) Representative images of immunofluorescent staining of MCF-7 ctrl (siSc) and TOP1-depleted (siTOP1) MCF-7 cells using g-H2AX and 53BP1 antibodies.

(F) Quantification of the number of g-H2AX and 53BP1 foci per nucleus in MCF-7 ctrl and MCF-7 siTOP1 (E). sBLISS and immunofluorescence experiments were

done in duplicates. P-values for high TOP1 vs. low TOP1 were calculated by chi-square test, P-value for immunofluorescence staining was calculated using

Student’s t test, and correlation coefficients by Spearman’s correlation test. *p < 0.05, **p < 0.01, and ***p < 0.001.
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cells treated with E2 exhibited a higher number of 53BP1 and g-H2AX foci per nucleus. However, this increase in DNA damage was sup-

pressed when RNase H1 was overexpressed or TOP1 was depleted, indicating that R-loops and TOP1 mediate the increase in DNA damage

upon E2 treatment.

To further investigate these findings, sBLISS was used to map DSBs in different conditions: control cells, cells treated with E2, and cells

overexpressing RNase H1 or knocked down for TOP1 and treated with E2. The upregulation of estrogen-responsive genes was assessed

by quantitative PCR of extracted nascent RNA21 (Figure S5A).

Most estrogen-responsive genes, which exhibited a significant increase in expression upon E2 treatment (extracted from GEO:

GSE27463),22 displayed higher break density upon E2 treatment as opposed to downregulated genes (Figures S5B–S5E). Importantly,

most of these genes showed decreased break density when R-loops or TOP1 were depleted compared to estradiol treatment alone, indi-

cating that the increase in transcriptional DSBs upon E2 treatment is mediated by R-loops and TOP1.

Moreover, among the estrogen-responsive genes that exhibited increased break density following estradiol induction, the fragility of

these genes was significantly reduced by depleting R-loops or TOP1 (Figures 5E and 5F), further confirming the involvement of TOP1 and

R-loops in transcriptional DSBs, particularly in the context of estrogen-associated DSBs. Additionally, pathway analysis of these estrogen-

responsive genes using DisGenNET23 revealed enrichment in tumor progression, neoplasm metastasis, breast carcinoma, and malignant

neoplasm of the breast (Figure S5F), suggesting that estrogen treatment upregulates breast cancer-associated genes, leading to DSB for-

mation at these genes through R-loops and TOP1.

Taken together, these findings demonstrate that increased transcription results in elevatedDSB formation, and these transcriptional DSBs

are associated with the presence of R-loops and TOP1.

DSBs at highly transcribed genes might limit transcription

To ensure the validity of the observed decrease in break enrichment at highly expressed genes, we investigated any potential effects on tran-

scription levels caused by the manipulations. Employing CEL-seq, we analyzed the change in normalized expression counts of the top 1,000

highly expressed genes under different manipulations (Figures S6A and S6B). Remarkably, cells overexpressing RNase H1 or depleted of

A B C

D E F

Figure 3. Transcriptional DSBs are associated with R-loops

(A) A log scaled scatterplot showing positive correlation between expression and R-loops levels for the top 50% expressed genes, each dot represents a gene.

DRIP data were extracted from GEO: GSE81851.

(B) Mean expression (TPM) correlates with R-loops levels for the top 50% expressed genes.

(C) Heatmap of break density at R-loops regions across the genome, the plot shows DSBs at the center of R-loops peaks.

(D) Ratio of observed breaks to expected breaks for low R-loops and high R-loops genes.

(E) Representative images of immunofluorescent staining of MCF-7 EV and MCF-7 overexpressing RNase H1 for g-H2AX and 53BP1.

(F) Number of g-H2AX and 53BP1 foci per nucleus, for MCF-7 EV and MCF-7 RNase H1. sBLISS and immunofluorescence experiments were done in duplicates.

P-values for high TOP1 vs. low TOP1 were calculated by chi-square test, P-value for immunofluorescence staining was calculated using Student’s t test, and

correlation coefficients by Spearman’s correlation test. *p < 0.05, and ***p < 0.001.
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A

B C D

E F G

Figure 4. RNase H1 overexpression and TOP1 knockdown decrease break enrichment at gene body of highly expressed genes

(A) The distribution of DSBs in breast cancer MCF7 cells along ChromHMM-defined chromatin states of HMEC in control cells (transfected with scramble RNA

and infected with EV-GFP), cells knocked down for TOP1 (also infected with EV-GFP), cells overexpressing RNase H1 (also transfected with scramble RNA), and

cells knocked down for TOP1 and overexpressing RNase H1. Bar height is break enrichment relative to other chromatin states.

(B) Breakome percentage in 1000 most transcribed genes (top) and 1,000 least transcribed genes (bottom) with the different manipulations. Expression data are

taken from our CEL-seq.

(C) Breakome percentage in 100 top R-loop-enriched genes (top) and 100 top R-loop-deprived genes (bottom) with the different manipulations.

(D) Breakome percentage in 100 top TOP1-enriched genes (top) and 100 top TOP1-deprived genes (bottom) with the different manipulations.

(E) Color-coded heatmap representing the change in break density for the top 1,000 expressed genes. The break density values have been standardized using Z

scores for rows to enhance the visualization of relative differences.

(F) Color-coded heatmap representing the change in break density for the top 2,000 break-prone genes.

(G) Plot showing break density at gene body of highly transcribed genes shown in Bwith the different manipulations. sBLISS experiments were done in duplicates.

P-value was calculated by chi-square test. n.s. p > 0.5, and ***p < 0.001.
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TOP1 displayed a significant increase in expression levels for the top 1,000 expressed genes, while the combinedmanipulation did not exhibit

the same effect (Figures S6C–S6G). Furthermore, a comparative analysis of gene sets sorted by expression in the control sample revealed

intriguing insights. Specifically, the highest expressed group (group 1) demonstrated the largest percentage of genes with increased tran-

scription upon manipulations (Figure S6H). This observation was further corroborated by examining the normalized expression counts of

these gene sets, where the highest expressed group exhibited the most substantial increase in expression levels (Figure S6I).

Notably, when specifically scrutinizing the change in expression at highly expressed genes that exhibited a decrease in break density, we

observed a predominant trend toward increased expression (Figures S6J‒S6O). This trend alignswith our understanding that intragenicDSBs

are known to impede transcription. However, it is important to note that not all genes demonstrated increased expression in response to

decreasedDSBs, and thepatterns appeared tobe variable. These intriguing findings suggest that the effects of TOP1depletion and/or RNase

H1 overexpression on gene expression are context dependent, exerting diverse influences on different genes. Taken together, our results

strongly imply that transcriptional DSBs, facilitated by the interplay between TOP1 and R-loops, may act as impediments to transcription at

highly expressedgenes, shedding light on the intricate relationshipbetweenDNAbreakage, transcriptional regulation, andgenomic stability.

Interplay between TOP1cc and R-loops in transcriptional DSBs formation

To gain deeper insights into the mechanisms underlying transcriptional DSBs formation, we investigated the interplay between TOP1cc and

R-loops at highly expressed genes. Specifically, we aimed to determine whether TOP1cc promotes R-loop formation or, conversely, whether

R-loops enhance the trapping events of TOP1cc.

