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Abstract

Though many methods can be used to identify cell types contained in complex tissues, most

require cell disaggregation and destroy information about where cells reside in relation to

their microenvironment. Here, we describe a polytomous key for cell type identification in

intact sections of adult mouse prostate and prostatic urethra. The key is organized as a deci-

sion tree and initiates with one round of immunostaining for nerve, epithelial, fibromuscular/

hematolymphoid, or vascular associated cells. Cell identities are recursively eliminated by

subsequent staining events until the remaining pool of potential cell types can be distin-

guished by direct comparison to other cells. We validated our identification key using wild

type adult mouse prostate and urethra tissue sections and it currently resolves sixteen dis-

tinct cell populations which include three nerve fiber types as well as four epithelial, five fibro-

muscular/hematolymphoid, one nerve-associated, and three vascular-associated cell types.

We demonstrate two uses of this novel identification methodology. We first used the identifi-

cation key to characterize prostate stromal cell type changes in response to constitutive

phosphatidylinositide-3-kinase activation in prostate epithelium. We then used the key to

map cell lineages in a new reporter mouse strain driven by Wnt10aem1(cre/ERT2)Amc. The

identification key facilitates rigorous and reproducible cell identification in prostate tissue

sections and can be expanded to resolve additional cell types as new antibodies and other

resources become available.
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Introduction

The GenitoUrinary Development Molecular Anatomy Project (GUDMAP, www.gudmap.org)

is a multi-laboratory consortium dedicated to providing the scientific and medical communi-

ties with hypothesis-generating data and tools to facilitate research. A recent initiative is to

build a repository of annotated genitourinary tract immunohistochemical images from cre
expressing reporter mouse strains. The image repository will facilitate mouse strain selection

by investigators, critical evaluation of research results by manuscript and grant reviewers, and

generally enhance the rigor and reproducibility of cre/lox research studies. The most signifi-

cant challenge in developing this repository is to accurately assign cre lineage-labels to known

genitourinary cell types.

We considered multiple approaches for identifying lineage labeled cells including standard

immunostaining, cell sorting, and RNA sequencing. A single round of immunostaining is a

possible approach for some applications but is insufficient for comprehensive cell identifica-

tion in complex tissue sections. For example, while a single round of immunostaining can be

deployed to distinguish one cell type from a limited pool of closely related cells in culture (e.g.

myofibroblasts from fibroblasts), the sheer diversity of cells in an intact tissue section (e.g.

myofibroblasts, fibroblasts, fibrocytes, myocytes, pericytes) substantially challenges single

round immunostaining for cell identification in situ [1,2]. Cell sorting and single cell RNASeq

address the challenge of differentiating closely related cell types in complex tissues, but destroy

tissue organization, cell interactions, and information about a cell’s spatial location.

We sought a comprehensive method for identifying cell types in tissue sections and were

inspired by the polytomous and dichotomous identification keys used in taxonomy and phyloge-

netics [3]. Stepwise observations are used to systematically rule out potential cell identities until a

final determination can be achieved. An identification key is diagnostic in that it can be used to

distinguish a specific cell type from a broader class of cells and is differential in that it can be used

to distinguish one cell from another. Immunostaining is well suited for decision making in cell

identification keys because it reduces data dimensionality to a dichotomous variable: cells are

either stained or unstained. We tested over 70 antibodies to identify antibody combinations

(multiplexes) with the greatest power to resolve subsets of prostatic nerve fibers, epithelial cells,

fibromuscular and hematolymphoid cells, and perivascular cells. We then constructed a polyto-

mous key which organizes a series of multiplex immunostains into an optimal sequence for com-

prehensive cell type identification. Potential cell identities are recursively eliminated by each

round of staining until cells are definitively distinguished by direct comparison with other cells.

Here, we describe our mouse prostate and urethral cell identification key and provide images of

identified cell types and a list of validated antibodies for multiplex immunostaining in paraffin-

embedded mouse prostate tissue sections. We also demonstrate two uses of our cell identification

key: objectively describing stromal cell distribution changes in a new genetically-induced mouse

model of prostate cancer and identifying lineage labeled cells in a new cre-expressing mouse

reporter strain. We anticipate this key will serve as a foundational framework for cell identifica-

tion and will be broadened in the future to include additional cell types, tissues, and species.

Materials and methods

Mice

All procedures were approved by the University of Wisconsin Animal Care and Use Commit-

tee and conducted in accordance with the National Institutes of Health Guide for the Care and

Use of Laboratory Animals. Mice were acquired from Jackson Laboratories (Bar Harbor, ME)

and included several mouse strains. All images in Figs 1–5 were obtained using C57BL/6J mice
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(stock number 000664). Fig 6 images were from mixed background mice consisting of Tg

(Pbsn-cre)4Prb/J (Pbsn4cre, stock number 026662), 129S1/Svlmj (stock number 002448), and

C57BL/6-Gt(ROSA)26Sortm7(Pik3ca�,EGFP)Rsky/J (PIK3ca�, stock number 012343) [4,5]. Fig 7

images were from mixed background mice consisting of C57BL/6N-Wnt10aem1(cre/ERT2)Amc/J
(Wnt10acreERT2, also known as Wnt10a-CE, stock number 030598) and B6.Cg-Gt(ROSA)
26Sortm14(CAG-tdTomato)Hze/J (tdTomato fl, stock number 007914) [6,7].

