Hindawi Publishing Corporation

Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 460717, 13 pages
doi:10.1155/2010/460717

Review Article

Bridging the Gap between Fluxomics and

Industrial Biotechnology

Xueyang Feng,! Lawrence Page,? Jacob Rubens,! Lauren Chircus,! Peter Colletti,’

Himadri B. Pakrasi,2 and Yinjie J. Tang!

I Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, MO 63130, USA
2 Department of Biology, Washington University in St. Louis, MO 63130, USA

Correspondence should be addressed to Yinjie J. Tang, yinjie.tang@seas.wustl.edu

Received 15 July 2010; Accepted 8 November 2010

Academic Editor: Isabel S4-Correia

Copyright © 2010 Xueyang Feng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Metabolic flux analysis is a vital tool used to determine the ultimate output of cellular metabolism and thus detect
biotechnologically relevant bottlenecks in productivity. 1*C-based metabolic flux analysis (**C-MFA) and flux balance analysis
(FBA) have many potential applications in biotechnology. However, noteworthy hurdles in fluxomics study are still present. First,
several technical difficulties in both *C-MFA and FBA severely limit the scope of fluxomics findings and the applicability of
obtained metabolic information. Second, the complexity of metabolic regulation poses a great challenge for precise prediction and
analysis of metabolic networks, as there are gaps between fluxomics results and other omics studies. Third, despite identified
metabolic bottlenecks or sources of host stress from product synthesis, it remains difficult to overcome inherent metabolic
robustness or to efficiently import and express nonnative pathways. Fourth, product yields often decrease as the number of
enzymatic steps increases. Such decrease in yield may not be caused by rate-limiting enzymes, but rather is accumulated
through each enzymatic reaction. Fifth, a high-throughput fluxomics tool hasnot been developed for characterizing nonmodel
microorganisms and maximizing their application in industrial biotechnology. Refining fluxomics tools and understanding these

obstacles will improve our ability to engineer highlyefficient metabolic pathways in microbial hosts.

1. Introduction

Numerous chemical compounds, ranging from the
antimalaria drug artemisinin [1] to the “biofuel” butanol
[2, 3], have been produced with the aid of synthetic
biology tools. The ability to efficiently synthesize natural or
unnatural products requires a systems-level understanding
of metabolism. Functional genomics tools such as genome
sequencing, profiling of mRNA transcripts, and proteomics,
are widely used to attain a comprehensive knowledge of how
metabolic components (genes, proteins and metabolites) are
regulated. In contrast to traditional omics tools, flux analysis
(measurement of metabolite turnover rates) has become
instrumental for physiological prediction and enzymatic rate
quantification in metabolic networks [4]. This technology
also allows for the identification of metabolic interactions
and the knowledge-based design of cellular functions. As
such, one can utilize this tool to rationally modify biological

hosts and analyze global physiological changes resulting
from genetic modifications.

Fluxomics, the cell-wide quantification of intracellular
metabolite turnover rates, was first performed via flux
balance analysis (FBA). This method uses the stoichiometry
of the metabolic reactions in addition to a series of physical,
chemical and biological characteristics (thermodynamics,
energy balance, gene regulation, etc.) to constrain the feasible
fluxes under a given objective function (e.g., maximal
biomass production). FBA is an underdetermined model
(the number of constraints is smaller than the number
of reactions in the metabolic network), which may give
unrealistic metabolic readout. In spite of this limitation, FBA
provides a useful framework for predicting a wide variety
of cellular metabolisms. A complementary approach, *C-
based metabolic flux analysis (**C-MFA) allows for precise
determinations of metabolic status under a particular growth
condition. The key to '*C-MFA is isotopic labeling, whereby



microbes are cultured using a carbon source with a known
distribution of *C. By tracing the transition path of the
labeled atoms between metabolites in the biochemical net-
work, one can quantitatively determine intracellular fluxes.

Flux analysis can not only provide genetic engineers with
strategies for “rationally optimizing” a biological system,
but also reveal novel enzymes useful for biotechnology
applications [4]. However, flux analysis platforms are still
not routinely established in biotechnology companies. This
review paper addresses current developments and challenges
in the field of fluxomics, which may guide future study
to bridge the gap between systems analysis of cellular
metabolism and application in biotechnology.

2. Advances and Limitations in Metabolic
Flux Analysis

2.1. Steady-State Flux Model. FBA and '*C-MFA concentrate
on the stoichiometric (rather than kinetic) properties of
metabolic networks. FBA has been widely applied to predict
cell growth rate, product yield using different feedstocks,
lethality of gene knockouts, and advantageous pathway
modifications [5]. Such a model provides general guidelines
for metabolic engineering and thus is a viable first step
towards improving biosynthetic yield [6]. The hallmark of
large scale FBA is the constraint-based reconstruction and
analysis toolbox (COBRA) [7], which provides a general
platform for fluxomics studies.

