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� The spinel R-LMO cathode material was successfully prepared by recalcination treatment process.
� The R-LMO present the selective growth of the (110) and (100) crystal planes.
� The R-LMO displays the better electrochemical performance than that of P-LMO.
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A B S T R A C T

Spinel LiMn2O4 cathode material was obtained by a recalcination treatment, which exhibits excellent crystalli-
zation and electrochemical performance. A series of test and analysis results revealed that the performance
enhancement of as-prepared sample is related to the crystal structure, morphology and electrochemical proper-
ties. Owing to the recalcination treatment, the spinel LiMn2O4 presents a truncated-octahedral morphology with
selective growth of the (110) and (100) crystal planes, which would effectively inhibit manganese dissolution.
Moreover, the optimized sample exhibits a better crystallinity and electrochemical reversibility than that of
pristine sample, which can provide a faster Li ion de-intercalation/intercalation kinetics. Hence, the spinel
LiMn2O4 cathode material delivers a high initial discharge capacity of 112.3 mAh⋅g�1 with a good capacity
retention of 90.3% after 500 cycles and an excellent rate performance. This study constructed a facile and
meaningful method to prepare spinel LiMn2O4 cathode material, which may facilitate the development of lithium-
ion batteries.
1. Introduction

Spinel LiMn2O4, the cathode materials in lithium-ion batteries, have
exhibited unusual properties such as three-dimensional lithium-ion
diffusion channels, great rate capability and relatively high operating
voltage [1, 2, 3]. Despite some advantages, LiMn2O4 cathode material
suffers from fading capacity and poor electrochemical performance,
which mainly because of Jahn-Teller distortion, the dissolution of Mn
ions and oxygen defects [4, 5]. Several synthesis methods, including
solid-state method, sol-gel process, microwave sintering method, hy-
drothermal synthesis, co-precipitation have been used to obtain the
spinel LiMn2O4 with improved electrochemical performance [6, 7, 8, 9,
10]. Xiang and co-workers reported a low-temperature solid-state com-
bustion method to produce spinel LiMn2O4 cathode material [6]. Zhao
et al. prepared successfully prepared the spinel LiMn2O4 cathode
.
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material with octahedral particles via a low-cost and eco-friendly
method. At high rate of 10 C, this material delivered 85.7 mAh⋅g�1

discharge capacities with excellent retentions of 94.7% after 200 cycles
[7]. Yao and co-workers obtained the LiMn2O4 material by sol-gel
method, where the sample calcined at 750 �C had high crystallinity,
good dispersion and excellent electrochemical properties than that of
other samples calcined at 550 �C and 650 �C [8]. However, these
methods not only have complicated synthesis process, but also long re-
action time, which will affect the large-scale production of materials.

This work reports recalcination treatment to fabricate LiMn2O4
cathode material with enhanced crystallinity and electrochemical per-
formance [11, 12]. As a result, the LiMn2O4 prepared by recalcination
treatment delivered much higher cyclic and rate performance in
lithium-ion batteries. The crystallinity, kinetics and electrochemical
properties of the LiMn2O4 cathode material were investigated by X-ray
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Figure 1. A set of photos of the processes for preparing the P-LMO and R-LMO cathode materials.
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diffraction, scanning electron microscope and other tests. The related
reasons for crystallization and electrochemical performance of LiMn2O4
by recalcination treatment are discussed. Themethods above provided an
important technical process for the spinel LiMn2O4 cathode material with
the excellent crystallinity and electrode with high cycling performance.

This work indicates the recalcination treatment strategy has vital
significance to promote the practical application of spinel LiMn2O4.

