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Machine learning in chemical reaction space
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Chemical compound space refers to the vast set of all possible chemical compounds, esti-
mated to contain 1060 molecules. While intractable as a whole, modern machine learning
(ML) is increasingly capable of accurately predicting molecular properties in important
subsets. Here, we therefore engage in the ML-driven study of even larger reaction space.
Central to chemistry as a science of transformations, this space contains all possible chemical
reactions. As an important basis for ‘reactive’ ML, we establish a first-principles database
(Rad-6) containing closed and open-shell organic molecules, along with an associated
database of chemical reaction energies (Rad-6-RE). We show that the special topology of
reaction spaces, with central hub molecules involved in multiple reactions, requires a mod-
ification of existing compound space ML-concepts. Showcased by the application to methane
combustion, we demonstrate that the learned reaction energies offer a non-empirical route to
rationally extract reduced reaction networks for detailed microkinetic analyses.
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eaction networks are essential tools for the description,

illustration, and fundamental understanding of chemical

processes in such diverse fields as catalysis!~4, combus-
tion>’, polymerization®, atmospheric chemistry®, systems
chemistry!®!1, and the origin of life!2. Indeed, any study of
chemical kinetics or selectivity is essentially a study of a reaction
network. In many cases, however, the understanding of complex
chemical processes is hampered by the sheer size of the networks
in question!13-21, For example, we recently reported a database
of over 1 million elementary reactions for molecules no larger
than four non-hydrogen atoms containing carbon, oxygen and
hydrogen?2,

The reaction networks typically used in microkinetic studies of
natural and industrial processes are therefore necessarily merely
sub-graphs of the full network of possible reactions (see Fig, 1)20:23,
This is not automatically a problem, as large parts of the latter may
not be thermodynamically accessible. It is therefore entirely possible
that a microkinetic model based on a reduced reaction network
correctly describes the overall kinetics of a complex process)®20,
Meanwhile, the big advantage of focusing on sub-graphs is that the
kinetics and thermochemistry of each elementary step may be
explicitly computed from first principles. This offers a non-
empirical route to understanding complex reaction mechanisms.

Notwithstanding, the difficulty lies in knowing which parts of the
full network to keep. One would need at least an approximate
notion of the reaction thermochemistry (and ideally the kinetics) of
the full network, to be able to do this on a rational basis. This
information is typically not available. Indeed, not even the topology
of the full network is usually taken into account. Instead, state-of-
the-art reaction networks are generally built by hand, based on
chemical intuition and (sparse) experimental evidence. The fre-
quently observed failure to correctly predict the selectivities of
complex catalytic processes with first-principles microkinetics
indicates that such ad hoc networks may miss important links24-26,

The central impediment towards a non-empirical construction of
reduced reaction networks is the large computational cost of first-
principles electronic structure methods such as density-functional
theory (DFT). It is simply not feasible to routinely compute tens or
hundreds of thousands of reaction energies (REs) and activation
barriers. In this context, machine-learning (ML) models that are
trained on a limited number of DFT calculations have recently

a

o

emerged as powerful tools for the high-throughput prediction of
molecular and materials properties?’=33, Simply put, ML can be
used to interpolate properties (such as energies) across chemical
compound space. State-of-the-art methods actually surpass che-
mical accuracy (ca. 0.05 eV) when applied to standard benchmarks
like the QM9 database3#-38. Similarly, ML models can be applied to
conformational space (e.g., when trained on ab initio molecular
dynamics trajectories) or even interpolate across chemical and
conformational space at the same time39-41,

While exploring compound space is useful in its own right
(e.g., for drug or materials design), chemistry is the science of
transformations in chemical space. In contrast, virtually all ML
models for organic molecules to date are trained on reference data
derived from the chemical universe database of Reymond and
coworkers, which enumerates potentially stable, drug-like mole-
cules*!-43. Almost by construction, these models therefore cannot
describe elementary reactions such as the ones shown in Fig. 1,
which typically involve radical or charged intermediates. In our
view, the application of ML to areas like catalysis and combustion
requires a shift of focus from stable molecules to radicals (i.e., the
nodes in Fig. 1) and to reactions (the edges). The goal of this
paper is therefore to begin the development of ML models for the
exploration of reaction space, as opposed to compound space.