A number of optimization algorithms and computa-
tional strategies for resolving in silico and in vivo inconsis-
tencies have been proposed to improve the applicability of
FBA [6, 8]. For example, incorporation of thermodynamic
principles into FBA can constrain solution space (i.e.,
energy balance analysis) and obtain both stoichiometrically
and thermodynamically feasible fluxes [9]. To describe the
“nonoptimal” metabolic behaviors, FBA can use a bilevel
optimization approach to estimate the potential trade-off
between biomass accumulation and the yield of a desired
product [10]. FBA can also relax the objective function for
maximization of the biomass and apply a Minimization of
Metabolic Adjustment Algorithm to solve fluxes in mutant
strains [9]. Such an algorithm calculates fluxes by minimiz-
ing the difference between the wild-type flux distributions
and the knockout-strain fluxes. Furthermore, FBA can be
integrated with metabolic pathway analysis (MPA). MPA is
a qualitative technique that examines functional routes exist-
ing in a metabolic network without requiring knowledge of
reaction rates [11]. Combining MPA with FBA can quantita-
tively trace the plausible paths for optimal product synthesis,
calculate cellular metabolism, and predict phenotypes under
genetic manipulations or culture conditions [12]. One main
advantage of FBA is its capability for genome-scale modeling
(including thousands of reactions), which bridge genomic
annotation and functional metabolic output. Accordingly,
the number of FBA models has increased exponentially since
1999 [13].

13C-MFA aims to rigorously quantify pathway activities
in intracellular metabolism by using both the isotopic
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FIGURE 1: An iterative approach of fluxomic analysis and rational
metabolic engineering.

labeling approach and in silico computation. 3C-MFA is
accomplished by feeding microbes a '*C-labeled carbon
source, measuring the enrichment pattern of the isotopomer
in metabolites (e.g., amino acids), and deciphering the
fluxes via computational routines [14]. Since carbon fluxes
through a metabolic network generate unique labeling
patterns in metabolites, the overall flux distributions can be
determined using isotopomer information. Advances in *C-
MFA, including mass spectrometry-based metabolomics and
isotopomer modeling approaches (such as novel algorithm
using elementary metabolite units), have been discussed in
recent papers [4, 15, 16].

Furthermore, open-source software has recently been
published that facilitates in silico modelling. For example,
WEbcoli is web-based software for flux balance analysis
of E.coli [17]. In addition, OpenFLUX is computationally
efficient software for 13C-MFA [15], which incorporates the
elementary metabolite unit (EMU) framework for calcula-
tion of isotopomer balances [18]. User-friendly software such
as this allows biologists to perform fluxomics studies with
little programming knowledge.

Methodologies for FBA and '3C-MFA share two key
characteristics: the use of a metabolic network and the
assumption of a steady metabolic state (for internal metabo-
lites). However, the two techniques have different purposes.
FBA profiles the “optimal” metabolism for the desired
performance; ?C-MFA measures in vivo operation of a
metabolic network. The two approaches to flux analysis
are complementary when developing a rational metabolic
engineering strategy. By comparing existent metabolic fluxes
which were empirically determined via *C-MFA to the opti-
mal metabolisms predicted by both FBA and other “omics”
tools (such as transcription analysis), one can deduce gene
targets for solving biotechnologically relevant productivity
bottlenecks [19]. Figure 1 shows that iterative flux analysis
and genetic engineering of microbial hosts can remove
competitive pathways or toxic byproducts, amplify genes
encoding key metabolites, and balance energy metabolism
[6].

2.2. Metabolic Control and Dynamic Flux Analysis. FBA
and *C-MFA disregard dynamic intracellular behavior. This
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avoids the difficulties in developing kinetic models and per-
forming intracellular experimental measurements. However,
many biological systems may not maintain a meaningful
metabolic (or isotopic) steady state during the fermentation
process [20-22]. The description of metabolic perturbation
and regulatory mechanisms requires kinetic modeling and
control theories. For example, metabolic control analysis
(MCA) couples local enzyme kinetics with systematic behav-
ior to predict the control exerted on the targeted pathways
by different components (e.g., transcription, enzymes) [23].
Although MCA is not a quantitative measurement of flux,
MCA can pinpoint bottle-neck enzymes (enzymes having
the largest effect on the desired flux) in a pathway and
allow the analysis of steady-state metabolism in response
to changes in the cellular environment [24]. In addition to
MCA, the cybernetic approach (a model based on process
dynamics and control) has been introduced for study of
multienzyme systems and metabolic regulation [25]. By
incorporating both the enzyme kinetics in pathways and
the enzyme synthesis kinetics, the cybernetic approach
emphasizes microbial process dynamics and control during
complicated fermentations [26].