Genotyping was conducted as described by Jackson Laboratories. Mice were housed in

Udel1 Polysulfone microisolator cages; the room was on 12-h light and dark cycles; room

temperature was typically 20.5 ± 5˚C; humidity was 30–70%. Mice were fed a 5015 Diet (PMI

Nutrition International, Brentwood MO) from conception through weaning (PND 21) and an

8604 Teklad Rodent Diet thereafter (Harlan Laboratories, Madison WI). Feed and water were

available ad libitum, and cages contained corn cob bedding. To activate cre in Wnt10acreERT2;
tdtomatofl/fl mice and their genotypic controls, male mice were given a single intraperitoneal

injection of tamoxifen (100 mg/kg, Sigma #T56482, St.Louis, MO) dissolved in sterile corn oil

at postnatal day 3 and prostates and urethras were evaluated two months later. Prostates and

urethras were evaluated in four month old Pbsn4cre;PIK3ca� mice. All other tissues were evalu-

ated at postnatal day 50. All mice were euthanized by CO2 asphyxiation.

Immunohistochemistry

Tissue sections (5–15 μm thickness) were deparaffinized with xylene and rehydrated with

graded ethanol. Sections for histological analysis were routinely stained with hematoxylin/

eosin or fluorescent immunostaining was conducted as described previously with two modifi-

cations to the protocol [8]. A decloaking chamber (Model DC2002, Biocare Medical, Pacheco,

CA) was used with either 10 mM sodium citrate (pH 6.0) or 10 mM Tris-EDTA (pH 9.5) for

antigen unmasking and non-specific sites were blocked for 1 hr in TBSTw containing 1%

Blocking Reagent (Roche Diagnostics, Indianapolis, IN), 5% normal donkey sera, and 1%

bovine serum albumin fraction 5 (RDBTw). Antibodies are listed in S1 Table. Some tissue sec-

tions were imaged using an Eclipse E600 compound microscope (Nikon Instruments Inc.,

Melville, NY) fitted with a 20x dry objective (Plan Fluor NA = 0.75; Nikon, Melville, NY) and

equipped with NIS elements imaging software (Nikon Instruments Inc.) Fluorescence was

detected using DAPI (2-(4-amidinophenyl)-1H -indole-6-carboxamidine), FITC, Texas Red

(Chroma Technology Corp, Bellows Fall, VT), and CY5 filter cubes (Nikon, Melville, NY).

Other sections were imaged using an SP8 Confocal Microscope (Leica, Wetzlar, Germany) fit-

ted with a 20x oil immersion objective (HC PL Apo CS2 NA = 0.75; Leica, Wetzlar, Germany).

Samples were excited and detected using the recommended settings for each secondary anti-

body fluorophore. Images were captured at 1024x1024 resolution using LASX 8 software

(Leica, Wetzlar, Germany). For Pbsn4cre;PIK3ca� mice, one sagittal section of lower urinary

tract was stained and imaged from two litter independent mice. For all other studies one sagit-

tal section of lower urinary tract was stained and imaged from each of at least three mice deriv-

ing from at least three separate litters. Representative images of dorsal prostate and ventral

prostatic urethra were acquired from each image.

Results

Application of the identification key to mouse prostate and prostatic

urethra

The male mouse genitourinary tract consists of multiple organs and the type and distribution

of cells within organs differs across body axes. While a complete identification key for all parts
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of the genitourinary tract is beyond the scope of this study, we focus here on the pelvic portion

of the mouse genitourinary tract and its urethral and prostatic constituents (Fig 1A and 1B).

To enable cell visualization at single cell resolution, we concentrated on two discrete regions.

We examined the dorsal prostate external to the rhabdosphincter (Fig 1C) because, in mice

susceptible to prostate cancer, this region develops tumors which exhibit molecular similarities

to human prostate cancer [9]. We also examined the ventral prostatic urethra internal to the

rhabdosphincter (Fig 1D). This is the region where many prostatic ducts drain into the urethra

and where proliferative and fibrotic pathologies have been observed in mouse models of

benign prostatic hyperplasia and urinary obstruction [10].

Nerves

The prostate and prostatic urethra contain neural fibers which transmit efferent signals to con-

trol smooth muscle contraction and prostatic secretory function, transmit afferent signals to

respond to environmental stimuli, and provide trophic support to nearby non-neuronal cells

[11–13]. To begin discriminating the different nerve subtypes within the prostate we applied

our identification key methodology (Fig 2A). An initial stain using antibodies against myelin

basic protein (MBP) and class III beta-tubulin (TUBB3) is performed. From this initial stain,

putative Schwann cells (MBP+;TUBB3-) and generalized nerve fibers (MBP-;TUBB3+) are

identified (Table 1). MBP+;TUBB3- cells are relatively scarce in dorsal prostate (Fig 2B), but

abundant in prostatic urethra (S2B Fig). To further classify nerve fibers, subsequent immunos-

tains with antibodies against tyrosine hydroxylase (TH), calcitonin gene related peptide

(CGRP), and solute carrier family 18 (vesicular monoamine), member 3 (SLC18A3, also

known as vesicular acetylcholine transporter, VaCHT) are used to create three divisions of

TUBB3+ fibers. TH is considered a marker for adrenergic fibers in various tissues (Table 1).