2. Experimental section

2.1. Materials preparation

Spine LiMn2O4 cathode material was prepared by recalcination
treatment process. In this work, 4 g LiMn2O4 target product can be pre-
pared, using 0.7625 g LiNO3 (AR, Aladdin, 99.0%) and 1.1284 g
CH3COOLi⋅2H2O (AR, Aladdin, 99.0%) as lithium precursor 3.9587 g
Mn(NO3)2 (AR, Aladdin, 99.0%) and 5.4218 g Mn(CH3COO)2⋅4H2O (AR,
Aladdin, 99.0%) as manganese precursor, keeping the molar ratio of
CH3COO�:NO3

� ¼ 1:1. The mixed rawmaterial was removed into an oven
at 100 �C for 10 min to form the homogeneously mixture solution.
Subsequently, the solution generates an autoxidative combustion reac-
tion at 500 �C for 1 h to form pristine LiMn2O4 (noted as P-LMO). In order
to improve the crystallinity of the material, the P-LMO power was
recalcined at 700 �C for 3 h to obtain recalcination LiMn2O4 cathode
material (R-LMO). The above process diagram is shown in Figure 1. The
mass loading of the electroactive materials on the working electrode was
about 1.0 mg/cm2.

2.2. Lithium-ion batteries synthesis

The spinel LiMn2O4 cathode material, conductive carbon black and
polyvinylidene fluoride (PVDF) were mixed in a N-methyl-pyrrolidone
(NMP) solvent in a weight percentage of 80:10:10 to prepare a slurry.
Then the mixed slurry was uniformly coated on the aluminum foil col-
lector by a doctor-blade technology to get the cathode film. The cathode
films were cut into discs with a diameter of 16 mm, and then dried in a
vacuum drying oven at 120 �C for 8 h. The CR2025 batteries were
assembled in a high purity argon glove box, in which lithium metal, 1 M
LiPF6 in EC/DMC (1:1 in volume) and Celgard 2320-type membrane
were used as anode, electrolyte and separator, respectively.

2.3. Characterization techniques

X-ray diffraction (XRD) test were carried out by an X-ray power
diffractometer (D8 ADVANCE, BRUCKER) in 2 range of 10–70�. The
morphological properties and lattice structure of the samples were
characterized by the scanning electron microscope (SEM, NOVA
NANOSEM 450, America FEI) and transmission electron microscope
(TEM, JEM-2100). The lithium-ion batteries were cycled by a galvanos-
tatical charge-discharge tests were measured by the Land electric test
system CT2001A (Wuhan Jinnuo Electronic Co., Ltd) in the voltage from
3.0 to 4.5 V (versus Li/Liþ). The cyclic voltammetry (CV) and electro-
chemical impedance spectroscopy (EIS) were carried out by an
2

electrochemical workstation (CHI660D, Shanghai Chenhua, China). The
scan rate and potential region are 0.1 mV/s and 3.6–4.5 V, respectively.
The frequency range is from 100 kHz to 1.0 Hz.