A B

C D

E F

Figure 5. Estradiol-associated DSBs are mediated by R-loops and TOP1

(A) Representative images of immunofluorescent staining of MCF-7 EV non-treated, MCF-7 EV treated with estradiol (E2), andMCF-7 cells overexpressing RNase

H1 and treated with E2, for g-H2AX and 53BP1.

(B) Quantification of number of g-H2AX and p53BP1 foci per nucleus, for MCF-7 EV NT andMCF-7 EV treated with E2, andMCF-7 cells overexpressing RNase H1

treated with E2.

(C) Representative images of immunofluorescent staining of MCF-7 siSc non-treated, MCF-7 siSc treated with estradiol (E2), and MCF-7 cells knocked down for

TOP1 and treated with E2, for g-H2AX and 53BP1.

(D) Quantification of number of g-H2AX and p53BP1 foci per nucleus, for MCF-7 siSc NT andMCF-7 siSc treated with E2, andMCF-7 cells knocked down for TOP1

and treated with E2.

(E) Color-coded heatmap showing the change in break density between control cells (vehicle and EV-GFP), cells incubated with estradiol and infected with EV-

GFP, cells incubated with estradiol and overexpressing RNase H1, for estrogen-responsive genes with the highest positive differential break density.

(F) Color-coded heatmap showing the change in break density between control cells (transfected with scramble RNA and treated with vehicle), cells incubated

with estradiol and transfected with scramble RNA, cells knocked down for TOP1 and treated with estradiol, for estrogen-responsive genes with the highest

positive differential break density. sBLISS and immunofluorescence experiments were done in duplicates. P-value was calculated using Student’s t test

*p < 0.05, and **p < 0.01.
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A B C D

E F G

H I J

K

Figure 6. TOP1 KD and/or RNase H OE decrease TOP1cc at highly expressed genes

(A) Scatterplot showing the correlation between TOP1 and TOP1cc density at the top 50% expressed genes.

(B) Boxplot showing TOP1 density mean at high TOP1cc genes vs. low TOP1cc genes.

(C) Boxplot showing break density at high TOP1cc genes vs. low TOP1cc genes.

(D) Distribution of TOP1cc along the gene bodies of highly expressed genes.

(E) Representative images of immunofluorescence staining of TOP1cc after TOP1 KD.

(F) Quantification of TOP1cc intensity.

(G) Color-coded heatmap showing the change in TOP1cc density with the different manipulations at highly expressed genes.

(H) Stacked bar plot showing the percentage of genes exhibited a decrease/no change/increase in TOP1cc density for highly expressed genes that decreased in

break density upon the different manipulations.
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To address these questions, we performed DRIP-seq experiments following TOP1 knockdown (KD) and/or overexpression (OE) of RNase

H1. Consistent with the previous analysis of published DRIP-seq, our analysis revealed a positive correlation between R-loop levels and gene

expression, as illustrated in Figure S7A. Examining the changes in R-loop levels resulting from the different manipulations, we observed a

significant increase in R-loops at highly expressed genes following TOP1 KD (Figures S7B–S7D). These findings align with previous reports

demonstrating the role of TOP1 in preventing R-loop accumulation.24,25 Conversely, examining the effect of RNaseH1OE at highly expressed

genes showed a decrease in DRIP signal, indicating a reduction in R-loops (Figures S7E–S7G). Remarkably, when selecting genes exhibiting

decreased breaks upon RNase H1 OE, we observed a concomitant decrease in R-loop levels (Figure S7H). These results further confirm the

role of TOP1 in preventing R-loop accumulation, although we do not exclude the possibility that trapping of TOP1cc may contribute to

increased R-loop formation, as previous studies have shown that treatment with the trapping agent CPT leads to increased R-loops at

gene bodies.26

To investigate the potential scenario of TOP1cc trapping by R-loops, we performed ChIP-seq using an antibody specifically recognizing

the bond between TOP1 and DNA in TOP1cc, following TOP1 KD and/or RNase H1 OE. The analysis revealed a positive correlation between

TOP1cc and TOP1 at the top 50% expressed genes (Figure 6A). Additionally, genes enriched with TOP1cc exhibited higher levels of TOP1

(Figure 6B), suggesting that TOP1 binding to DNA is associated with the formation of TOP1cc. This association implies that the detected

TOP1-binding sites are likely actively involved in DNA cleavage and re-ligation reactions, ultimately resulting in TOP1cc formation. Further-

more, genes enriched with TOP1cc showed a significantly higher enrichment of DSBs compared to genes depleted of TOP1cc (Figure 6C),

underscoring the detrimental effect of TOP1cc on genomic integrity.

The distribution of TOP1cc along the gene bodies of highly expressed genes were consistent with previous mapping of TOP1 catalytic ac-

tivity (Figure 6D), further validating our approach, and showing that TOP1cc can be trapped at physiological levels during hypertranscription.

TOP1 depletion resulted in decreased global physiological TOP1cc levels as observed in immunofluorescence staining (Figures 6E and

6F). Examining the changes in TOP1cc levels at highly expressed genes upon TOP1 KD revealed a depletion of TOP1cc (Figures 6G, S7I

and S7J). Notably, RNase H1 OE also led to a decrease in TOP1cc at highly expressed genes, suggesting a potential role for R-loops in

TOP1cc trapping. To further investigate this, we focused on genes exhibiting decreased DSBs following each manipulation. Strikingly, RNase

H1OE resulted in a decrease in TOP1cc at themajority of highly expressed genes displaying decreasedDSBs, with amore pronounced effect

observed upon TOP1 depletion with both TOP1 KD and RNase H1 OE yielding the highest proportion of genes with decreased TOP1cc

(Figures 6H and S7K‒S7P). Furthermore, our investigation revealed that genes enriched with TOP1cc also demonstrated higher enrichment

of R-loops compared to genes without TOP1cc (Figure 6I). A detailed comparison of TOP1cc enrichment at various R-loop peaks, including

voids, random peaks, and the top 1000 peaks, demonstrated preferential enrichment of TOP1cc at the top R-loop peaks (Figure 6J). This

observation further validates the critical role of R-loops in TOP1cc trapping. Additionally, the high colocalization of TOP1cc with R-loops

at highly expressed genes was evident, and a decrease in R-loops upon RNase H1 OE resulted in a concurrent decrease in TOP1cc at these

localized regions (Figure S8). Collectively, these results highlight the involvement of TOP1cc trapping at physiological conditions in transcrip-

tional DSB formation and demonstrate that the reduction in DSBs following TOP1 KD and RNase H1 OE is attributed to a decrease in

transcriptional R-loops and trapped TOP1cc. Moreover, our findings suggest that transcriptional R-loops contribute to the trapping and sta-

bilization of TOP1cc at highly expressed genes (Figure 6K).

Transcriptional DSBs as a driving force to cancer development

EndogenousDNAdamage serves as a significant contributor to genomic instability in cancer.27 In line with this notion, we embarked on inves-

tigating the impact of physiological DSBs on the molecular alterations associated with the initiation and progression of breast cancer.