TH+;TUBB3+; fibers are abundant in dorsal prostate stroma, often encircling prostate ducts

(Fig 2C). Of the three nerve divisions contained within our existing key, TH+ fibers are the

most abundant in dorsal prostate and prostatic urethra. CGRP is a marker of sensory c-fibers

in various tissues (Table 1) and CGRP+;TUBB3+ fibers are present throughout the stroma of

the dorsal prostate (Fig 2S), but are particularly concentrated in the prostatic urethra (S2D

Fig). We also observe CGRP+;TUBB3- cells in prostate epithelium (S2D Fig) and conclude

these are prostate neuroendocrine cells based on their location and frequency relative to other

prostate epithelial cells. CGRP has not been described previously as a marker of mouse pros-

tatic neuroendocrine cells, but is present in bile duct and lung neuroendocrine cells [14,15].

SLC18A3 is a marker of cholinergic fibers (Table 1) and SLC18A3+;TUBB3+ fibers are rare in

the dorsal prostate (Fig 2E) but quite abundant in the prostatic urethra (S2E Fig). We also

observe SLC18A3+;TUBB3- cells embedded in prostatic urethral epithelium (S2E Fig) and

conclude these are neuroendocrine cells based on the observation that SLC18A3 marks neuro-

endocrine cells in lung [16,17].

Fig 1. Lower urinary tract (LUT) anatomy and histology. The identification key was assembled and validated

by (A) collecting LUTs from adult male mice and (B) staining paraffin sections collected from near the mid-sagittal

plan. The image is a representative 5 μm LUT section immunostained with antibodies against cadherin 1 (CDH1,

also known as e-cadherin, red), actin alpha 2 (ACTA2, also known as smooth muscle actin, green) and DAPI

(blue). Sequential image tiles were assembled to reveal the entire lower urinary tract. Two regions of interest were

captured for validation of cell types in subsequent figures: (C) the dorsal prostate external to the rhabdosphincter

and (D) the prostatic urethra, located near the bladder neck and internal to the rhabdosphincter. Abbreviations are:

AP, anterior prostate; BL, bladder; DP, dorsal prostate; RS, rhabdosphincter; SV, seminal vesicle; UR, pelvic

urethra; VP, ventral prostate; DAPI, 2-(4-amidinophenyl)-1H -indole-6-carboxamidine.

https://doi.org/10.1371/journal.pone.0188413.g001
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Fibromuscular and hematolymphoid cells

Prostate stroma mediates glandular development [51], prostate cancer growth [52–55] and

fibrosis, the latter of which has been recently linked to urinary dysfunction [56–58]. Prostate

stroma also harbors smooth muscle which can contract inappropriately and contribute to uri-

nary symptoms in aging men [59]. Furthermore, prostate inflammation is one of the most sig-

nificant predictors of lower urinary tract dysfunction in men and has been associated with

chronic pelvic pain [60–63]. Pinpointing cell types responsible for behaviors that contribute to

clinically significant prostate diseases will guide mechanistic studies of prostate homeostatic

regulation and disease processes.

Prostatic fibromuscular and hematolymphoid cells are initially characterized by a single

round of immunostaining with an antibody against protein tyrosine phosphatase, receptor

type, C (PTPRC), which is present in mast cells, T cells, B cells, fibrocytes, and macrophages

(Table 1), and with an antibody against vimentin (VIM), which is present in some hematolym-

phoid and many non hematolymphoid stromal cells (Fig 3A). Based on results of this first

immunostain, additional immunostains are applied to identify specific stromal cell subtypes.

We observe occasional PTPRC+ cells that are also actin alpha 2 (ACTA2) positive within the

periductal smooth muscle layer, and PTPRC+ cells also rarely reside within prostate epithe-

lium (Fig 3B). Other potential inflammatory cells, characterized by a ACTA2-;VIM+;PTPRC

+ staining pattern (Table 1), are scattered throughout interductal stroma (Fig 3B). Fibrocytes

have been described as cells with simultaneous expression of PTPRC, ACTA2, and vimentin

(VIM) (Table 1). We observe PTPRC+ cells external to the periductal smooth muscle layer of

the dorsal prostate and clustered near blood vessels (Fig 3B). A small subset of these are

ACTA2+;VIM+;PTPRC+.

The smooth muscle sheath surrounding mouse prostate ducts consists almost exclusively of

smooth muscle myocytes. Previous studies have found that androgen receptor (AR) expressed

in the prostatic stroma mediates a significant proportion of morphological and pathological

processes. During ductal morphogenesis, prostatic stromal AR is essential for epithelial cell

growth. Prostatic stromal AR abundance is also important in prostate cancer progression.