Specifically, we introduce a new DFT database of closed- and
open-shell molecules that covers an extensive network of chemical
reactions. We then develop ML models to predict atomization and
REs. Finally, the models are used to explore the reaction network of
methane combustion and identify the most relevant reaction steps
and fragments out of a large initial database.

Results

Data and kernels. To train reactive ML models, a reference
database of both open and closed-shell systems must be estab-
lished. A large set of such structures was enumerated using a
graph-based approach??, and the ground-state geometry and
energy of each system was determined with DFT calculations
using the hybrid PBEO functional with Tkatchenko-Scheffler
dispersion corrections?4-46. The resulting Rad-6 reference data-
base comprises 10,712 molecules containing carbon, oxygen and
hydrogen, the largest of which consists of six non-hydrogen
atoms. As illustrated in Fig. 2, this dataset is rich in

Fig. 1 Visualization of chemical reaction spaces as graphs with molecules as nodes and reactions as edges. a Full network of bond dissociation reactions
for carbon-, oxygen-, hydrogen-containing molecules with up to four heavy atoms. b Reduced reaction network of the initial steps of natural gas
combustion. Nodes are colored according to the number of incident edges/reactions (their degree) from low (white) to high (dark green).
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Fig. 2 The Rad-6 database. a Number of molecules in the database, according to their number of non-hydrogen atoms. b Structures of representative
molecules in the database. Dots indicate radicals and respective SMILES strings are listed.

unconventional structural motifs, such as poly-radicals. As is
commonly observed, the space of possible compounds scales
exponentially with the system size (see Fig. 2, left). This figure
also reveals that radical fragments in fact dominate the database,
as they are combinatorically much more frequent (by an order
of magnitude) than closed-shell systems. Notably, this dominance
of open-shell systems prevails, although more than half of the
originally enumerated radicals decomposed or rearranged upon
geometry optimization. Importantly, these unstable cases were
not included in the database. This choice was made because
the definition of a chemical reaction requires the specification of
the molecular topologies of educts and products (and how they
are transformed). The full Rad-6 database is provided in the
supporting information to this article.

Two central quantities that are needed to fully understand the
overall kinetics of a reaction network are the RE (E,.,, RE) and
the activation energy (barrier) for each reaction. Indeed, REs
provide the most important features of the reaction network and
can in some cases even be used to predict activation energies via
the Bronsted-Evans-Polanyi relation*” 4%, Furthermore, while the
activation energy is a property of each individual reaction (the
edges in a graph), the RE can be computed from molecular
atomization energies (E,, AE), i.e. information from pairs of
nodes in a graph, meaning that much fewer calculations are
required to predict the REs in a large reaction network.
Specifically, to predict 1000 REs for 20 molecules, one only
needs 20 ground-state geometries. In contrast, predicting the
corresponding activation energies would require 1000 additional
transition state (TS) geometries. Not only are there more TS
geometries, but these are also much harder to obtain, both in
terms of computational effort and in terms of the human
intervention needed for successful transition state searches. This
makes predicting REs the logical first step in the ML-driven
exploration of reaction networks.

Specifically, for a reaction of the type:

A—B+C, (1)
the REs can be computed from molecular atomization energies via:

E . = EB + ES — EA, (2)

reac

where we define the AE without loss of generality as the total energy
of the molecule minus total energies of the isolated neutral atoms.