Specifically, we focused on elucidating the role of transcriptional DSBs in this context. To address these questions comprehensively, we per-

formed a thorough analysis that integrated mutational data from The Cancer Genome Atlas MC3 project,28 encompassing SNV mutational

calls from breast cancer patients, with our own data obtained through sBLISS analysis of the breast cancer cell line MCF-7. Through an ex-

amination of break density, expression levels, and TOP1 and R-loop densities, we aimed to discern potential disparities in transcriptional

DSB accumulation between frequently mutated genes and the entire gene set. Our analysis, as depicted in Figures S9A–S9D, indicated

no significant distinctions between frequently mutated genes and the broader gene population.

The prevailing understanding is that the majority of mutations in cancer are passengers and do not actively contribute to the initiation or

progression of carcinogenesis.16 To delve deeper into the involvement of physiological transcriptional DSBs in the early mutational events

driving cancer initiation, we conducted a more focused analysis, specifically examining breast cancer driver genes15 in relation to non-func-

tional highlymutated passenger genes. Remarkably, while passengermutations weremore prevalent across patients (Figure 7A), driver genes

Figure 6. Continued

(I) Boxplot showing R-loops density mean at high TOP1cc genes vs. low TOP1cc genes.

(J) TOP1cc enrichment over background at R-loop voids, random R-loop peaks, and the top 1000 R-loop peaks.

(K) Graphical illustration of the proposed mechanism of transcriptional DSBs, optimally, TOP1 participates in efficient cleavage and re-ligation reactions

maintaining the native structure of DNA and preventing genomic instability. When co-transcriptional R-loops are formed, the engaged TOP1 have higher

chance of trapping in its TOP1cc form, leaving a single-stranded break (SSB) behind. Along with the SSB formed as a result of R-loops processing, a DSB is

formed during transcription. Correlation coefficient was calculated by Pearson’s test. P-value was calculated by Mann-Whitney test. P-value of the IF was

calculated by Student’s t test. **p < 0.01, and ***p < 0.001. The horizontal bars represent the median and whiskers extend from –1.5 3 IQR to +1.5 3 IQR

from the closest quartile, where IQR is the inter-quartile range.
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displayed a significantly higher density of breaks (Figure 7B). Intriguingly, driver genes also exhibited elevated expression levels and increased

levels of TOP1 and R-loops (Figures 7C–7E). This pattern persisted when comparing driver genes to the broader gene population

(Figures S9E–S9I). Notably, the expression levels of driver genes demonstrated a positive correlation with their break density, unlike passen-

ger genes (Figures 7F and 7J). Both classes of mutated genes exhibited correlations betweenDSBs and R-loops (Figures S9J and S9K), as well

as between DSBs and TOP1 (Figures S9L and S9M). Furthermore, a significant reduction in DSBs was observed in most driver genes following

knockdown of TOP1 and/or overexpression of RNaseH1 (Figure 7G). Upon further analysis based on expression levels, a clear trend emerged:

highly expresseddriver genes exhibiteddecreasedDSBs in response to thesemanipulations, while lowly expresseddriver genes did not show

a similar pattern (Figures 7H and 7I). These findings strongly suggest an enrichment of transcriptional DSBs specifically at highly expressed

driver genes. In contrast, passenger genes did not exhibit a significant decrease in DSBs after the manipulations (Figure 7K), implying an

absence of transcriptional DSB enrichment in these genes.

To further validate theseobservations,weassessed the changes inR-loops andTOP1ccdensity uponoverexpressionofRNaseH1andknock-

down of TOP1, respectively. Strikingly, while DSBs correlated with TOP1 and R-loops for both driver and passenger genes (Figures S9J–S9M),

and therewasnosignificantdifference inTOP1ccdensitybetweendrivers andpassengers (FigureS9N),onlydrivergenesexhibitedadecrease in

R-loops upon RNase H1OE and a decrease in TOP1cc density upon TOP1 knockdown (Figures 7L‒7P). These findings further imply that driver

genes,butnotpassengergenes,areenrichedwith transcriptionalDSBsmediatedbyTOP1cc trappingandR-loops. These resultsunderscore the

notion that driver mutations not only differ from passenger mutations in their impact on cancer fitness but also in their etiology.

Notably, when comparing driver genes to other similarly expressed genes, there is no significant difference in break density or R-loops

density (Figures S10A–S10C). This finding suggests that the disparities observed between driver and passenger genes are attributed to var-

iations in their expression levels, rendering them susceptible to transcriptional DSBs.

Intriguingly, to determine if the observeddifferences betweendriver and passenger genes persist in cells before cancer transformation, we

extended our investigation beyond the breast cancer cell lineMCF-7.We sought to explore whether these patterns were evident in mammary

epithelial cells, representing a pre-cancerous state. For this purpose, we conducted sBLISS analysis on the mammary epithelial cell line

(HMLE) and simultaneously analyzed published RNA-seq data (GSM6774900). Astonishingly, we observed a similar pattern, reinforcing the

presence of elevated expression and increased break density at driver genes compared to passenger genes (Figures S10D and S10E).

Furthermore, we harnessed the breast cancer progression model, utilizing the normal MCF-10A cells and their malignant counterpart

harboring RAS mutation (RAS-mutated MCF-10A cell line).29 Through sBLISS experiments and the examination of published RNA-seq

data,30 we consistently observed that driver genes exhibited higher expression levels and displayed greater break density than passenger

genes in both non-malignant and RAS-transformed MCF-10A cells (Figures S10F–S10I). Interestingly, we found no significant difference in

the expression or break density of driver genes between the normal and the transformed cell line (Figures S10J and S10K), indicating that

the enrichment of transcriptional DSBs at driver genes is indeed present even before cancer transformation events occur. These findings sug-

gest that the unique transcriptional DSB landscape associated with driver genes is a feature preserved throughout various cellular stages,

including pre-cancerous and cancerous states.

To uncover the distinct characteristics of genes acting as hotspots for transcriptional DSBs, we employed a different approach. By iden-

tifying overlapping genes from the top lists of DSBs obtained through sBLISS, TOP1 and TOP1cc from ChIP-seq, and R-loops from DRIP-seq,

all performedon non-treatedMCF-7 cells, we obtained a comprehensive understanding (Figures 7Q and S10L‒S10O). Remarkably, out of the

37 genes that intersected across all four lists, 33 genes were implicated in cancer initiation and/or progression. This collection included 15

Figure 7. Cancer genes are enriched with transcriptional DSBs

(A) Boxplot of mutation frequency at driver genes and frequently mutated passenger genes.

(B) Boxplot of break density at driver genes and frequently mutated passenger genes.

(C) Boxplot of normalized expression at driver genes and frequently mutated passenger genes.

(D) Boxplot of TOP1 density at driver genes and frequently mutated passenger genes.

(E) Boxplot of R-loops density at driver genes and frequently mutated passenger genes.

(F) Log-scaled scatterplot demonstrating the correlation between break density and expression levels at driver genes. Red circles are identifying highly expressed

drivers used in the heatmap in H, blue circles are identifying lowly expressed drivers used in the heatmap in I.