Prostate stromal cells begin losing AR expression during cancer progression and low AR

expression in prostatic stroma is commonly found in patients who have developed resistance

to androgen ablation therapy for prostate cancer [26,29]. To determine the relative abundance

of AR in ACTA2+ myocytes of the adult mouse prostate performed IHC divide ACTA2+ myo-

cytes into two subpopulations. The majority of periductal smooth muscle myocytes are

ACTA2+;AR+; while ACTA2+;AR- myocytes are rare (Fig 3C, S3C Fig). This observation is

consistent with previous findings in rats [28]. Whether these smooth muscle cells are function-

ally distinct remains to be explored.

We combine antibodies against ACTA2 with those against S100 calcium binding protein

A4 (S100A4, also known as fibroblast specific protein 1, FSP1) and VIM to identify fibroblasts

and myofibroblasts. Fibroblasts have been characterized as ACTA2-;VIM+;S100A4+ (Table 1).

We observe cells matching this staining pattern in both dorsal prostate and prostatic urethra

and they most often reside in the interductal space immediately adjacent to the periductal

Fig 2. Immunohistochemical classification of neural fibers in mouse dorsal prostate. (A) Paraffin embedded

adult mouse dorsal prostate sections (5 μm thickness) were stained with DAPI and antibodies against (B) MBP and

TUBB3, (C) TH and TUBB3, CGRP and TUBB3, or (E) SLC18A3 and TUBB3. Identified cells include (b1) MBP1+;

TUBB3- Schwann cells, (c1) TH+;TUBB3+ adrenergic fibers, (d1) CGRP+;TUBB3+ sensory fibers, and (e1)

SLC18A3+;TUBB3+ cholinergic fibers. Images are representative of three mice. Abbreviations are: MBP, myelin

basic protein; CGRP, calcitonin-gene-related peptide; SLC18A3, solute carrier family 18 member 3; TH, tyrosine

hydroxylase; DAPI, 2-(4-amidinophenyl)-1H -indole-6-carboxamidine; Scale bar is 25 μm.

https://doi.org/10.1371/journal.pone.0188413.g002
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smooth muscle layer (Fig 3D and S3D Fig). Contractile myofibroblasts have been identified as

ACTA2+;VIM+;S100A4+ (Table 1). Cells matching this expression profile are found in the

interductal space but are less frequent than ACTA2-;VIM+;S100A4+; cells (Fig 3D), suggesting

a relative rarity of myofibroblasts in normal prostate stroma.

Fig 3. Immunohistochemical characterization of the fibromuscular components of mouse dorsal prostate. (A) Paraffin embedded adult mouse dorsal

prostate sections (5 μm thickness) were stained with DAPI and antibodies against (B) ACTA2, VIM, and PTPRC, (C) ACTA2 and AR, or (D) ACTA2, VIM, and

S100A4. Identified cells include (b1) ACTA2+;VIM+;PTPRC+ fibrocytes, (b2) other ACTA2-[26];VIM+;PTPRC+ (b3) or ACTA2-;VIM-;PTPRC+ hematolymphoid

cells, (c1) ACTA2+;AR+ smooth muscle myocytes, (c2) ACTA2+;AR- smooth muscle myocytes, (d1) ACTA2-;VIM+;S100A4+ fibroblasts, and (d2) ACTA2+;VIM+;

S100A4+ myofibroblasts Images are representative of three mice. Abbreviations: PTPRC, protein tyrosine phosphatase, receptor type, C, ACTA2, actin alpha 2;

VIM, vimentin; AR, androgen receptor; S100A4, S100 calcium binding protein A4; DAPI, 2-(4-amidinophenyl)-1H -indole-6-carboxamidine; Scale bar is 25 μm.

https://doi.org/10.1371/journal.pone.0188413.g003

Histochemical mouse prostate cell type identification

PLOS ONE | https://doi.org/10.1371/journal.pone.0188413 November 16, 2017 8 / 22

https://doi.org/10.1371/journal.pone.0188413.g003
https://doi.org/10.1371/journal.pone.0188413


Epithelium

Prostate epithelium consists of luminal, basal, and neuroendocrine cells. Prostatic luminal epi-

thelial cells generate most of the secreted peptides in prostatic fluid [26]. Prostatic basal cells

maintain epithelial structure and integrity [64]. Although the role of prostatic neuroendocrine

cells is not fully understood, neuroendocrine cells in other organs such as the intestine and

lung regulate tissue growth, differentiation, and secretory activity [65].