Learning atomization energies across chemical compound
space is a well-established practice in the ML literature. In a
first approach, we can therefore apply such compound space
models for predicting REs, as long as they are trained on a
reactive database like Rad-6. Herein, we use Kernel Ridge
Regression (KRR) with the SOAP>0 representation, as a state-
of-the-art ML method (see SI for details). In brief, KRR uses a
kernel function k(x; x;), to measure the similarity between
representations x; and x;. The herein used SOAP representation is
one of a class of atom-density projections that have been found to
yield highly accurate molecular ML models®1->2. With this type of
model, the AE of an unknown molecule can be predicted
according to its similarity with known molecules in a training set.
Since the AE is a molecular property and SOAP is an atomic
representation, an additional step is required for evaluating the
similarity of molecules. This can, for example, be achieved with
the average kernel3”:

ll"lt (A B)

Z LNBk(xmxb% (3)

acA,beB Ny

where N, and Np are the numbers of atoms a and b in molecules
A and B, respectively, and x, is the SOAP representation of the
chemical environment of atom a. The lower-case k is used to
differentiate the atomic from the molecular kernel function K.
Alternatively, one can also use the sum kernel:

Kext Z k xavxb (4)

acA,beB

Both average and sum kernels have been successfully used in
ML models of the AE, but there is a crucial difference in their
properties3436: Specifically, the average kernel disregards size
differences between molecules. It provides a measure for how
similar the atoms in molecule A are to the ones in molecule B, on
average. Meanwhile, the non-normalized sum kernel is sensitive
to size differences. Consequently, models using the average kernel
should be used to predict intensive quantities, and models using
the sum kernel should predict extensive properties®>. Herein, all
models using the average kernel are therefore trained on the
atomization energy per atom (AE/N, an intensive quantity). The
predicted AE/N is afterwards simply multiplied with the number
of atoms N to recover the AE. Meanwhile, the sum kernel can
directly be trained on (and predict) the AE>3. In the following we
will refer to Eq. (3) as the intensive kernel (Kj,,) and to Eq. (4) as
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the extensive kernel (K.,;). As an aside, it should be noted that
using such linear combination kernels is equivalent to the
partitioning of the total energy inherent, for instance, to Gaussian
Approximation Potentials%3°,

To train ML models, the Rad-6 database is split into training,
validation (for hyperparameter optimization) and test sets. To
obtain representative training sets, we use the farthest point
sampling (FPS) method3®. In FPS, data-points are sequentially
selected to maximize the distance between a new data-point (a
molecule A) and all previously selected points (molecules B
already in the training set). In the present context, this means new
molecules added to the training set should be as dissimilar as
possible to all previously selected molecules. The distance
between molecules is measured using the previously introduced
kernels, according to:

D(A,B) = \/K(A,A) + K(B,B) — 2K(A, B). (5)

Because D(A, B) depends on the kernel, we obtain different
training sets for the intensive and extensive kernels.
Most importantly, while we normalize K,y so that
Kint(A, A) = Kin(B, B) = 1, K is not normalized. Consequently,
K. (A A) ~N% and K., (B,B) ~ N4 This means that the
distance D, (A, B) evaluated with the extensive kernels tends to
be greater between large systems than the distance between small
systems. Accordingly, mostly large molecules are selected during
the early iterations of FPS with D, whereas the intensive
distance D;,, maximizes the average chemical diversity in the
training set irrespective of size. It should be noted that a FPS
selection based on maximally diverse atomic environments rather
than molecules (e.g. using a softmax criterion®*) would also be
possible. This may be a better choice for datasets with large
molecules.

Beyond their use in regression methods like KRR, kernels can
also be used for dimensionality reduction and visualization of
large data sets with the kernel principal component analysis
(kPCA) method>°®. In Fig. 3, kPCA plots of the Rad-6 chemical
compound space for the intensive and extensive kernels are
shown. Here, the two principal components mainly reflect the
degree of saturation (the number of hydrogen atoms) and the
oxygen/carbon ratio. The main difference in both projections is
that the extensive kernel additionally displays a size-dependence,
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with small molecules (up to 4 heavy atoms) concentrated in the
bottom right corner (see SI for more details).

Superposed on the projected landscapes, Fig. 3 shows the color-
coded variation of the DFT computed AEs. A clear trend from
more negative values in the top right to less negative values in the
bottom left can be discerned for Kj... This correlation of AE/N
with the degree of saturation results simply because highly
saturated molecules contain only single bonds, while unsaturated
molecules contain double and triple bonds. The gradual variation
of both AE and AE/N also provides an intuitive understanding of
why kernel models work for predicting molecular energies:
Molecules that are close in the kPCA plot (i.e., considered to be
similar by the kernel) also have a similar AE. Finally, Fig. 3 also
illustrates the distribution of the FPS-selected training points,
which evenly cover the compound space, but also span most of
the more isolated points at the bottom of the figure.