Both MCA and the cybernetics approach focus on a
simplified pathway network. To perform cell-wide quan-
titative analysis of a dynamic system, it is necessary to
integrate the kinetic modeling with FBA and '>C-MFA.
Dynamic FBA (dFBA) has been developed to illuminate
changing global enzyme activities [27, 28]. To avoid ordi-
nary differential equations and dynamic optimization for
describing intracellular metabolism, dFBA can use the Static
Optimization Approach (SOA) [29] which divides the time-
course into numerous small intervals. At each time interval,
a steady-state flux is calculated under the assumption of fast
intracellular dynamics. By combining stoichiometric FBA
for intracellular metabolism with dynamic mass balances
on extracellular substrates and products, it is possible
to reconstruct dFBA model for genome-scale analysis of
microbial metabolisms in industrial fermentations, where
product synthesis is often under dynamic control [30, 31].

Recently, *C-dMFA (dynamic metabolic flux analysis)
has been developed for isotopically nonstationary cultures.
To profile the flux distributions for fed-batch cultures
(slow dynamic metabolism), isotopic pseudosteady state
was assumed and two dilution parameters were introduced
to account for isotopic transients [92]. Another approach
(Kinetic Flux Profiling) for solving intracellular fluxes is to
create a sudden increase of the portion of 1*C in the substrate
feed, then measure time-course samples as *C moves from
the substrate into the metabolites [33]. The fluxes can
be calculated based on the rates of isotopic enrichment
multiplied by the intracellular metabolite concentrations. A
similar principle has been proposed for the flux analysis
of photoautotrophic microorganisms [34] and E. coli in
an isotopic transient phase [35]. If the culture is under
both metabolic and isotopic nonstationary state, exploratory
and sophisticated *C-dMFA (dynamic *C-MFA) models
have to be used to calculate both metabolic and isotopic
kinetics [20, 36, 37]. To solve the '*C-dMFA problem
efficiently, a set of computational algorithms have been

developed for tracing nonstationary isotopomer labeling in
response to in vivo flux distributions [20, 36, 37]. The
EMU (elementary metabolite unit) framework has also been
applied in *C-dMFA [18, 38], because such algorithm can
significantly improve computational times for tracing the
labeling information [39]. To avoid extensive simulation of
dynamic isotopomer patterns, the SOA has to be applied
by dividing the growth period into small time intervals
(30 ~ 60 min), then the “mini” quasi-steady state '*C-MFA
can be applied at each time interval based on constraints
from simultaneous isotopomer analysis of the fast turnover
metabolites [40]. By examining flux profiles over all time
intervals, one can resolve the metabolic transients during the
entire cultivation period.

2.3. Technical Limitations of Fluxomics. Cell-wide fluxomics
tools (i.e., FBA and *C-MFA) have technical limitations.
In genome-scale FBA models, the number of constraints
(i.e., the availability of quantitative metabolite data) is much
smaller than the number of reactions in the metabolic
network. The calculation of such underdetermined systems
depends on objective functions where one assumes that the
metabolism optimizes its native “goals” (such as biomass or
cofactor production) [41]. This optimization principle has
been questioned for several reasons. First, biological systems
(e.g., Bacillus subtilis) seem to display suboptimal growth
performance [42]. Second, a previous study examined 11
objective functions in E. coli and found no single objec-
tive function that can perfectly describe flux states under
various growth conditions [43]. For example, unlimited
aerobic growth on glucose is best described by a nonlinear
maximization of the ATP yield per flux unit, but nutrient-
limited continuous cultures favor biomass yield as the objec-
tive function. Third, some native cellular processes cannot
be simply described by FBA. For example, cyanobacterial
species (i.e., Cyanothece 51142) maintain their circadian
rhythms (e.g., nitrogen fixation and light dependent reaction
activities) under nutrient-sufficient and continuous light
conditions [44, 45].

The application of *C-MFA in industrial biotechnology
also has several bottlenecks. The most prevalent constriction
occurs because current techniques are insufficient for mea-
suring large-scale metabolic networks. Obtaining labeling
information of free metabolites rather than amino acids and
solving large-scale nonlinear flux models pose two key chal-
lenges. As a result, most obtained flux information is limited
to central metabolism. To date, only two large-scale '*C-MFA
(>300 reactions) have been reported, but many fluxes in their
reports cannot be precisely determined due to insufficient
constraints [46, 47]. The genome-scale *C-MFA is still in
its infancy and requires further development of the relevant
experimental techniques and computational tools [48]. A
second issue is that 1*C-dMFA is still poorly developed for
determining dynamic metabolic behavior. It is difficult for
rapid sampling and precise measurements of metabolites at
short time intervals throughout the entire culture period. For
example, to measure absolute intracellular metabolite con-
centrations, one has to grow cell in fully '3C-labeled medium,