(G) Color-coded heatmap of break density at driver genes with the different manipulations.

(H) Color-coded heatmap of break density at highly expressed driver genes with the different manipulations.

(I) Color-coded heatmap of break density at lowly expressed driver genes with the different manipulations.

(J) Log-scaled scatterplot demonstrating the correlation between break density and expression levels at passenger genes.

(K) Color-coded heatmap of break density at passenger genes with the different manipulations.

(L) Color-coded heatmap demonstrating the direction of change of R-loops enrichment at driver genes after RNase H OE.

(M) Color-coded heatmap demonstrating the direction of change of R-loops enrichment at passenger genes after RNase H OE.

(N) Color-coded heatmap demonstrating the direction of change of TOP1cc enrichment at driver genes after TOP1 KD.

(O) Color-coded heatmap demonstrating the direction of change of TOP1cc enrichment at passenger genes after TOP1 KD.

(P) Stacked bar graph demonstrating percentages of genes that decreased, didn’t change, or increased in the heatmaps mentioned earlier (L‒O).

(Q) Genes that overlap the top lists of TOP1, breaks, TOP1cc, and R-loops with their available classification obtained from the literature. Gene enrichments are

statistically significant and as follows (hypergeometric test), oncogenes PV = 1.103765e-27, tumor suppressors + dual function = 6.100708e-05, Actins =

2.772229e-05, Histones = 3.672962e-06. ***p < 0.001. Correlation coefficient was calculated by Pearson’s test. P-value was calculated by Mann-Whitney test.

The horizontal bars represent the median and whiskers extend from –1.5 3 IQR to +1.5 3 IQR from the closest quartile, where IQR is the inter-quartile range.
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oncogenes, such asMYC, FOS, HES1, JUNB, and CCND1. Additionally, three genes were classified as tumor suppressors (EGR3, ZFP36, and

GATA3), while five genes demonstrated dual roles as either oncogenes or tumor suppressors depending on the specific context (XBP1, EGR1,

HSPB1,NEAT1, and ELF3). Notably, two genes in the list belonged to the actin family, namely ACTB and ACTG1, and their aberrant expres-

sion and dysregulation have been observed in various types of cancer, contributing to tumor progression andmetastasis.31–33 The remaining

genes in the list have limited information regarding their role in cancer; however, they belong to gene families known to play critical roles in

cancer biology. Specifically, four genes belong to the histone family (HIST1H1D,34 HIST1H1C, HIST2H3A, and HIST2H2AA3)35 and mutations

in histone genes have been associated with cancer.36,37 Furthermore, four genes belong to the small nuclear RNAs (snRNAs) family, specif-

ically RNU1-1, RNU1-7, RNU4-2, and RNU12. While these particular snRNAs may not commonly be associated with cancer, dysregulation or

alterations in the broader snRNA family and splicing machinery have implications for cancer development and progression.38,39

To shed light on why these particular genes surfaced in our intersection analysis, we delved deeper into their characteristics. Comparing

the break density of these intersectedgenes to randomly selected similarly expressedgenes (Figure S11A), we found that they exhibit a higher

propensity for DSBs than other genes equated for expression levels (Figure S11B). This observation suggests that the elevated DSBs at these

genes are not solely a consequence of high transcriptional activity, prompting further investigation.

The enriched gene set includes oncogenes vital for cancer cell survival and proliferation. Analyzing data from the DepMap portal40 re-

vealed a dependency of MCF-7 cells on many of these genes (Table S1). Moreover, many of these intersected genes are regulated by su-

per-enhancers, and several are estrogen-responsive genes, aligning with the biological context of breast cancer (Table S1). Gene set enrich-

ment analysis in the Cancer Cell Line Encyclopedia revealed their enrichment in upregulated genes in breast cancer cell lines, especially

MCF-7 (Figure S11C). This emphasizes the oncogenic nature of these genes and implies that the hypertranscription of specific genes, driven

by factors such as super-enhancers or estrogen receptor activation, may play a more potent role in inducing transcriptional DSBs.

To further investigate this, we looked for the genes in this list that lacked relevance in breast cancer. Notably, the enrichment of histone

genes within this list led us to explore their potential role as upregulated oncogenes in patient tumor samples. Intriguingly, all overlapping

histone genes exhibited upregulation when comparing tumor samples ormetastatic tissues tomatched normal counterparts of breast cancer

samples (Figures S11D–S11G). This evidence suggests that these histone genes, while not conventionally classified as oncogenes, undergo

upregulation during carcinogenesis, and their association with transcriptional DSBs could be a consequential or causative factor for their

upregulation.

Taken together, these findings provide substantial evidence that transcriptional DSBs, facilitated by TOP1cc trapping and R-loops, are

intimately associated with early molecular changes in breast cancer. Moreover, the disparities between driver mutations and passenger mu-

tations extend beyond their molecular functions and contributions to cancer fitness; they also encompass differences in their etiology. The

higher expression levels, enrichment of R-loops, and elevated presence of TOP1 in driver genes suggest that transcriptional DSBs could be

the underlying driving force behind mutagenesis in cancer.

DISCUSSION

In this study, we conducted a comprehensive investigation to elucidate the mechanisms and consequences of transcriptional DSBs in the

context of cancer development. Our analyses revealed a strong association between DSBs and highly transcribed genes, with elevated break

density observed at active promoters, enhancers, and transcriptional transition regions. Moreover, we demonstrated that these transcrip-

tional DSBs are influenced by the interplay between TOP1 and R-loops. Specifically, highly expressed genes exhibited a higher density of

breaks, correlated with increased TOP1 levels and R-loop formation. Depletion of TOP1 and R-loops resulted in a significant reduction in

DSBs at these highly transcribed genes, underscoring their crucial roles in transcription-associated genomic instability. Furthermore, we

investigated the contribution of transcriptional DSBs to cancer initiation and progression. Driver genes, implicated in cancer fitness, displayed

higher break density, increased expression levels, and elevated levels of TOP1 and R-loops compared to passenger genes. Manipulations of

TOP1 and R-loops selectively decreased DSBs in highly expressed driver genes, providing evidence for their enrichment in transcriptional

DSBs and distinct etiology. These findings deepen our understanding of driver mutations by elucidating the role of physiological DSBs as

an additional factor facilitating their occurrence alongside Darwinian evolution. By unraveling the molecular characteristics underlying these

driver mutations, our research provides valuable insights into the complex interplay between genomic instability, transcriptional processes,

and cancer development and highlights the regulatory roles of TOP1 and R-loops in governing DSBs within hypertranscribed genes impli-

cated in carcinogenesis.

Transcriptional DSBs independent of replication

In replicating cells, transcription can lead to DSBs through collisions with the replication machinery, a phenomenon known as transcription-

replication conflict.41–43 This conflict arises when DNA and RNA polymerases encounter each other within a gene, particularly at TTS. While

previous studies suggest that TOP1 activity can alleviate such conflicts,44 our data reveal a distinct role for TOP1 and co-transcriptional

R-loops in mediating genomic instability at hypertranscribed genes independently of replication.