3. Result and discussion

In order to evaluate the electrochemical performance of the LiMn2O4
electrodes, the constant current charge and discharge test is carried out.
Figure 2(a) shows the cycling curves of P-LMO and R-LMO samples in
lithium-ion batteries at 0.5 C. Owing to the recalcination treatment, the
R-LMO electrode delivers higher initial capacity of 112.3 mAh⋅g�1 than
that of P-LMO (106.1 mAh⋅g�1). The corresponding initial galvanostatic
charge-discharge curves of the P-LMO and R-LMO electrodes are pro-
vided in Figure S1(b). As seen, both of the samples display two obvious
charge-discharge platforms, corresponding to the Liþ insertion/extrac-
tion process in spinel LiMn2O4, which correspond to the two-phase
equilibrium of λ-MnO2/Li0.5Mn2O4 and single-phase equilibrium of
Li0.5Mn2O4/LiMn2O4, respectively [10, 12]. Importantly, the discharge
voltage plateaus of the R-LMO sample are higher than that of the P-LMO
sample, which may be related to the optimization of the Liþ insertio-
n/extraction behaviors. After 500 cycles, the discharge capacity of
P-LMO and R-LMO electrode decrease to 89.6 mAh⋅g�1 and 101.4
mAh⋅g�1, with 84.4% and 90.3% capacity retention, respectively. The
cycle tests of the samples are further performed at 2 C, shown in
Figure S1(a). The R-LMO sample delivers high initial capacity of 111.7
mAh⋅g�1, retaining 103.0 mAh⋅g�1 after 100 cycles. While the discharge
specific capacity of the P-LMO sample decreases from the initial
discharge capacity 107.0 mAh⋅g�1 to 80.1 mAh⋅g�1. As known, the cyclic
stability is associated with Mn dissolution, especially at high current rate
[13]. In this regard, the long cycle performance of the P-LMO and R-LMO
is performed at 5.0 C, as shown in Figure 2(b). The R-LMO sample de-
livers the initial capacities of 104.3, obtaining the retention rate of
89.5%, which are higher than 95.7 mAh⋅g�1 and 76.9% of the P-LMO
electrode, respectively. Figure 2(c) describes the rate cycling curves of
the P-LMO and R-LMO samples at the current rate from 0.5 C to 10.0 C.
The discharge capacity decreases gradually when the current rate creases
from 0.5 C to 2.0 C. However, from 5.0 C and 10.0 C, especially at 10.0 C,
R-LMO sample obviously exhibits a higher discharge capacity of 70.9
mAh⋅g�1 than that of the P-LMO sample (47.1 mAh⋅g�1). While the
current density returns back to 0.5 C again, the reversible capacity of
98.7% of the original capacity of 109.1 mAh⋅g�1 is still retained, proving
a superior reversibility, as shown in Figure 2(d), which occurs probably
related to Mn dissolution decrease in the crystal truncated octahedron
R-LMO with (110) and (100) crystal surfaces. To further compare the
electrochemical performance of the LiMn2O4 between our work and
those previous work reported in literature, and the comparison results
are listed in Table S1. It is clearly seen that the R-LMO displays more
excellent or comparable electrochemical performance than that of the
other LMO samples at the same discharge rate. This study constructed a
facile and meaningful method to prepare spinel LiMn2O4 cathode ma-
terial, which may facilitate the development of lithium-ion batteries.

The morphology of P-LMO and R materials are displayed in Figure 2.
As seen, the P-LMOmaterial shows an irregular particle morphology with



Figure 2. (a) The cycling performance curves at 0.5 C, (b) 5.0 C, (c) Rate capability at 0.5 C–10.0 C and (d) The trend curves of rate performance of P-LMO and R-LMO
samples (1 C ¼ 148 mAh⋅g�1).
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severe particle agglomeration in Figure 3(a). Compared to the P-LMO
material, the R-LMO material exhibits a typically truncated octahedral
structure, and the particles were uniformly dispersed with a diameter of
about 200 nm in Figure 3(b). Such results indicate that recalcination
process makes the combustion reaction complete, which is beneficial to
crystal growth of spinel LiMn2O4. Furthermore, the high-temperature
3

recalcination promotes the selective growth of the (110) and (100)
crystal planes in LiMn2O4 material shown in Figure 3(c), which expands
the diffusion channels of lithium ions to improve the electrochemical
performance of the batteries [14]. Figure 3(d) displays the TEM image of
the R-LMO material, and further confirming the truncated octahedral
structure, in which the most surfaces are aligned with the



Figure 3. SEM images of the (a) P-LMO sample, (b)R-LMO sample, (c) the truncated octahedral morphology of the R-LMO sample, (d) TEM image and (e) HRTEM
image of the R sample.
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crystallographic orientation with minimal Mn dissolution [15]. As shown
in Figure 3(e), the lattice space distance of 0.478 nm of R material is in
accordance with the (111) plane of the spinel LiMn2O4. Hence, the
excellent crystallinity and unform morphology of R-LMO material can
lead to a better cycling and rate performance.

The X-Ray diffractograms (XRD) can well demonstrate that both P-
LMO and R-LMO samples have the typical cubic spinel LiMn2O4 structure
with the Fd3m space group (JCPDS No. 35-0782) shown in Figure 4.
Obviously, impurity phase of Mn2O3 and Mn3O4 still exists in P-LMO
sample, while R-LMO sample exhibits pure spinel LiMn2O4 crystal phase.
Therefore, the recalcination treatment can lead to a better crystallinity,
indicating a better electrochemical performance of R-LMO than that of P-
LMO electrodes.