then the labeled cells are extracted with quenching solvent
containing known concentrations of unlabeled internal
standards (the concentrations of metabolites are calculated
using the isotope ratio-based approach) [49]. Such mea-
surement requires extremely high cost of analytical efforts
including quick sampling, rapid metabolite extraction, and a
high-resolution LC-MS instrument. Furthermore, the time-
dependent model includes ordinary differential equations
and significantly increases the computational complexity
[20, 35]. Third, flux determination assumes that enzymatic
reactions are homogenous inside the cell and that there are
no transport limitations between metabolite pools. However,
eukaryotes have organelles (compartments) that may have
diffusion limitations or metabolite channeling [14, 50].
Compartmentalization of amino acid biosynthesis further
clouds the obtained amino acid-based labeling information
[51]. Therefore, confident '*C-MFA for eukaryotes not only
requires the combination of different analytical tools (GC-
MS, LC-MS and NMR) to obtain extensive labeling informa-
tion [52], but also adequate sample processing and extraction
methods (e.g., separation of compartments by ultracentrifu-
gation). A fourth problem is that some industrial hosts and
the great majority of environmental microbes resist culti-
vation in minimal media, and introducing other nutrient
sources often significantly complicates metabolite labeling
measurements and flux analyses [53]. Finally, a microbial
community demonstrates complex metabolic interactions
between species. To date, only a few FBA models have been
developed for community studies [54, 55]. The exchange of
metabolites among species is nearly impossible to unravel by
13C-MFA because complete separation and measurement of
metabolites from a single species in a microbial community is
impossible [4]. These technical limitations in both FBA and
MFA models are responsible for the gap between fluxomics
and its applicability in biotechnology.

3. Integration of Fluxomics with Other “Omics”

It is desirable to integrate the concepts of systems biology
(which combines the readouts from transcription as well
as protein/metabolite profiling) with fluxomics (Figure 2)
[48]. For example, '3C-MFA, enzyme activity assays, and RT-
PCR analysis can be used together to study E.coli mutants’
metabolism [56]. Additionally, the responses of E. coli to
genetic modification have been systematically examined by
utilizing multiple high-throughput “omics” methods [57].
The results illuminate relatively small changes in mRNA and
proteins in response to genetic disruptions, which allow the
cell to maintain a stable metabolic state under changing
growth conditions. A similar approach to the study of Syne-
chocystis 6803 has shown that the regulation of some enzymes
is sensitive to light conditions [58]. Many other regulatory
mechanisms, however, still remain unknown. Furthermore,
global regulators in industrial microorganisms have been
successfully identified by correlating transcript/transduction
levels and metabolic fluxes [59-62]. The discovery of func-
tioning regulators provides insight to the entire regulation in
metabolic network.
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On the other hand, challenges in integrated “omics”
studies are also present. The lack of understanding of
metabolic regulation at different metabolic levels compli-
cates the rational design of biological systems, which is
a major barrier in industrial biotechnology. For example,
posttranscriptional regulation poses a significant challenge
in integrating fluxomics with other “omics” studies. It
is well known that transcript and protein data correlate
relatively well for specific pathways, yet this correlation can
be poor in cell-wide analyses [76]. Furthermore, most mRNA
expression studies insufficiently predict enzyme activities or
flux changes in many E. coli pathways [77]. In studies on
the adaptation of E. coli to environmental perturbations,
the tricarboxylic acid cycle is found to correlate well with
molecular changes at the transcriptional level, but flux
alterations in other central metabolic pathways seem to
be uncorrelated to changes in the transcriptional network
[78]. Because of the complexity of regulatory mechanisms
spanning multiple cellular processes, fluxomics and other
“omics” studies may have inconsistent observations which
complicate systems-level analyses.

4. Fluxomics of Microbes for
Industrial Biotechnology

FBA allows in silico simulations of metabolism in “indus-
trial workhorses,” from which desired strains or targeted
mutations can be identified. *C-MFA can assess in vivo
metabolism of engineered strains under specific growth
conditions and validate FBA results. Here, we summarize
recent applications of FBA and '*C-MFA for commonly-used
industrial chassis (i.e., E. coli, B. subtilis and S. cerevisiae)
and for nonmodel microorganisms (i.e., less-characterized
or newly-discovered microorganisms).

4.1. Escherichia coli Model. E. coli is the most commonly
utilized species in fermentation industry. E. coli flux models
were reported as early as the 1990s [79, 80]. For biotech-
nology applications, the Liao group first applied metabolic
pathway analysis (MPA) to guide the genetic manipulation
of E.coli strains and channel the metabolic fluxes from
carbohydrate to the aromatic amino acid pathway [81].
The Maranas group has integrated cell growth and product
synthesis in the OptKnock toolbox [10] and applied it to
construct high-performance mutants. The computer-aided
designs have shown improved lactic acid, succinate, and
1,3-propanediol production [82]. FBA can predict lethality
in a metabolic network where deletions of more than one
nonessential gene mutants may trigger the death of the
organism. For example, the Maranas group [83] analyzed the
gene/reaction essentiality in a genome-scale model of E. coli
and systemically identified possible pairs of synthetic lethals:
nonessential genes whose simultaneous knockouts would
have a potentially lethal effect. Incorporating information
about synthetic lethality into the new model will curb the
construction of ill-designed biological systems for biotech-
nology. Furthermore, FBA can be used to find rate-limiting
steps for product synthesis. For example, FBA revealed gene
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FIGURE 2: 1*C-assisted cellular metabolism analysis.