Transcriptional DSBs at TSS are different from gene body

Our findings propose an intriguing model highlighting the distinct production of transcriptional DSBs at TSS compared to those within the

gene body. Specifically, we observed that depletion of TOP1 and reduction of R-loops specifically resulted in reduced DSBs at the gene
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bodies of highly expressed genes, while leaving the DSBs at TSS relatively unaffected. This observation is consistent with the mapping of

TOP1 cleavage complexes along the gene body, which showed depletion of TOP1cc at promoters compared to gene body (Figure 6D).

Moreover, this finding aligns with the recent discovery that DSBs at TSS are primarily produced by the high-mobility group AT-hook 2 protein,

a key factor required for transcription initiation.45 Our previous study also demonstrated differential patterns of DSBs at regulatory elements

such as promoters, strong enhancers, and insulators.18 Furthermore, our current investigation revealed a slight increase in break density at

promoters and enhancers following TOP1 and R-loop depletion. This observation suggests that TOP1 and R-loops may serve distinct func-

tions at these regulatory regions beyond their association with hypertranscription. This supposition aligns cohesively with the findings of a

recent study by Ray et al.,46 which underscored the distinct susceptibility of promoters to specific forms of DNA damage. This alignment for-

tifies our perspective on the distinct origins of DNA damage between TSS and gene bodies, potentially indicating that TOP1 and R-loops

could act as protective agents at promoters, safeguarding against these threats.

Together, our data support a model in which transcriptional DSBs at TSS are produced differently from those within the gene body and

that TOP1 and R-loops cause DSBs at gene bodies, thereby establishing them as distinctive attributes of transcriptional DSBs.

The connection between R-loops and TOP1

Remarkably, our results consistently demonstrate that the depletion of TOP1 and R-loops elicits a similar effect, and the combined manip-

ulation fails to produce a synergistic effect. This observation suggests a coordinated process in which the presence of both factors is necessary

to initiate the generation of DSBs through a shared pathway, potentially involving the dual processing of TOP1 and R-loops.26 In this scenario,

an SSB arises from TOP1 activity, while another SSB results from an R-loop, ultimately leading to the formation of DSBs. Our data strongly

support this mechanistic model and indicate that it holds true even under physiological conditions. Indeed, the unexpected effect of both

manipulations on expression levels suggests the involvement of complex compensatory mechanisms. It is plausible that the compensatory

responses triggered by each manipulation individually may interact in a way that interferes with each other when both manipulations are pre-

sent simultaneously. This interference could lead to additional stress on the transcriptional machinery, resulting in the observed decrease in

expression at highly transcribed genes.

Consistent with the literature, our data show that TOP1 KD increases the presence of R-loops at highly transcribed genes. However, this

increase in R-loops does not correspond to a concurrent increase in DSBs, further supporting that both TOP1 and R-loops are essential

components for DSB formation. Furthermore, our data provide an additional angle to the intricate mechanism whereby R-loops facilitate

the trapping of TOP1cc and subsequent DSB formation.

Estrogen responsiveness and DSBs

Previously, R-loops have been shown to be the main cause of estrogen-induced DNA damage,47 pointing toward a role of R-loops in tran-

scriptional DSBs. Our sBLISS data on E2-responsive genes after TOP1 KD or RNaseH1OE show induction of breaks at these genes after estra-

diol treatment, further validating a causing effect of transcription on DSBs formation. Furthermore, TOP1 KD or RNase H1 OE significantly

attenuates the effect of estradiol, validating the involvement of TOP1 and R-loops in transcriptional DSBs formation.

Increased expression upon TOP1 KD and RNase H1 OE

Our findings reveal a noteworthy correlation between decreased DSBs and enhanced expression levels of highly transcribed genes following

TOP1 KD and RNase H1 OE. This observation aligns with the prevailing concept that DSBs act as impediments to the progression of the tran-

scriptionalmachinery. Interestingly, despite the importance of TOP1 activity in facilitating transcription, our results indicate that the remaining

30% of the protein is sufficient for efficient transcription, implying that TOP1 is often overexpressed in cancer cells beyond what is strictly

necessary for cellular processes.

Furthermore, the reduction in TOP1cc resulting from TOP1 KD and RNase H1 OE provides a mechanistic explanation for the observed

increase in gene expression. It is well documented that TOP1cc represents transcription-blocking lesions,9 and thus, the decrease in TOP1cc

levels can alleviate the transcriptional impediments, consequently promoting gene expression.

Collectively, our data support the notion that decreasedDSBs, brought about by TOP1KD and RNaseH1OE, are associatedwith elevated

expression of highly transcribed genes. This sheds light on the intricate relationship between DSB formation, TOP1 activity, and transcrip-

tional regulation, underscoring the potential implications of these mechanisms in cancer biology.

Transcriptional DSBs and mutations

The findings of our study shed light on the significance of transcriptional DSBs as a driving force in the development and progression of breast

cancer. Our analysis revealed that driver genes exhibited significantly higher break density compared to both passenger genes and the over-

all gene population. Furthermore, the enrichment of R-loops and TOP1, along with the decreasedDSBs followingmanipulations of TOP1 and

RNase H1 in driver genes supports the notion that transcriptional DSBs facilitated by TOP1cc trapping and R-loops contribute to the under-

lying mechanisms of mutagenesis in breast cancer. Importantly, our data challenge the existing knowledge regarding the formation of driver

mutations, as we demonstrate that transcriptional DSBs play a significant role beyond random chance. This novel insight proposes an update

to our understanding of themechanisms governing drivermutation formation. Indeed, it is essential to clarify that the enrichment of transcrip-

tional DSBs at driver genes is likely a consequence of their increased transcriptional levels and not an independent or intrinsic feature unique
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to driver genes. Our data strongly support the notion that the presence of transcriptional DSBs at driver genes can be attributed to their

higher levels of transcription, which in turn make them more prone to the formation of DSBs. Conversely, the absence of transcriptional

DSBs at passenger genes can be explained by their lower expression levels, rendering them less susceptible to DSB formation.

Indeed, the persistence of the observed enrichment of DSBs at driver genes in both pre-cancerous and cancerous cell lines suggests that

hypertranscription, a key driver of these transcriptional DSBs, remains a prominent factor both before and after cancer transformation, and

that these DSBs are not a consequence of cancer transformation. The continuous presence of elevated transcription levels even after cancer

development underscores the ongoing influence of hypertranscription in maintaining the observed DSB landscape.

Importantly, this finding does not diminish the potential role of transcriptional DSBs in driving cancer. On the contrary, it highlights that the

underlying cause, hypertranscription, is a sustained phenomenon in both pre-cancerous and cancerous states. This sustained hyper-transcrip-

tion contributes to the persistence of transcriptional DSBs, and the possibility that these DSBs play a role in driving cancer remains valid.