Prostate epithelial cell identification requires staining with antibodies targeted against cyto-

keratins 8/18 (KRT8/18), cytokeratin 5 (KRT5), and synaptophysin (SYP) (Fig 4A). SYP-;

KRT5+;KRT8/18- basal epithelial cells are concentrated on the basilar surface of prostatic duc-

tal epithelium and distributed in an apparent discontinuous pattern (Fig 4B, S4B Fig). SYP-;

Fig 4. Immunohistochemical characterization of the epithelial components of mouse dorsal prostate. (A)

Paraffin embedded adult mouse dorsal prostate sections (5 μm thickness) were stained with DAPI and antibodies

against (B) SYP, KRT5, and KRT8/18. Identified cells include (b1) SYP+; KRT5-;KRT8/18- neuroendocrine cells, (b2)

SYP-;KRT5+;KRT8/18- basal epithelial cells, (b3) SYP-; KRT5+;KRT8/18+ intermediate cells and (b4) SYP-;KRT5-;

KRT8/18+ luminal epithelial cells. Images are representative of three mice. Abbreviations: SYP, synaptophysin;

KRT5, keratin 5; KRT8/18, keratin 8/18; DAPI, 2-(4-amidinophenyl)-1H -indole-6-carboxamidine; Scale bar is 25 μm.

https://doi.org/10.1371/journal.pone.0188413.g004
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KRT5-;KRT8/18+ luminal epithelial cells are polarized towards the apical surface of prostatic

ductal epithelium. A very small subset of SYP-;KRT5+;Krt8/18+ intermediate cells exist in

both dorsal prostate and prostatic urethral epithelium. SYP+;KRT5-;KRT8/18- prostate neuro-

endocrine cells are rarely observed external to the rhabdosphincter (Fig 4B), but are abundant

in the prostatic urethra (S4B Fig). SYP+;KRT5-;KRT8/18- fibers (presumptive nerve fibers)

are also evident in both dorsal prostate and urethral stroma (Fig 4B and S4B Fig).

Fig 5. Immunohistochemical characterization of the vascular and perivascular cell types of the mouse dorsal

prostate. (A) Paraffin embedded adult mouse dorsal prostate sections (15 μm thickness) were stained with DAPI and

antibodies against (B, C) ACTA2, PDGFRB, and PECAM. Identified cells include (b1, c1) ACTA2-;PDGFRB-;PECAM+

endothelial cells, (b2) ACTA2-;PDGFRB+;PECAM- pericytes, and (b3, c2) ACTA2+;PDGFRB-;PECAM- vascular smooth

muscle cells. Images are representative of three mice. Abbreviations are: ACTA2, actin alpha 2; PDGFRB, platelet derived

growth factor receptor beta; PECAM, platelet endothelial cell adhesion molecule; DAPI, 2-(4-amidinophenyl)-1H -indole-

6-carboxamidine; Scale bar is 25 μm.

https://doi.org/10.1371/journal.pone.0188413.g005
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Vascular and perivascular cells

The role of angiogenesis in prostate cancer is well recognized [66] and while the role in BPH is

still emerging, it is no less important. Microvessel density surrounding epithelial and stromal

Fig 6. Immunohistochemical characterization of the genetically induced mouse prostate cancer. (A) Paraffin embedded adult mouse dorsal prostate

sections (5 μm thickness) generated from mice with genetic activation of the PIK3/AKT signaling cascade in prostate epithelial cells (Pbsn4cre;PIK3ca*) and

were stained with DAPI and antibodies against (B) ACTA2, VIM, and PTPRC, (C) ACTA2 and AR, or (D) ACTA2, VIM, and S100A4. Identified cells include (b1)

ACTA2+;VIM+;PTPRC+ fibrocytes, (b2) other ACTA2-;VIM+;PTPRC+ (b3) or ACTA2-;VIM-;PTPRC+ hematolymphoid cells, (c1) ACTA2+;AR+ smooth

muscle myocytes, (c2) ACTA2+;AR- smooth muscle myocytes, (d1) ACTA2-;VIM+;S100A4+ fibroblasts, and (d2) ACTA2+;VIM+;S100A4+ myofibroblasts. (D)

Marked expansion of prostate stroma appeared to originate from expansion of the populations of putative fibroblasts. Images are representative of two mice.

Abbreviations: PTPRC,CD45; ACTA2, actin alpha 2; VIM, vimentin; AR, androgen receptor; S100A4, fibroblast specific protein 1; DAPI, 2-(4-amidinophenyl)-

1H -indole-6-carboxamidine; Scale bar is 25 μm.

https://doi.org/10.1371/journal.pone.0188413.g006
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Fig 7. Immunohistochemical characterization of Wnt10aCreERT lineage. Wnt10aCreER/+T;tdtomatofl/fl and

Wnt10a+/-;tdtomatofl/fl (control) male mice were given a single intraperitoneal injection of tamoxifen (100 mg/

kg) on postnatal day 3 and aged to two months. Prostates were sectioned (5 μm thickness), and stained with

DAPI and antibodies against (B) KRT5,SYP;KRT8/18, and RFP/tdtomato. The tdtomato lineage label was

identified in KRT5+;SYP-;KRT8/18- basal epithelial cells and KRT5-;SYP-;KRT8/18+ luminal epithelial cells in

the (A) dorsal prostate (B) prostatic urethra of cre expressing mice but (C-D) not in the same regions of no cre
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BPH nodules is enhanced relative to adjacent normal tissue [67] and is elevated in prostates of

men with symptomatic BPH [68,69], particularly those who have failed surgical treatment

[70]. Vascular smooth muscles cells regulate prostate and urethral hemodynamics, synthesize

blood vessel wall components, and influence endothelial proliferation [71–73]. The role of

other perivascular cells (pericytes) in adult mouse prostate is unknown, but they likely partici-

pate in angiogenesis [71,74,75] and may also contribute to pathological collagen production

during organ fibrosis [76–79].