targets, and modification of those genes (i.e., knocking out
the genes for pyruvate forming enzymes, overexpression of
the glyoxylate shunt and glucose transport system) resulted
in more than a ten-fold increase in succinate production [84—
86]. FBA has also been used to improve genetic strategies for
the overproduction of secondary metabolites, such as amino
acids [87] and lycopene [88].

Besides genetic strategies, FBA can provide useful infor-
mation for the design of optimal fermentation conditions.
For example, an FBA model was used to identify nutrient
limitations during recombinant interleukin-2 (IL-2) produc-
tion in E. coli. By supplementing specific amino acids, IL-
2 production increased two-fold in fed-batch fermentation
[89]. Recently, a reactor-scale dFBA model was developed via
a static optimization Approach to analyze E. coli metabolism
for the production of a biopharmaceutical drug [27]. dFBA
contains a steady state FBA model embedded within a
dynamic kinetic model that describes the time evolution
of fermentation process variables (e.g., biomass growth,
glucose consumption and products synthesis). Such a model
provided guidelines for the optimization of fermentations at
the scale of a 1000L process.

The BC-MFA model was first used to investigate
metabolic regulation in E.coli under different genetic and
environmental conditions [90]. '*C-MFA has also been
used to examine various biotechnological processes involved
in the production of pharmaceuticals, amino acids and
polymers. A large scale ?C-MFA with over 300 reactions
was successfully developed for amorphadiene (a precursor of
the antimalaria drug) producing E. coli strains [46]. Another
study revealed a growth phase-dependent metabolic shiftin a
lysine-producing E. coli strain [91]. This work was performed
in a fed-batch culture with rich medium (containing yeast
extract), and metabolic fluxes in both exponential growth

and stationary phases were estimated by measuring free
metabolites. Metabolic analysis of the stationary phase is
important since many products are synthesized during a
nongrowth phase. In a third example, *C-MFA of a 1,3-
propanediol producing E. coli strain was conducted in fed-
batch fermentation [92]. The '*C-MFA results showed a
decrease in the split ratio between glycolysis and the pentose-
phosphate pathway over the time-course of the culture in
response to increasing 1,3-propanediol fluxes.

4.2. Bacillus subtilis Model. B. subtilis is the industrial
organism of choice for the production of vitamins, antibi-
otics, enzymes, and nucleosides. The FBA model for
B. subtilis was constructed based on a combination of
genomic, biochemical, and physiological information [93].
The FBA model was iteratively corrected and improved using
information from high-throughput phenotypic screens of
mutants, substrate utilization, gene essentiality, and sequence
analyses. The B. subtilis flux model is mostly studied for
riboflavin production, focusing on four aspects: investigating
phenotypes of wild type and knock-out strains, assessing
production capacity, identifying the impact of different car-
bon sources on biosynthesis, and characterizing the cellular
response to different culture conditions. The Sauer group has
extensively investigated riboflavin-producing strains. They
first used an FBA model to quantify growth maintenance
coefficients, the maximum growth yield, and the specific
riboflavin production rate in continuous cultivation [94].
Later on, they applied '*C-MFA to the same strain and
found that genetic manipulations should target the NADPH
balance and riboflavin biosynthetic pathways [95]. In other
studies on B. subtilis, they revealed several guidelines for
high-yield riboflavin production (1) they compared the
metabolic flux distributions and maintenance energy of eight



Bacillus strains and discovered that B. licheniformis was
the most suitable for industrial biotechnology [96], (2)
they found that using malate as a substrate resulted in a
suppressed respiratory TCA cycle and an enhanced overflow
metabolism [97], and (3) they found the pentose precursors
of riboflavin were mainly synthesized via the nonoxida-
tive pentose-phosphate pathway, so any suggested genetic
modification should decrease the activity of the oxidative
pentose-phosphate pathway [98]. Recently, they developed
a ¥C-dMFA model for B. subtilis to identify the metabolic
response of riboflavin overproduction under a glucose-
limited fed-batch culture [40]. This dynamic flux analysis
was obtained by recording changes in labeling patterns of
intracellular amino acids under a metabolic pseudosteady
state assumption.