Machine learning in compound space. In Fig. 4, the learning
curves for AE predictions with the extensive and intensive kernels
and using both D,y-based and D;,-based FPS sets are shown, i.e.,
we also combine extensive kernel learning with intensive training
sets and vice versa. It can be seen that with the largest training
sets, all four models are able to predict atomization energies for
these systems with mean absolute errors (MAEs) well below 0.1

eV. In all cases, the log-log plots display the expected linear
relationship (i.e., the learning curve can be fitted as a power law),
indicating that even higher accuracy could be achieved with more
data. To put this performance into perspective, it should be noted
that our baseline method (dispersion-corrected hybrid DFT) itself
has an average accuracy of ca. 4-5 kcal mol~! (0.2 eV) for REs
and barriers®”8,

Additional ML models were trained on randomly sampled
training sets, to provide a baseline for the FPS schemes. The
corresponding AE learning curves are comparable to the
extensive FPS (see SI). As has previously been noted, random
sampling is actually advantageous for very small training sets, but
the learning rate is lower than for both FPS schemes translating
into inferior performance for larger training sets3°.

Following common practice, all errors are shown for the total
AE, even for the intensive models. Clearly, this is not a
completely fair comparison, as the intensive models are trained
to minimize the AE/N and not the total AE error. This explains

b

AE/N [eV]
PC 2
AE [eV]

PC 1

Decreasing # H in molecule

Fig. 3 Visualizing Rad-6 with Kernel Principal Component Analysis (kPCA). a kPCA based on an intensive kernel. b kPCA based on an extensive kernel.
Points are colored according to the DFT atomization energy per atom in (a) and total atomization energy in (b). The arrows provide a qualitative
interpretation of the principal component (PC) axes and small black dots indicate the FPS-selected training configurations for a ML model with 1000
training molecules and using the corresponding distance criterion (Din; (@), Doy (b)), see text.
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Fig. 4 Learning curves for atomization energies (AE). a Mean absolute error (MAE) of AE predictions on the test set, as a function of the number of
training molecules ny..in. The training sets were constructed using FPS with the extensive (a) and intensive kernels (b) (see text). ¢ AE learning curves using
molecular geometries obtained with the universal forcefield (UFF). The gray line represents a learning rate of n?r;ﬁg and serves as a guide to the eye in all

three panels.

the seemingly counter-intuitive fact that the extensive model
performs better even on the intensive FPS training set. It has
been suggested in the context of electronic structure methods
that AE/N may generally be a more appropriate target for fitting
and benchmarking®°>°. Specifically, fitting on the total AE will
selectively favor large systems over small ones, as they offer a
larger potential for improvement in the loss function. This also
carries over to the FPS selection, as extensive selection will
initially focus on larger molecules which are deemed to be more
dissimilar than smaller ones. We will see later that this has
significant consequences for reaction networks and REs.
Nevertheless, based on the data in Fig. 4 one would deduce a
slight superiority of the extensive kernel.

Fully optimized DFT geometries will unfortunately not be
available for ML training and prediction in a realistic
application. If they were, the DFT energy would be known
and the ML prediction would be redundant®®. We therefore also
used simple forcefield geometries (based on the universal
forcefield, UFF)®! for training and prediction, still using the
ground-state energies of relaxed DFT geometries as the target
property. As shown in Fig. 4c and detailed in the SI, all trends
discussed for the DFT geometries are unchanged, but the MAEs
are somewhat higher, roughly by a factor of two. Such inferior
performance of ML models using approximate geometries has
also been observed for closed-shell data sets like QM9, but it is
more pronounced here3®. This reflects the fact that general
forcefields like UFF are not designed for the description of
radicals, which make up a large part of Rad-6. In this context,
semi-empirical electronic structure methods might offer an
alternative low-cost method for more reliable geometries®2:63.
Note however that such methods will invariably afford some
amount of rearrangement and decomposition upon geometry
optimization, which would introduce a mismatch between
the structure used to build the SOAP representation and
the structure for which the target energies are computed.
This could in principle be mitigated by using constrained
relaxations, but defining universal geometrical constraints in a
high-throughput setting is not trivial.