Prostate vascular and perivascular cell identification requires a multiplex stain with anti-

bodies against ACTA2, PDGFRB, and PECAM (Fig 5A). Endothelial cells have been character-

ized as ACTA2-;PDGFRB-;PECAM+ (Table 1) and are present in microvessels within prostate

periductal smooth muscle and interductal stroma (Fig 5B and 5C, S5B and S5C Fig). Prostatic

vascular smooth muscle myocytes were described previously as ACTA2+;PDGFRB-;PECAM-

(Table 1) and these cells are associated with a majority of vessels in the prostate and prostatic

urethra, but are organized in a discontinuous pattern around vessels (Fig 5B and 5C and S5B

Fig). Pericytes have been previously identified as ACTA2-;PDGFRB+;PECAM- (Table 1). In

the dorsal prostate, pericytes are interwoven with ACTA2-;PDGFRB-;PECAM+ cells and are

bounded by vascular smooth muscle myocytes and endothelial cells (Fig 5B). We do not

observe pericytes in the prostatic urethra (S5B Fig).

control mice. Images are representative of three mice. Abbreviations: SYP, synaptophysin; KRT5, keratin 5;

KRT8/18, keratin 8/18; RFP, red fluorescent protein; DAPI, 2-(4-amidinophenyl)-1H -indole-6-carboxamidine;

Scale bar is 25 μm.

https://doi.org/10.1371/journal.pone.0188413.g007

Table 1. Putative cell types identified using the polytomous cell identification key.

Staining Pattern Putative cell type References

ACTA2-;VIM+PTPRC- Other -

ACTA2+;VIM+PTPRC+ Fibrocyte [18–22]

ACTA2+;AR+ AR+ Periductal Smooth Muscle Myocyte [23–29]

ACTA2+;AR- AR- Periductal Smooth Muscle Myocyte

ACTA2+;VIM+;S100A4+ Myofibroblast [24,30–32]

ACTA2-;VIM+;S100A4+ Fibroblast [19,33–35]

ACTA2-;VIM+;PTPRC+ Other Hematolymphoid Cells [36]

ACTA2-;VIM-;PTPRC+

ACTA2-;VIM-;PTPRC- Other -

MBP+;TUBB3- Schwann Cell [37,38]

MBP-;TUBB3+ Nerve -

TH+;TUBB3+ Adrenergic Nerve [39–41]

TH-;TUBB3- Other -

CGRP+;TUBB3+ Sensory Nerve [42–46]

CGRP-;TUBB3+ Other -

SLC18A3-;TUBB3+ Cholinergic [39,40,47]

SLC18A3-;TUBB3+ Other -

SYP-;KRT5+;KRT8/18- Basal Cell [48]

SYP-;KRT5-;KRT8/18+ Luminal Cell [48]

SYP+;KRT5-;KRT8/18- Neuroendocrine Cell [49,50]

SYP-;KRT5+;KRT8/18+ Intermediate Cell (48)

https://doi.org/10.1371/journal.pone.0188413.t001
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Using the identification key to objectively describe fibromuscular cell

distribution changes during formation of genetically-induced prostate

cancer

We next sought to demonstrate a utility of the cell identification key. Stromal thickening and

appearance of a reactive stroma accompany many solid tumors, including prostate cancer

[55]. However, the precise composition of tumor-reactive stroma and an objective characteri-

zation of how it changes in situ over time have not been determined. We used the identifica-

tion key to determine how prostate fibromuscular cell populations change in a novel mouse

model of genetically induced prostate cancer. The mouse strain models activation of PIK3/

AKT signaling which accompanies many solid tumors [80], including prostate adenocarci-

noma [81]. Mice expressing Cre recombinase in prostate luminal epithelial cells (Tg(Pbsn-cre)
4Prb/J) were crossed with mice expressing a dominantly active form of the p110 catalytic sub-

unit of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), resulting in offspring of a

mixed genetic background (C57BL/6J x 129S1/Svlmj x FVB/NJ). Prostate sections were exam-

ined in 4 month old male mice harboring single copies of cre and PIK3ca� alleles (Pbsn4cre;
PIK3ca�). Although initial observations revealed no obvious signs of epithelial hyperplasia at

this age, a marked expansion of interductal stromal cell populations and loss of periductal

smooth muscle integrity are evident (S7 Fig). The number of putative fibrocytes (ACTA2+,

VIM+;PTPRC+) and other hematolymphoid cells (ACTA2-,VIM+;PTPRC+) appears to

increase compared to wild-type controls but a majority of interductal stromal cells are

ACTA2-;VIM+;PTPRC- (Fig 6B). We observed fewer periductal ACTA2+ cells in Pbsn4cre;
PIK3ca� mice compared to controls, though the relative abundance of ACTA2+;AR+ to

ACTA2+;AR- cells is similar to controls (Fig 6C). Staining for fibroblasts and myofibroblasts

indicate that a majority of Pbsn4cre;PIK3ca� mouse interductal stromal cells are putative fibro-

blasts (VIM+;ACTA2-;S100A4+) and do not express ACTA2 (Fig 6D).