To investigate the change of inner impedance for the P-LMO and R-
LMO electrodes, the Electrochemical impedance spectroscopy (EIS)
analysis with a frequency range is from 100 kHz to 1.0 Hz is adopted.
Figure 5(a) gives the Nyquist diagrams of the P-LMO and R-LMO elec-
trodes before cycle at 0.5 C. The corresponding equivalent circuit was
Figure 4. XRD patterns of P-LMO and R-LMO electrodes.
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obtained by the Zview software simulation, as shown in Figure 5(b).
Where the Rs and Rct represent the ohmic resistance and the charge-
transfer resistance, respectively. CPE and Wo are the double-layer
capacitor and the Warburg impedance [16]. The R-LMO sample has a
lower Rct value of 159.0 Ω than that of P-LMO sample (219.5 Ω), indi-
cating the faster charge transfer and leading to better rate capability.
Figure 5(c) gives the fitting curves of real parts of the complex impedance
(Z0) and ω�0.5, showing a good linear relationship and giving the slope
value σw. Furthermore, the Li ion diffusion coefficient (DLi

þ) can be ob-
tained according to the following formula [17, 18]:

Z0 ¼ Rs þ Rct þ σwω�0.5 (1)

DLi
þ ¼ R2T2/2A2n2F4C2σw2 (2)

where R-LMO is the gas constant (8.314 J/mol K), T is the absolute
temperature (298.15 K), A is the surface area of the electrode (cm2), n is
electron transfer number for electrode reaction, F is the Faraday constant
(96,484.5 C/mol), C is the concentration of Li ion in the electrode
(0.02378 mol/cm3). Depending on formula (1formula (1) and (2)(2), the
R-LMO sample has a larger DLi

þ value of 1.91� 10�14 cm2/s than that of P-
LMO sample (1.57 � 10�14 cm2/s), indicating a faster Li ion diffusion
process in the R electrode. This is consistent with the above cycling and
rate performance results.

To investigate the reversibility and kinetics of the P-LMO and R-LMO
electrodes, Figure 6(a) and (b) give the CV curves of the P-LMO and R
samples at various scan rates from 0.05 mV s�1 to 0.5 mV s�1 to study the
effect of scan rates, where the shape of the peaks becomes flat and peak
current increases in sequence with the increase of scan rates. However,
the peaks of the P-LMO sample shows deformed and drifted. A good liner
relationship between peak current density and square root of the scan
rate in R-LMO sample is shown in Figure S3, suggesting a diffusion-
controlled kinetics of Li ion deintercalation/intercalation process [19,
20]. Moreover, the cyclic voltammograms (CV) test of P-LMO and R
samples was carried out in the voltage of 3.6–4.5 V with a scan rate of
0.05 mV s�1 shown in Figure S2. Obviously, two pairs of similar



Figure 5. (a) The Nyquist plots of P-LMO and R-LMO samples, (b) The equivalent circuit, (c) Fitting curves of real parts of the complex impedance of the P-LMO and R-
LMO samples.

Figure 6. The CV curves of (a) P-LMO and (b)R-LMO samples at virous scan rates from 0.05 mV/s to 0.5 mV/s.
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oxidation and reduction peaks due to two stages of intercalation and
de-intercalation of Liþ ions [21, 22]. As seen, the R-LMO sample has a
larger peak area than that of P-LMO sample, indicating an improvement
of the reversibility due to the fast Liþ ion transport process due to an
increase in the crystallinity of particles.
5

4. Conclusion

In summary, the spinel LiMn2O4 cathode material was successfully
prepared by recalcination treatment process. In this work, the influence
of recalcination treatment on the electrochemical performance of
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lithium-ion batteries was studied. The results exhibit that the R-LMO
sample has a single crystal truncated-octahedral LiMn2O4 structure. The
high crystallinity performance mainly is due to the selective growth of
the (110) and (100) crystal planes promoted by high temperature
recalcination treatment. Compared to the P-LMO material, the R-LMO
sample possesses better electrochemical reversibility and kinetics from
the CV and EIS tests, in which a lower Rct as well as a higher Li ion
diffusion coefficient provide more favorable li ion diffusion channels. As
a result, the R-LMO sample give the higher cycling and rate performance.
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