It has also been shown that predictions from approximate
geometries can be improved by using a measure of the quality of
the training geometries to adjust the model regularization for
each training sample3®. As shown in the S, this is not successful
for Rad-6. Again, we attribute this to the overall poor and
inconsistent quality of the UFF geometries for open-shell systems,

highlighting another challenge when moving towards ML
approaches for reaction space.

Nonetheless, even UFF-based models with fairly small training
sets already provide a reasonable estimate of the AEs across
chemical compound space. This is illustrated in Fig. 5, where an
interpolated AE/N surface for an ML model trained on 1000 UFF
structures is compared to the DFT reference values. The plots are
visually almost indistinguishable. This serves to emphasize that
even a ML model trained on 10% of the database already provides
an adequate representation of its overall thermochemistry. Recall
that the core task for the development of rationally reduced
reaction networks is not an excessive accuracy of this thermo-
chemistry as typically targeted in existing ML work for compound
space. Instead, the overall topology needs to be appropriately
represented to a degree that enables the selection or dismissal of
reactions when building sub-graphs.

Machine learning in reaction space. With the ML-predicted
AEs, one can readily calculate REs using Eq. (2), in strict analogy
to how they are computed with first-principles methods. In this
case, errors in the predicted AEs will propagate to the predicted
REs. Under the most basic assumptions (i.e., an uncorrelated,
constant uncertainty o4r for every AE prediction), one would
expect the uncertainty in the RE prediction for a reaction A —
B+ C to be v/30,;. While this is a very rough estimate, it indi-
cates that we would generally expect the error on REs to correlate
with the AE error, and that the former should be larger than the
latter.

To test these expectations, a reaction network containing
32,515 bond-breaking reactions, Rad-6-RE, was generated using
the Rad-6 molecules (see SI for details and the full dataset). In
Fig. 6, we show the relation between the performance of different
ML models for AE and RE predictions, using both FPS training
set selections (multiple points for each method correspond to the
different training set sizes shown in Fig. 4). These plots reveal
several interesting trends. As expected, the RE error correlates
with the AE error. However, there are significant differences both
with respect to the FPS selection and the kernels. Most notably,
all models display unexpectedly large errors for the smaller (N <
2000) extensive training sets. In contrast, the models trained on
the intensive FPS display RE errors that are much closer to the
corresponding AE errors. Strikingly, the combination of intensive
kernel learning and intensive training set selection leads to RE
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errors that are almost identical to the corresponding AE errors
across all training set sizes.

These observations can be understood in light of the fact that
not all molecules are equally weighted in a reaction network. As
can be seen in Fig. 1, some molecules are central hubs in the
network (dark green), whereas others lie on the periphery and
only contribute to few reactions (white)!11%. The existence of
such hubs, which correspond to molecules with dramatically
higher importance, is a fundamental difference between reaction
space and the homogeneously weighted chemical compound
space. In Rad-6-RE, the most important such hubs are small
molecules that correspond to functional groups (OH, CH;, etc.)
and the isolated atoms C, H and O. As mentioned previously, the
extensive kernel distance D.,; will consider all smaller molecules
to be more similar in terms of their kernel distance (Eq. (5)),
because the terms K (A, A) and K_(B, B) scale with the number
of atoms. Small molecules are therefore selected later in an
extensive FPS selection, and are consequently absent from the
smaller training sets. This can lead to relatively large errors on
important hub molecules, which will consequently have an out-
sized impact on the RE error.