Using the identification key to objectively describe lineage-labeled cells

in a novel cre reporter mouse strain

A principal reason for building the prostate cell identification key is to establish an objective

mechanism for characterizing cre expressing mouse strains. While several mouse strains have

been created for genetically manipulating prostate luminal or basal epithelial cells, there is no

central repository of information about the stage of development when the cre transgene is

first expressed, whether the cre is expressed across all cells or evenly expressed across prostate

lobes, and whether cre expression is the same in the distal and proximal parts of prostatic

ducts. Though many studies have used cre expressing mouse strains to manipulate gene

expression in prostate stroma, there is no centralized database describing which specific stro-

mal cells express the cre and the cre distribution pattern. To address both of these needs, we

are characterizing several cre expressing mouse strains, including some generated by GUD-

MAP, and will use the identification key for cre validation.

To demonstrate proof of concept, we used the identification key to validate reporter gene

distribution for Wnt10acreErt2. We previously observed that Wnt10a mRNA is selectively

expressed in a subset of basal epithelial cells within the female and male mouse urogenital

sinus, including prostatic ductal bud epithelium in males [82]. This Wnt10acreErt2 mouse strain

was generated to enable genetic manipulation of this epithelial subset. To identify the cell types

deriving from this epithelial cell population, Cre was activated in postnatal day 3 male mice

(Wnt10acreErt2;tdtomatofl/fl) by administering a single i.p. dose of tamoxifen and tdtomato

reporter expression was mapped to prostate epithelial cell types when the mice reached 50

days of age. Tdtomato positive cells are infrequent and are mapped to KRT8/18-;KRT5+;SYP-
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(basal) and KRT8/18+;KRT5-;SYP- (luminal) epithelial cells of the dorsal prostate and pros-

tatic urethra (Fig 7). Tdtomato is not observed in any KRT8/18+-KRT5-;SYP+ (neuroendo-

crine) cells of the prostate or prostatic urethra.

Discussion

Here we described a polytomous key for immunohistochemical identification of cell types in

adult mouse prostate and prostatic urethra. The key currently identifies sixteen unique cell

types and some of its many uses include objectively defining lineage labeled cells, proliferating

cells, or changes in cellular distribution in response to aging, inflammation, benign hyperpla-

sia, cancer, or environmental exposures.

We created the mouse prostate cell identification key with the expectation it would expand

to accommodate additional cell types as knowledge about prostate cellular composition is

advanced by RNASeq, flow cytometry, and other methods. For example, this study utilized

PTPRC as a biomarker of cells deriving from a hematolymphoid lineage and we multiplexed

PTPRC with ACTA2 and VIM antibodies to identify putative fibrocytes, which derive from

hematolymphoid progenitors. Though our initial version of this key does not further resolve

hematolymphoid cell types, additional branches can be incorporated into future versions to

account for the more than 14 different monoclonal antibodies used to differentiate hemato-

lymphoid cell types [83].

A future opportunity afforded by this key is to objectively characterize changes in pros-

tatic cellular composition during prostate glandular development, response to androgen

deprivation, or during regeneration of the castrated prostate. The key is ideally paired with

genetic lineage tracing methods that incorporate an indelible label into a cell and its daugh-

ter cells. For example, we determined that Wnt10a expressing cells in the postnatal day 5

prostate give rise to a limited subset of prostatic basal and luminal epithelial cells in the

adult mouse but do not appear to vigorously expand and thus likely have limited progenitor

activity.

We also used our key to characterize prostate stromal cell distribution changes in mice

expressing a constitutively active form of PI3K in prostate epithelial cells. We observed forma-

tion of a new stromal microenvironment that closely resembles the reactive stroma observed

near human cancer tumors. In many human cancers, including prostate, a major cellular com-

ponent of the reactive stroma are myofibroblasts [84]. To differentiate myofibroblasts from

smooth muscle cells in prostate stroma, earlier studies used complementary but not sequential

IHC. These studies found that human prostate cancer is characterized by increased percent-

ages of VIM+ cells, with no change in ACTA2 positivity [85]. Our results expand on previous

findings by using a wider panel of antibodies to examine the reactive stroma with single cell

resolution and found that in Pbsn4cre;PIK3ca� mice, putative fibroblasts (S100A4+;VIM+;

ACTA2-) dominate the reactive stroma. Although a majority of the cells within the prostate

stroma of Pbsn4cre;PIK3ca� mice are ACTA2- and likely not myofibroblasts, the potential for

the fibroblasts present in the stroma to undergo phenoconversion to a myofibroblast-like phe-

notype and begin producing ACTA2 as disease progresses is highly plausible. Also, because

the stromal response to pathologies such as cancer differs among mouse strains [86–88], inves-

tigators can use our key to compare the stromal cellular makeup among strains and at differing

spatial locations with respect to sources of inflammation or tumor boundaries. Similar com-

parisons can be made between or among species. Although initially validated for mouse pros-

tate, many of the antibodies used in our key are advertised to work in multiple species and

organ systems and validating them across species is a future goal.
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Supporting information

S1 Fig. Complete identification key.