4.3. Saccharomyces cerevisiae Model. S. cerevisiae is a robust
eukaryotic chassis used for the expression of a wide range
of products. For example, flux analysis revealed target
genes in two native pathways for the overexpression of
succinate: the TCA and glyoxylate cycles [99]. Another study
showed the enhancement of sesquiterpene production via in
silico driven metabolic engineering [100]. Additionally, flux
analysis has been extensively applied for improving ethanol
production. First, a number of strategies were developed
for the metabolic engineering of redox processes in S.
cerevisiae, resulting in a decrease in the yield of glycerol
by 40% and an increase in ethanol production under both
glucose and xylose/glucose growth conditions [101]. Second,
Dikicioglu et al. [102] applied a genome-scale FBA model
to analyze respiration-deficient mutants of S. cerevisiae
for ethanol production. They found that many genetic
manipulation strategies (e.g., the overexpression of the
glutamate synthase gene) were unnecessary in a respiration-
deficient metabolic background. This indicates that the rate
limiting steps for ethanol production can change after the
initial genetic manipulations of targeted genes. Third, a 13C-
MFA model was used to screen ethanol production in 14
hemiascomycetous yeast strains [51]. This study suggests
that S. cerevisiae is the ideal ethanol production candidate
due to a strong NADPH-driven pentose-phosphate pathway.
Other *C-MFA studies characterized the metabolic shift
between oxidative growth and fermentative growth with
ethanol production [103], investigated alternative carbon
substrate (xylose) metabolisms [104], revealed key factors
influencing biomass growth on xylose [32], and examined
the consumption of ethanol and other storage carbohydrates
in a glucose-limited chemostat culture [105].

Furthermore, a genome-scale FBA indicates an apparent
enzyme dispensability, that is, 80% of yeast genes seem to
be nonessential for viability under laboratory conditions
[106]. The FBA illustrated the influence of nonessential genes
on metabolic robustness and environmental fitness due to
genetic buffering through alternative genes, while a 3C-
MFA (consisting of over 700 reactions) revealed a similar
effect of metabolic network robustness on null mutations
[47]. Understanding the role of these redundant genes is
important for a valid and efficient genetic modification.
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4.4. Nonmodel Microorganisms. Fluxomics is an impor-
tant tool for the rigorous study of metabolism in less-
characterized microbes that provides novel insights for
application of these species to biotechnology. However,
fluxomics have not been sufficiently applied to nonmodel
microorganisms as compared to model microbial hosts.
Table 1 summarizes some milestone papers in fluxomics
studies on nonmodel species that are potentially useful
for synthetic biology. Compared to the work done in
the field of fluxomics for industrial workhorses, far fewer
studies have been performed on nonmodel microorganisms.
This is due to the complicated growth conditions, poorly-
understood metabolic networks, and significant lack of
genetic and molecular biology tools. However, nonmodel
environmental microorganisms are also important for indus-
trial biotechnology because they often possess native bio-
chemical pathways for chemical synthesis or the ability to
utilize cheap substrates [120]. Furthermore, flux analysis can
be used to discover novel enzymes that can be cloned into
industrial microbes to improve their capacity for product
synthesis. For example, ?C-MFA revealed a citramalate
pathway for isoleucine biosynthesis (independent of the
common threonine ammonia-lyase pathway) [121, 122].
Citramalate synthase, which has also been detected in some
environmental bacteria [123-125], can be engineered into
E. coli for 1-propanol and 1-butanol production. The new
pathway bypasses threonine biosynthesis and represents the
shortest keto-acid-mediated pathway; as such, it improved
biofuel yield 9 to 22-fold [126]. Currently, high-throughput
genome sequencing methods are mapping genomes in
novel microbes at a pace that far exceeds the pace of
functional characterization of these species. Therefore, a high
throughput *C-MFA technique is required for screening
nonmodel microorganisms for new enzymes and maximiz-
ing their application in industrial biotechnology [4].

5. Finding Bottlenecks for
Industrial Biotechnology

One of the main goals of fluxomics is to indentify bottlenecks
for industrial biotechnology and thereby assist in the creation
of rational engineering strategies. Simple measurements of
metabolism, however, are not enough to overcome unpre-
dictable challenges in industrial biotechnology. Metabolic
regulation is very complex, and systems biology tools are
incapable of revealing a general strategy for synthetic biology
[127].