In other words, the large discrepancy between RE and AE for
small extensive training sets is because small molecules are less
likely to be included. This notion is further reinforced by

considering the performance of the models based on random
sampling. While the AE predictions of these models are of
comparable accuracy with the FPS models (in particular for the
smaller training sets), the performance for RE prediction is very
poor, with MAEs above 1 eV for small training sets (see SI). Even
when the extensive kernel is trained on intensive sets, smaller
molecules still offer less potential for improving the loss function
and thus lead to a poorer performance for REs.

In complete contrast to the situation in compound space, an
intensive kernel with an intensively selected training set is
therefore a better choice for ML models in reaction space. This
indicates that some of the experience gathered hitherto for ML in
chemical compound space (like the significant work on the QM9
database)34-3¢ will not necessarily carry over to reaction spaces.
Realizing the particular relevance of hub molecules, a straightfor-
ward adaptation could for instance simply be to inversely scale
the extensive distance used in the FPS selection by the degree of
the node in the reaction network, i.e., by the number of reactions
in which the molecule is involved (see Fig. 1). Similarly, the least-
squares problem for an extensive kernel could be adjusted by
weighting the molecules according to their inverse size. With
this work, we hope to initiate such dedicated methodological
development for reaction spaces and will pursue corresponding
research in the future.
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It should also be noted that the special topology of reaction
networks makes model evaluation for REs in a strict statistical
learning framework difficult. The reaction network Rad-6-RE
contains most of the Rad-6 molecules. Computing the REs for
this network is therefore not a pure prediction, as some molecules
in each reaction may be in the training set. In principle, it would
be desirable to evaluate the performance on a separate reaction
network that contains no training molecules at all. However, this
can only be achieved in two ways: Either the test network
contains no small molecules like CO and OH, or these molecules
are excluded from the training set. The former option leads to a
very unnatural reaction network, that misses the most frequent
classes of bond-breaking events. Meanwhile, the latter option
leads to a very poor training set, and thus an overly pessimistic
estimate of model performance.

We therefore decided not to follow this strict separation of
training and prediction for the RE MAEs shown in Fig. 6. This
also explains why the RE error is in some cases actually lower
than the AE error, contrary to expectation: The RE MAE benefits
from the fact that the prediction error of all tested models is
somewhat lower on the training sets (see SI). Indeed, KRR models
can in practice display a negligible error on the training set if the
regularization parameter is chosen to be very small, as is
advocated by some authors®4,

Exploration of reaction networks. Finally, we return to the
original motivation of this work, namely the ML-aided
exploration of complex reaction networks. To illustrate the
use of ML-predicted REs, we consider a closed network of over
21,393 elementary reactions, containing a large variety of bond-
breaking, transfer and rearrangement reactions for oxygen,
carbon and hydrogen-containing molecules??. Note that this
network is deliberately not a subset of Rad-6, although there
is significant overlap (ca. 80% of the involved molecules are
included in Rad-6). This is thus, at least partially, an out-of-
sample application. The challenge lies in determining which of
the elementary reactions are likely relevant to a chemical pro-
cess of interest. As an exemplary process we consider the early
stages of methane combustion®>-%.

To validate the proposed ML models for this application,
additional DFT calculations were performed on the out-of-
sample systems. Unfortunately, these systems mostly decompose
or rearrange upon DFT geometry optimization. Note that this
does not necessarily mean that they are inherently unstable,
however, just that the corresponding local minima were not
found when starting from a (inaccurate) UFF geometry. We
therefore used DFT single point calculations on UFF geometries
here. Overall, a good correlation between DFT and ML-predicted
energies is found, with systematically lower ML AEs (see SI). This
systematic bias can easily be understood since the ML models
predict the DFT energies of relaxed geometries, but the validation
energies are for frozen UFF geometries. The latter is by definition
larger than the former. This shows that the ML model can be used
to estimate relaxed DFT energies even when these are not readily
available from DFT calculations.