Furthermore, our investigation also identified several genes intersecting the lists of DSBs, TOP1, TOP1cc, and R-loops, with a majority of

them being linked to cancer initiation and/or progression. These findings highlight the association of transcriptional DSBs with well-estab-

lished oncogenes, tumor suppressors, and genes from critical families such as histones and snRNAs. While further research is needed to

unravel the exact mechanisms and downstream consequences of transcriptional DSBs, our study provides compelling evidence for their

involvement in early molecular changes in breast cancer. Understanding the etiology and molecular characteristics of driver mutations,

including their relationship with transcriptional DSBs, not only enhances our knowledge of cancer biology but also holds potential for the

development of targeted therapeutic strategies.

Clinical implications

Our study reveals a pronounced enrichment of transcriptional DSBs within genes critical for the fitness and survival of cancer cells. Given the

established reliance of cancer cells on robust DNA damage signaling and response pathways, it becomes evident that targeted interventions

focusing on DNA damage response pathways specific to actively transcribed regions may hold greater therapeutic potential.

The incorporation of Breakomedata frompatient tumor samples into existing cohorts of cancer tumor genomic data represents a valuable

avenue for gaining additional insights into the patterns of DNA damage and repair across diverse patient tumor samples with distinct

mutations and mutational signatures. This integrative approach allows for a comprehensive examination of the interplay between specific

mutations and the resulting DNA damage landscape, offering a more nuanced understanding of the molecular dynamics within individual

tumors. By expanding our analysis to include Breakome data, we can discern variations in the DNA damage and repair profiles associated

with different mutations and mutational signatures. This integrated perspective not only enhances our comprehension of the intricate rela-

tionship between genetic alterations and DNA damage but also provides a basis for developing tailored therapeutic strategies.

Limitations of the study

While our study sheds light on the intricate relationship between transcription-associated DSBs and cancer cell physiology, it is crucial to

recognize certain limitations. Our reliance on the sBLISS technique, though potent, captures a static snapshot of DSBs at cell fixation, poten-

tially missing transient or swiftly repaired breaks. Furthermore, the use of duplicates in the sBLISS method may pose limitations in statistical

robustness. The intricate interplay among transcription, R-loops, and DSB formation involves multifaceted molecular processes. Despite sig-

nificant progress, further exploration is needed to fully unravel these complexities. Focused onMCF-7 breast cancer cells, the generalizability

of our findings to other cell types or cancer contexts remains an open question due to variations in cellular physiology and gene expression

profiles, and performing these experiments in tumor samples would be important to strengthen the relevance of these results to human

patients. While advancing our understanding, these limitations emphasize the ongoing need for refining our model. Addressing these chal-

lenges will lead to a more nuanced comprehension of the intricate relationship between transcription, DNA breaks, and their implications in

cancer biology.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

g-H2AX antibody Abcam (Abcam Cat# ab26350, RRID:AB_470861)

53BP1 antibody Abcam (Abcam Cat# ab36823, RRID:AB_722497)

TOP1cc antibody Merk Millipore (Millipore Cat# MABE1084, RRID:AB_2756354)

TOP1 antibody Abcam (Abcam Cat# ab3825, RRID:AB_304095)

GAPDH antibody Calbiochem (Millipore Cat# CB1001 (also CB1001-500UG),

RRID:AB_2107426)

S9.6 antibody Kerafast (Kerafast Cat# ENH001, RRID:AB_2687463)

Chemicals, peptides, and recombinant proteins

Lipofectamin 2000 reagent Thermo Fisher Scientific Cat# 11668-027

T4 DNA Ligase New England Biolabs Cat# M0202M

Truncated RNA Ligase New England Biolabs Cat# M0242S

T4 Polynucleotide Kinase New England Biolabs Cat# M0201S

Dynabeads Protein G ThermoFisher Cat# 10004D

Formaldehyde ThermoFisher Cat# 28906

Agencourt AMPure XP Beads Beckman coulter life sciences Cat# A63880

Critical commercial assays

NEBNext PCR Master Mix New England Biolabs Cat# M0541S

Quick Blunting Kit New England Biolabs Cat# M1201A

CutSmart buffer New England Biolabs Cat# B7204

MegaScript T7 Transcription Kit ThermoFisher scientific Cat# AM1333

SuperScript III First-Strand Synthesis Thermo Fisher Scientific Cat# 18080051

Deposited data

TOP1 ChIP-seq Hazan et al.18 GEO: GSE136365.

DRIP-seq in MCF7 Stork et al.47 GEO: GSE81851

RNA seq for MCF-7 ENCODE ENCFF069FTO

RNA seq for MCF-7 ENCODE ENCFF511OEL

ChromHMM for HMEC Ernst J et al.48 GEO: GSE26386

Gro-seq of MCF7 -/+E2 Hah et al.22 GEO: GSE43836

Set of driver genes in breast cancer Nik-Zainal et al.15

Dependency data for MCF-7 Tsherniak et al.40 Depmap portal

Super enhancer data for MCF-7 Khan A et al.49 DbSUPER

Expression data for breast cancer patients Goldman B et al.50 UCSC Xena

Gene ontology analysis Ashburner M et al.;

Aleksander S et al.51,52
https://geneontology.org

Enrichr gene ontology analysis Enrichr53,54 https://maayanlab.cloud/Enrichr/

Experimental models: Cell lines

MCF-7 cells ATCC (RRID:CVCL_0031)

MCF-10A ATCC (ATCC Cat# CRL-10317, RRID:CVCL_0598)

Oligonucleotides

siTOP1 Dharmacon Cat# L-005278-00-0005

siSc Dharmacon Cat# D-00181010

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Rami Aqeilan

(ramiaq@mail.huji.ac.il).

Materials availability

This study didn’t generate new unique reagents.

Data and code availability

� Raw and processed data files are available in GEO: GSE241309.

� This paper does not report original code.
� Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

MCF7 (HTB-22) were grown in RPMI supplemented with 10% (vol/vol) FBS (GIBCO), glutamine, and penicillin/streptomycin (Beit-Haemek).

HMLE cells were grown in Promocell mammary epithelial cell basal media (C-21010) with added supplements (c-93110) whereas MCF10A

were grown on DMEM/F12 supplemented with 5% Horse serum, 20 ng/ml EGF, 0.5 mg/ml Hydrocortisone, 100 ng/ml Cholera toxin,

10 mg/ml Insulin and Pen/Strep. MCF-7 cells were synchronized in the G1 cell cycle stage by culturing in serum-free media for 72 hours fol-

lowed by replacing the media with 10% FBS media for 5 hours. Cells were grown at 37�C under a humidified atmosphere with 5% CO2. Cells

were routinely authenticated by STR profiling, tested for mycoplasma, and cell aliquots from early passages were used.

METHOD DETAILS

Transient transfection and plasmids

Transient transfection of siTOP1 (Dharmacon; SMARTpool siRNA, L-005278-00-0005) and siSc (Dharmacon; D-00181010) was achieved using

lipofectamine (ThermoFisher). Cells were seeded to reach a confluency of 60-70% on the day of transfection. Transfection solution was pre-

pared by mixing 1.5ml serum/antibiotic-free RPMI with 30mL lipofectamine and incubating for 5 minutes, before adding a mixture of 1.5ml

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

RNase H1-GFP plasmid Dr. Sara Selig Molecular Medicine Laboratory, Rambam Health

Care Campus and Rappaport Faculty of Medicine,

Technion, Haifa 31096, Israel),

E.V-GFP plasmid Dr. Sara Selig Molecular Medicine Laboratory, Rambam Health

Care Campus and Rappaport Faculty of Medicine,

Technion, Haifa 31096, Israel),

shTOP1 plasmid Dr. Yilun Liu City of Hope, USA.