(TIF)

S2 Fig. Immunohistochemical classification of neural fibers in mouse prostatic urethra.

(A) Paraffin embedded adult mouse prostatic urethra sections (5 μm thickness) were stained

with DAPI and antibodies against (B) MBP and TUBB3 (C) TH and TUBB3, CGRP and TUBB3,

or (E) SLC18A3 and TUBB3. Identified cells include (b1) MBP1+; TUBB3-; Schwann cells, (c1)

TH+;TUBB3+ adrenergic fibers (d1) CGRP+;TUBB3+ sensory fibers, (e1) SLC18A3+;TUBB3+

cholinergic fibers. Images are representative of three mice. Abbreviations are: MBP, myelin basic

protein; CGRP, calcitonin-gene-related peptide; SLC18A3, solute carrier family 18 member 3;

TH, tyrosine hydroxylase; DAPI, 2-(4-amidinophenyl)-1H -indole-6-carboxamidine; Scale bar is

25 μm.

(TIF)

S3 Fig. Immunohistochemical characterization of the fibromuscular components of

mouse prostatic urethra. (A) Paraffin embedded adult mouse prostatic urethra sections

(5 μm thickness) were stained with DAPI and antibodies against (B) ACTA2, VIM, and

PTPRC, (C) ACTA2 and AR, or (D) ACTA2, VIM, and S100A4. The identified cells include

(b1) ACTA2-;VIM+;PTPRC+ hematolymphoid cells, (c1) ACTA2+;AR+ smooth muscle

myoctyes, (c2) ACTA2+;AR- smooth muscle myocytes, (d1) ACTA2-;VIM+;S100A4+ fibro-

blasts, and (d2) ACTA2+;VIM+;S100A4+ myofibroblasts Images are representative of n = 3

mice. Abbreviations: PTPRC, CD45; ACTA2, actin alpha 2; VIM, vimentin; AR, androgen

receptor; S100A4, fibroblast specific protein 1; DAPI, 2-(4-amidinophenyl)-1H -indole-6-car-

boxamidine; Scale bar is 25 μm.

(TIF)

S4 Fig. Immunohistochemical characterization of the epithelial components of mouse

prostatic urethra. (A) Paraffin embedded adult mouse prostatic urethra sections (5 μm thick-

ness) were stained with DAPI and antibodies against (B) KRT5, SYP, and KRT8/18. Identified

cells include (b1) KRT5-;SYP+;KRT8/18- neuroendocrine cells, (b2) KRT5+;SYP-;KRT8/18-

basal epithelial cells, and (b3) KRT5-;SYP-;KRT8/18+ luminal epithelial cells. Images are rep-

resentative of three mice. Abbreviations: SYP, synaptophysin; KRT5, keratin 5; KRT8/18, kera-

tin 8/18; DAPI, 2-(4-amidinophenyl)-1H -indole-6-carboxamidine; Scale bar is 25 μm.

(TIF)

S5 Fig. Immunohistochemical characterization of the vascular and perivascular cell types

of the mouse prostatic urethra. (A) Paraffin embedded adult mouse prostatic urethra sections

(15 μm thickness) were stained with DAPI and antibodies against (B, C) ACTA2, PDGFRB,

and PECAM. Identified cells include (b1, c1) ACTA2-;PDGFRB-;PECAM+ endothelial cells,

(b2) ACTA2-;PDGFRB+;PECAM- pericytes, and (b3, c2) ACTA2+;PDGFRB-;PECAM- vas-

cular smooth muscle cells. Images are representative of three mice. Abbreviations: ACTA2,

actin alpha 2; PDGFRB, platelet derived growth factor receptor beta; PECAM, platelet endo-

thelial cell adhesion molecule; DAPI, 2-(4-amidinophenyl)-1H -indole-6-carboxamidine; Scale

bar is 25 μm.

(TIF)

S6 Fig. Immunohistochemical characterization of Wnt10aCreERT lineage in mouse prostate

luminal epithelial cells. Wnt10aCreER/+T;tdtomatofl/fl and Wnt10a+/-;tdtomatofl/fl (control)

male mice were given a single intraperitoneal injection of tamoxifen (100 mg/kg) on postnatal

day 3 and aged to two months. Prostates were sectioned (5 μm thickness), and stained with
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DAPI and antibodies against (A) CDH1, and RFP/tdtomato. The tdtomato lineage label was

identified in CDH1+ luminal epithelial cells. Image is representative of three mice. Abbrevia-

tions: CDH1, E Cadherin; RFP, red fluorescent protein; DAPI, 2-(4-amidinophenyl)-1H

-indole-6-carboxamidine; Scale bar is 25 μm.

(TIF)

S7 Fig. Expansion of prostatic stroma in genetically induced mouse prostate cancer model.

(A) Paraffin embedded adult mouse prostate sections (5 μm thickness) generated from mice

with genetic activation of the PIK3/AKT signaling cascade in prostate epithelial cells (Pbsn4cre;
PIK3ca�) and were stained with hematoxylin and eosin to reveal a marked increase in the

fibromuscular stroma of the prostate. Scale bar is 100 μm.

(TIF)

S1 Table. Antibodies used for immunostaining.
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