Bottlenecks in industrial biotechnology can be explained
from the view of fluxomics. First, metabolic robustness (the
ability to maintain metabolic performance under genetic
or environmental perturbations) is a long-recognized key
property of microbial systems [128]. This basic mechanism is
often responsible for the gap between computationally aided
design and final experimental outcomes. For example, a 1*C-
MFA study indicates that E. coli shows remarkable robustness
in the central carbon metabolism in the presence of genetic
variation, and is even more flexible in response to altered
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TasLE 1: Recent application of fluxomics of nonmodel microbes to bioproduct synthesis.
Species Product Substrate Model description Results from study Reference
MFA models (combining transcriptome,
Corvnebacterium Glucose (sucrose metabolome analysis) have been developed
lut)c/l micum Lysine fructose) > BBC-MFA to study fluxes under different cultivation [107]
8 modes (minibioreactor, batch, fed-batch)
using various carbon sources.
Corvnebacterium 13C-MFA only focuses The C. glutamicum mutant (mcbR) showed
ynet Methionine  Glucose on flux distributionin ~ no overproduction of methionine, but [108]
glutamicum S . .
the methionine pathway. accumulation of homolanthionine.
The flux from phosphoenolpyruvate to
) . oxaloacetate catalyzed by
Cory ne'bacterzum Glutamate  Glucose C-MFA .(focus on phosphoenolpyruvate carboxylase (PEPc) [109]
glutamicum anaplerotic pathways) .
was active in the growth phase, whereas
pyruvate carboxylase was inactive.
The model indicated (1) NADPH was
' . Succinate 3C-MFA (via NMR and produced primarily by transhydrggenase
Actinobacillus and/or by NADP-dependent malic enzyme (110,
. formate and Glucose NaHCO;  GC-MS) and enzyme
succinogenes acetate assa (2) oxaloacetate and malate were converted 111]
Y to pyruvate (3) the effects of NaHCO; and
H, on metabolic fluxes were quantified.
The model characterized the ethanol
Geobaczllqs tﬁer— Ethanol Glucose FBA and PC-MFA production und.er th}’ee oxygen conditions. [19]
moglucosidasius The FBA analysis pointed out several gene
targets for improving ethanol production.
The engineered strain was able to produce
Clostridium 154 mM butanol with 9.9 mM acetone at
. Butanol Glucose Genome-scale-FBA pH 5.5, resulting in a butanol selectivity (a [112]
acetobutylicum .
molar ratio of butanol to total solvents) of
0.84.
Penicillium 13C -MFA (focus on The model determined the
chrvsooenum Penicillin Gluconate/glucose  pentose phose phase pentose-phosphate pathway split ratio and [113]
7508 pathway and glycolysis)  estimated NADPH metabolism.
The results included H, photoproduction,
Synechocystis sp. strategies to avoid oxygen inhibition, and (114,
PCC6803 Hydrogen CO, FBA analysis of hetero-, auto-, and mixotrophic 115]
metabolisms.
Synechocystis sp.  Light energy C-MFA and dynamic ~ The model analyzed heterotrophic,
PCC6803 & Biomass Glucose/CO, BC-MFA autotrophic and mixotrophic metabolisms. (34, 58]
The model indicated that heterotrophic
Chlamvdomonas  Light ener FBA model including growth had a low biomass yield on carbon,
ranyaor &1 8 co, three metabolically while mixotrophical and autotrophical [116]
reinhardtii & Biomass . . o
active compartments growth had higher carbon utilization
efficiency.
Model analyzed the metabolic boundaries of
. . Z. mobilis. The study indicated that ethanol
Zymomonas FBA with various . .
. Ethanol Glucose/xylose . . — and biomass production depend on [117]
mobilis biological objectives . o S
anaerobic respiration stoichiometry and
activity.
The model characterized the intracellular
Zymomonas Ethanol Glucose/fructose/  '*C-MFA via IH-NMR  metabolic state during growth on glucose, (18]
mobilis xylose 31P-NMR spectroscopy  fructose and xylose in defined continuous

cultures.
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TasLE 1: Continued.
Species Product Substrate Model description Results from study Reference
Coculture The model predicted the ratio of D. vulgaris
( Desulfovzbrzo FBA analysis of to M. mqrzpaludz§ ce.lls during growth. It
vulgaris and CH4 Lactate . . . was possible to eliminate formate as an [55]
microbial consortia . .

Methanococcus interspecies electron shuttle, but H, transfer
maripaludis) was essential for syntrophic growth.
Community
(oxygenic
phototrophs, Biomass The model predicted and described relative
filamentous and FBA and elementary .

. . CO, . abundances of species, by-products, and the [54]
anoxygenic nitrogen mode analysis . .

. metabolic interactions.
phototrophs, and  fixation
sulfate-reducing
bacteria).
Phaffia . The two major astaxanthin-producing
Glucose with . . . : o .

rhodozyma and Astaxanthin  (peptone & yeast FBA analysis of mix microorganisms exhibited elevated yields [119]
Haematococcus egt rI; ot) V! culture (2.8-fold) under mixed culture conditions
pluvialis compared to pure culture.

environmental conditions (e.g., different nutrients or oxygen
levels) [90]. Analyses of E. coli components at multiple
“omics” levels also reveal unexpectedly small changes in
messenger RNA, proteins and metabolite levels for most
genetic disruptions. This is because E. coli actively regulates
enzyme levels to maintain a stable metabolic state in the
presence of perturbations [57, 78]. Similarly, B. subtilis shows
rigidity and suboptimal performance for its flux regulation
in over 137 genetic backgrounds [42]. Furthermore, gene
essentiality and pairwise genetic interactions have been
investigated in S. cerevisiae [106, 129]. It has been found that
a gene’s function is buffered by duplication in S. cerevisiae
genomic DNA or by an alternative biochemical pathway.
Although only 13% of genes were suggested to be essential by
single knockout experiments, simultaneous deletion of pairs
of nonessential genes (>70% of the total metabolic genes)
were found to inhibit growth. Invariability of metabolic flux
under mutagenic genotypes seems to be an important feature
in many biological systems, and thus successful metabolic
strategies highly depend on an understanding of robust
cellular nature [130-132].