Software and algorithms

ImageJ Schneider et al.55 https://imagej.nih.gov/ij/

Prism 6 GraphPad https://www.graphpad.com/scientific-software/prism/

R version ver 2023.06.0+421 R Core Team (2023) https://www.R-project.org/

Python Language Reference, ver. 2.7 Python Software Foundation. http://www.python.org/

Bowtie2 ver. 2.3.4.2 Johns Hopkins University http://bowtie-bio.sourceforge.net/bowtie2/

Homer findMotifs and annotatePeaks Heinz et al.56 http://homer.ucsd.edu/homer/

Deeptools computeMatrix, plotHeatmap

and (Ramı́rez et al., 2016) plotProfile ver 3.1.3

Ramirez et al.57 https://deeptools.readthedocs.io/en/develop/

MACS2 1.4.3 Zhang et al.58 https://github.com/taoliu/MACS/wiki

Samtools Li et al.59 http://www.htslib.org/download/

Bedtools V2.26.0 Quinlan and Hall60 https://bedtools.readthedocs.io/en/latest/

IGV2.3 Robinson et al.61 http://software.broadinstitute.org/software/igv/
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RPMI and 0.6nmoles of siRNA followed by 20 minutes incubation at RT. The mixture was then added to the cells in a 10cm plate cultured in

antibiotic/serum-free media. The media was replaced by fully supplementedmedia after 5-6 hours, and cells were incubated in the incubator

for 48 hours.

For RNase H1 overexpression, RNase H1 plasmid and its empty control plasmid containing only GFP, a kind gift from Dr. Sara Selig (Mo-

lecular Medicine Laboratory, Rambam Health Care Campus and Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel), were used.

GFP expression was used as an indicative of RNase H1 overexpression. The plasmid was prepared as described previously.62

The knockdown in TOP1cc ChIP-seq and DRIP-seq experiments were done using the doxycycline inducible shTOP1 plasmid that was

kindly obtained from Yilun Liu.

Immunofluorescence assay

Cells were seeded on coverslips to a 50-70% confluency at the time of fixation. Fixation was done using 4% paraformaldehyde for 10 minutes,

followed by three washes with 1X PBS. Cells were then permeabilized with 0.25% Triton X for 7minutes followed by another three washes with

1X PBS. This was followed by blocking with 10% goat serum for 1 hour. Cells were then stained with anti-g-H2AX antibody (abcam, ab26350)

using 1:1000 dilution, and anti-53BP1 anti-body (abcam, ab36823) using 1:500 dilution, and incubated in a humidity chamber in the cold room

overnight. After three washes with PBS, cells were incubated with the secondary antibodies in a humidity chamber for one hour at room tem-

perature, and then stainedwith Hoechst stain (1:2000 dilution in 1X PBS) followedby twowasheswith PBS. Coverslips were thenmounted, and

immunofluorescent pictures were taken using confocalmicroscopy. For TOP1cc (MABE1084), the sameprotocol was usedwith the addition of

treating the permeabilized cells with 0.1% SDS for 5 minutes before the blocking to render the covalent bond accessible for the antibody.

Consistency was maintained across experiments by using identical microscope parameters, capturing images at 60x magnification, and

assessing aminimumof 10 fields per condition. Foci in each nucleus were counted using image J. Only foci within the nuclei were considered.

CEL-seq

Total RNA was extracted using TRI reagent (BioLabs) according to the manufacturer specifications. RNA concentration was measured using

Qubit Flex Fluorometer (ThermoFisher Scientific). RNA sequencing libraries were prepared using the CEL-Seq2 protocol in the Technion

genomic Center (TGC), as published by,19 with one modification; instead of single-cells as input, 2 ng purified RNA was taken as input for

library preparation. The CEL-Seq2 libraries were analyzed for average fragment size using Agilent 2200 TapeStation (Agilent) and concentra-

tion was measured using Qubit Flex Fluorometer (ThermoFisher Scientific). The libraries were sequenced on the Illumina NextSeq 2000

sequencer (Illumina), 12 bases for read 1 and 88 bases for read 2. Demultiplexing was performed in two steps. First, Illumina demultiplexing

was performed using bcl2fastq Illumina software with the following parameters: barcode-mismatches =1,minimum-trimmed-read-length = 0,

and mask-short-adapter-reads = 0. Second, Cell-seq demultiplexing using the pipeline described in19 was executed with the following pa-

rameters: min_bc_quality = 10, bc_length = 6, umi_length = 6, and cut_length = 88. RNAmeasurements, library preparation and sequencing

were performed by the Technion Genomics Center, Technion, Israel.

Western blot

Protein lysates were prepared by incubating cells in lysis buffer containing 50mMTris (pH7.5), 150mMNaCl, 10% glycerol, 0.5%Nonidet P-40

(NP-40), with protease and phosphatase inhibitors (1:100). Samples were run on SDS-PAGE gel for 90-120 minutes and then blotted on nitro-

cellulose membrane using semi-dry blotting machine (Biorad). Two antibodies were used, Topoisomerase 1 antibody (Cat# ab3825) for

validation of siRNA knockdown, and GAPDH antibody (Calbiochem; CB1001), as a housekeeping gene antibody.

Transcription induction using estradiol

MCF-7 cells were hormonally starved by growing in RPMI media supplemented with 10% charcoal stripped fetal bovine serum for 48 hours.

Transcription was induced by replacing themedia with RPMImedia supplemented with charcoal stripped FBS and 100nM b-Estradiol (Sigma-

Aldrich) (pre-dissolved in ethanol) and incubated for 1 hour.

In-suspension break labelling in situ and sequencing (sBLISS)

106 cells were fixed in 2% paraformaldhyde in 10%FCS/PBS for 10min at room temperature. Fixation was quenched with 125 mM glycine for

5min at RT, and another 5min on ice, followed by two washes in ice cold PBS. The cells were lysed for 60min on ice and the nuclei were per-

meabilized for 60min at 37�c. Then, nuclei were washed twice with CutSmart Buffer supplemented with 0.1% Triton X-100 (CS/TX100), and

DSB ends were in situ blunted with NEB’s Quick Blunting Kit for 60min at RT. Blunted nuclei were washed twice with 1x CS/TX100 before

proceeding with in situ ligation of sBLISS adapters to the blunted DSB ends. Adaptor ligation was performed with T4 DNA Ligase for 20-

24h at 16C and supplemented with BSA and ATP. After ligation, nuclei were washed twice with 1x CS/TX100 and genomic DNAwas extracted

with Proteinase K at 55�c for 14-18h while shaking at 800rpm. Afterward, Proteinase K was heat-inactivated for 10 min at 95�c, followed by

extraction using Phenol:Chloroform:Isoamyl Alcohol, Chloroform, and ethanol precipitation. The purified DNA was sonicated in 100 mL

ultra-pure water using Covaris M220 for 60s. Sonicated samples were concentrated with AMPure XP beads (Beckman Coulter) and fragment

sizes were assessed using a BioAnalyzer 2100 (Agilent Technologies) to range from 300bp to 800bp with a peak around 400-600bp. The

ll
OPEN ACCESS

20 iScience 27, 109082, March 15, 2024

iScience
Article



sonicated DNAwas in vitro transcribed usingMEGAscript T7 Kit for 14 h at 37�c. After RNA purification and ligation of the 3’-Illumina adaptor,

the RNA was reverse transcribed. The final step of library indexing and amplification was performed using NEBNext� Ultra� II Q5� Mas-

ter Mix.