To qualitatively explore this network, a mean-field micro-
kinetic simulation of the reaction of equal parts CH, and O, was
performed, assuming a constant activation barrier for all reactions
(see SI for details). Under these assumptions, the reaction
dynamics are only driven by the REs and the law of mass-action.
While the true activation energies and detailed reaction
conditions (initial concentrations, temperature, pressure, etc.)
will obviously play a crucial role for the actual mechanism, such a
simplified microkinetic simulation provides insight into how
thermochemistry and the topology of the reaction network define

which intermediates and reaction steps are at all relevant to the
process. By observing how the reaction network grows with
simulation time, we can furthermore understand how inter-
mediates and reactions sequentially become available, as mass
flows through different paths of the network. Only requiring ML-
predicted REs as input, such a simulation is therefore a first step
towards the envisioned rational reduction of the full network to
tractable sub-graphs.

Figure 7 summarizes the results obtained based on the
intensive kernel ML model trained with an intensively selected
EPS set of 9582 UFF structures. Shown are the reduced reaction
networks extracted as those parts of the full network that are
accessed at increasing simulation times. These reduced networks
are highly revealing, as they form a hierarchy of different
chemistries relevant to combustion. For example, in line with
general expectations®, the smallest network contains peroxide
chemistry, with the hydrogen transfer from methane to molecular
oxygen as the dominant pathway. Subsequently formed CO,H,
intermediates also comprise generally anticipated molecules like
methanol (CH3;0H) or formic acid (HCOOH), but also more
exotic species like the Criegee intermediate (CH,OO). Interest-
ingly, the formation of the main product CO, only appears in
larger subgraphs after dimerization reactions have already led to
C, intermediates like ethylene (C,H,) and ethane (C,Hg). Finally,
the largest subgraphs shown include already more complex
molecules like propane (C3Hg) and propene (C;Hg) and comprise
a total of 887 reactions.

It should be emphasized that the networks in Fig. 7 are not
intended to represent a definitive mechanism for methane
combustion, not least because this mechanism strongly depends
on reactions conditions like temperature, pressure and the
methane/oxygen ratio®. Instead, this analysis provides insight
into what intermediates and elementary steps should be
considered when constructing reduced reaction networks for
mechanistic studies. While assuming constant barriers is clearly
a harsh approximation in a microkinetic simulation, we note
that predicting activation energies for the full network is not
necessary to extract the relevant reduced reaction network for
subsequent analysis. In many cases, an elementary reaction can
be discarded because of a large thermochemical barrier alone.
In other words, if a reaction is found to be irrelevant in a
microkinetic simulation with constant barriers, it will not
become relevant once activation barriers are included. Of
course, activation barriers for the reduced network must still be
computed for a quantitative microkinetic simulation, but this is
only a small subset of the full network.

Note also that a pure ML approach may miss important domain
knowledge. For example, both singlet and triplet spin-states of CH,
are relevant in combustion®8. Instead, the graph-based enumera-
tion approach?? used to generate Rad-6, generically only considers
the lowest-spin state of each molecule (with manually implemented
exceptions of triplet O, and the isolated atoms to prevent
completely unphysical results). Nonetheless, our pure ML approach
finds all intermediates considered in empirical reduced methane
combustion mechanism like the skeletal mechanism of Lu et al.570.
On the other hand, the unbiased nature of ML approaches has the
benefit of providing unexpected suggestions that would perhaps not
be considered otherwise. For example, already our proof-of-concept
reduced reaction networks of methane combustion suggest a
pathway for CO, formation via the Criegee intermediate (CH,OO)
and cyclic compounds like dioxirane (CH,OO*) that is not
generally considered in state-of-the-art empirical networks. In our
view, domain knowledge and ML-based exploration should there-
fore be combined in practice.

Indeed, the generation of reference databases is also to an extent
domain specific. The reaction networks considered herein are quite
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Fig. 7 ML-based exploration of a complex reaction network. Each frame shows the reduced reaction network extracted from a microkinetic simulation of
methane combustion at different stages in simulation time. The abstract simulation time is shown for each frame in arbitrary units, see text. Educts and
products (in bold), as well as important intermediates are highlighted. Nodes are colored according to their absolute atomization energies from low (red) to
high (blue). Cyclic compounds are marked with an asterisk, to distinguish them from the corresponding linear compounds.

universal and could be applied to atmospheric chemistry,
combustion or catalysis. However, these fields have distinct
requirements with respect to the first-principles reference data.
Clearly, catalysis can only be studied if the effect of the catalyst is
accounted for. Meanwhile, thermal contributions to the free-energy
will be large and important for a realistic description of combustion,
and the role of different spin-states must be considered in both
combustion and atmospheric chemistry. Nevertheless, the ML
framework presented herein can easily be transferred to accom-
modate these situations.