Metabolic engineering of industrial chassis is based on
the premise that the yield of a desired product can be
increased by identifying and overexpressing the enzymes that
catalyze the rate-limiting steps in a given metabolic pathway.
However, a method based on overexpressing rate-limiting
enzymes will only work if these rate-limiting enzymes
exist and remain rate-limiting when their activities are
increased. Previous studies have shown that the commonly-
believed “rate-limiting” enzymes may not exist in some
industrial microbes and an increase in productivity has to be
achieved by coordinated expression of entire pathways [133].
Furthermore, rate-limiting steps in a metabolic network
often shift after initial targets have been engineered. For
example, phenotypic data in S. cerevisiae mutants revealed
that some FBA-predicted gene targets for ethanol production

are invalid if the cell’s respiratory genes have been knocked-
out [102]. Another example of this phenomenon is high-
lighted by the metabolic consequences of the deletion of
the methionine and cysteine biosynthesis repressor protein
(McbR) in Corynebacterium glutamicum, which yielded no
overproduction of methionine but drastic accumulation
of homolanthionine [108]. The above evidence indicates
that rate-limiting steps often shift after initial targets have
been engineered. Additionally, simultaneous importation
and expression of a few heterologous genes to improve the
rate-limiting pathway may fail if the nonnative pathway
is incompatible with the host. These efforts often lead to
metabolic imbalance and accumulation of toxic metabolites
(2, 3].

Based on the recent publications, we have constructed
a linear regression model which shows that the yield of
biosynthetic products decreases exponentially as a function
of the steps away from central metabolism in S. cerevisiae
(Figure 3). It is easier to achieve high carbon fluxes to
the central metabolites, possibly because enzyme efficiency
in central metabolism is usually high [134]. However, the
yields of secondary metabolites are smaller because each
additional enzymatic step may not be perfectly efficient
(model regression shows an average of ~67% efficiency in
each enzymatic step in secondary metabolisms). This loss of
yield is unavoidable due to the metabolism channeling the
intermediates away from the desired product. Potential solu-
tions to this problem include (1) designing host-compatible
enzymes with high product specificity [135], (2) feeding
intermediates to the cell to reduce the number of enzymatic
steps to final product [136], and (3) creating synthetic
protein scaffolds, which significantly improve intermediate
conversion efficiency and overall biosynthetic yield [137].

In conclusion, fluxomics studies enable the quantifica-
tion of intracellular metabolism. However, this tool is not
fully developed, and it remains difficult to deduce cell-
wide pathway bottlenecks and to provide effective strategies
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FIGURE 3: Product yields as a function of enzymatic steps from
central metabolism. The solid line is the regression of published
product yields by S. cerevisiae as a function of reaction steps
from intermediate metabolites in central metabolism (including
glycolysis, TCA cycle and pentose-phosphate pathways). The yield
declines exponentially as the number of reaction steps increases.
The dotted lines are boundary curves with yield efficiencies of 30%
and 70% respectively. All yield data from initial carbon sources are
estimated from recent papers using our best judgment. The synthe-
sized products and reaction steps are: Poly(R-3-hydroxybutyrate)
[63] (steps = 3); Glycerol [64] (steps = 2); Artemisinic acid [1] (steps
= 10); Amorphadiene [65] (steps = 9); Pyruvate [66] (steps = 0);
Geranylgeraniol [67] (steps = 10); Hydrocortisone [68] (steps = 19);
Squalene [69] (steps = 9); B-carotene [70] (steps = 12); Lycopene
[70] (steps = 11); Phytoene [70] (steps = 10); p-hydroxycinnamic
acid [71] (steps = 12); Naringenin [72] (steps = 14); Pinocembrin
[72] (steps = 14); Xylitol and Ribitol [73] (steps = 3); Ethanol [74]
(steps = 2); L-ascorbic acid [75] (steps = 8).

for biotechnology applications. Numerous technical difficul-
ties in developing flux analysis methods and complicated
metabolic regulatory mechanisms have severely limited the
scope of fluxomics in industrial biotechnology. It is necessary
for the future development of flux analysis to combine other
advanced “omics” analysis and molecular biology techniques
to resolve challenges in the fluxomics fields.
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