Chromatin immunoprecipitation sequencing (ChIP-seq)

MCF7 cells (�107) were crosslinked with 1% formaldehyde (methanol free, Thermo Scientific 28906) for 10 min at room temperature and

quenched with glycine, 125 mM final concentration. Fixed cells were washed twice in PBS and incubated in lysis buffer (10mM EDTA, 0.5%

SDS, 50mM Tris-HCl pH=8, and protease and phosphatase inhibitors) for 30min on ice. Cells were sonicated using bioruptor sonicator to

produce chromatin fragments of �200-300 bp. The sheared chromatin was centrifuged 10min at maximum speed. From the supernatant,

2.5% were saved as input DNA and the rest was diluted in dilution buffer (50mM TRIS-HCl pH8, 0.01%SDS, 150mM NaCl, and 1% Triton

X-100). The chromatin was immunoprecipitated by incubation with 5 ml of anti-TOP1cc antibody (MABE1084). Immune complexes were

captured with protein G Dynabeads. Immunoprecipitates were washed once with low salt, twice with high salt buffer, and twice with LiCl

buffer, and twice with TE buffer. The chromatin was eluted from the beads with 300 ml of elution buffer (100mM sodium bicarbonate and

1% SDS) and incubated overnight at 65�C to reverse the cross-linking. Samples were treated with proteinase K at 45�C for 2 h. DNA was

precipitated by phenol/chloroform/isoamylalcohol extraction. The ChIPed and the Input DNA were used to prepare libraries by Kappa

Hyperprep kit and sequenced in Nextseq (illumina).

DNA-RNA immunoprecipitation (DRIP-seq)

DRIP-seq was done according to the published protocol.63

QUANTIFICATION AND STATISTICAL ANALYSIS

sBLISS analysis

sBLISS fastq files are first de-multiplexed by sample barcodes. Quality control is applied with trim_galore to remove residual adapters, trim

reads to base quality of at least 20 and filter out short reads with size smaller than 20 bp. Initial and final sample qualities are evaluated with

fastqc. Quality processed fastq files are aligned to GRCh38 assembly with hisat2 and then sorted and indexed with samtools. Resulting bam

files are de-duplicated with umi-tools employing genomic coordinates and Unique Molecular Identifiers (UMI). Custom python and R scripts

are applied to identify read start position and convert bamfiles to break bigwig format for downstreamanalysis. A customR script is applied to

discard a blacklist of positions (mainly within centromeres). For most analyses, breaks are aggregated over genomic tiles using R tileGenome

utility.

ChromHMM refers to Chromatin HiddenMarkov Model, a tool used for segmenting the genome into different chromatin states based on

combinations of chromatin marks. HMEC are normal cells often used as a reference in studies involving breast cancer cells.

The expected number of breaks in a set of regions, is calculated based on the assumption that breaks are distributed randomly across the

genome, excluding blacklisted regions such as centromeres. This calculation involves determining the proportion of the size of specific re-

gions (e.g., top expressed genes or active promoters) to the size of the active genome and then multiplying it by the total number of breaks.

CEL-seq analysis

Quality control is applied on CEL-Seq fastq files with trim_galore to remove residual adapters, polyA tails, trim reads to base quality of at least

20 and filter out short reads with size smaller than 20 bp. Initial and final sample qualities are evaluated with fastqc. Quality processed fastq

files are then aligned to GRCh38 transcriptome using salmon aligner in it mapping mode while enabling the write_mapping key to create a

sam file of transcripts. The sam file is deduplicated with a custompython script which scans for primary alignments only and deduplicates with

respect to the transcript and UniqueMolecular Identifiers (UMI). Non-duplicated primary alignments and all their associated secondary align-

ments are kept. Salmon aligner is executed again in its alignment mode, with sam deduplicated file as input resulting in a de-duplicated tran-

script count table.

DRIP-seq analysis

DRIP-Seq peak file is downloaded from GEO: GSE81851. The peaks selected for analysis are for T0-Input after liftover to GRCh38.

ChIP-seq analysis

ChIPed and input fastq files are quality controlled with trim_galore to remove residual adapters, trim reads to base quality of at least 20 and

filter out short reads with size smaller than 20 bp. Initial and final sample qualities are evaluated with fastqc. The quality processed fastq files

are aligned to GRCh38 genome with hisat2 followed by sorting and indexing with samtools. The utility bamCompare of deepTools is applied

on the bam files to create a peak bigwig file. This operation is set to ignore duplicates, discard a blacklist of regions, normalize by RPKM, and

compare by ratio in tiles of 50 bp.

ll
OPEN ACCESS

iScience 27, 109082, March 15, 2024 21

iScience
Article



Algorithms used for plotting the data

Heatmaps were plotted using the following pipeline. First deepTools computeMatrix is applied with center reference-point. Next, an R script

discards outlier spikes from the matrix. Finally, deepTools plotHeatmap is performed. In two-part plots, each part is defined as an indepen-

dent region.

Regions of chromatin states are based on GEO: GSE57498 for HMEC cell line. For each of the regions, breaks are counted within that re-

gion and compared between treated samples or between treated sample and an expected count. The expected count is calculated as the

proportion of breaks expected due to regions size relative to overall genome size. Plots are created with base R functions.

Figures showing break percentage at high expression/ R-loops/ TOP1 were generated using the following pipeline, Downsized breaks are

counted across the gene body for all genes-of-interest (e.g., 1000 topmost expressed genes) and summed up for each of the treated samples.

Downsizing is performed to reduce possible bias related to library preparation. An expected break value is also calculated based on the rela-

tive occupancy of the genes-of-interest relative to overall genome size. Bar-plots are created with base R functions.

For plots showing breaks distribution across gene body, each gene-of-interest is divided into 30 successive regions and breaks are

counted separately in each region. In addition, for each gene, two flanks of size 3000 bp are subdivided into 10 regions and breaks are

counted in the flanks. The plot shows break counts for several treated samples after normalization of each curve between 0 and 100.

For color coded heatmaps, Break density is assigned to each gene-of-interest (cancer related genes) and plotted as a heatmap after

ranking by control sample. Heatmap is created with heatmap.2 function of R gplots package.

Figures with bars and boxplots, and log-log scatter plots are created using base R functions.

In statistical significance the P-value is represented as: *p < 0.05, **p < 0.01, and ***p < 0.001.
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