To demonstrate this, a second set of energies for Rad-6 was
computed using broken-symmetry (BS) DFT (see SI for details).
In BS-DFT, the DFT energy is further minimized by exploiting
the breaking of spatial and spin-symmetry in the Kohn-Sham
determinant. The resulting determinants consequently do not
correspond to a predefined multiplicity but represent the lowest

energy solution irrespective of the spin state. Importantly, we find
that ML models trained on this data have very similar predictive
accuracy to the ones discussed so far (see Fig. 8). This shows that
the Rad-6 database can serve as a benchmark for developing and
improving ML models in reaction space, much like the popular
QM9 set has done for chemical compound space.

Discussion

In this paper, we have explored the applicability of ML models to
chemical reaction networks. In this context, we introduced the Rad-
6 database of ca. 10,000 open and closed-shell molecules and an
associated reaction network of ca. 30,000 reactions (Rad-6-RE).
Established compound space KRR methods were shown to accu-
rately predict atomization energies of the Rad-6 molecules. While
the AE prediction accuracy was fairly similar for different choices in
training set selection and kernel construction, these choices had a

8 NATURE COMMUNICATIONS | (2020)11:5505 | https://doi.org/10.1038/s41467-020-19267-x | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

FPS ext b

(1]

FPS int RE
- - ./
0.8 3 0.8 3 0.6 ./\/?X X
. i Rad-6 ;
< 0.4 4 - 0.4 Q\\Rad'e ,<im = Kext /X ./. Rad-6-BS
2, i Rad-6 Kyy 3, 1 S D, 04 % /,/ Kext,’
g O 2 _ k\.\ g 0 2 . ~~\\\ E 7 )¢ ‘/' ///, Rad-6
w 7 el W] N w * ! & Kint
< g ke < - “ @ < l/'/ S
= 014 g = 014 ‘e =024 Y&
] g ] e, 45
0.05 4 Rad-6-BS Kext * 0.05 Rad-6-BS Kipy ® /&Y Rad-6-BS Ky
T TrT LI TrT T T TITT T TrT TrT TrT LELELILEL 0-0 T T T
500 1000 2000 4000 9582 500 1000 2000 4000 9582 0.0 0.2 0.4 0.6

Ntrain

Mirain

MAE AE [eV]

Fig. 8 Comparison ML models trained on the Rad-6 and the Rad-6-BS databases. a Learning curves for AE predictions of using the extensive kernel with
an extensive FPS split and DFT geometries. b Same as (a) but for the intensive kernel with an intensive FPS split. ¢ Correlation plot of MAE RE vs MAE AE
for both Rad-6 and Rad-6-BS. Blue lines represent results obtained with the extensive kernel (crosses for Rad-6 and stars for Rad-6-BS) in (a) and (c). Red
circles correspond to the intensive kernel with Rad-6 and orange diamonds to the intensive kernel with Rad-6-RE.

large effect on RE prediction accuracy. In particular, we found the
use of an intensive kernel for both FPS-based training set selection
and KRR learning to work very well for RE prediction, while models
trained on extensive FPS sets displayed unexpectedly large RE
errors. This can be rationalized by the special topology of reaction
networks, in which certain small molecules constitute important
hubs that should be included early on in the training sets.

We note that the extensive and intensive kernels used herein
are merely interesting representatives of a wider range of possible
models. Fundamentally, the observed differences in performance
between the AE and RE prediction reflect that not all concepts
established for the ML-based exploration of chemical compound
space can be carried over to reaction space. Multiple methodo-
logical developments are required to establish reliable protocols,
for example with respect to the weighting of molecules in the loss
function of the ML model. If the topology of the reaction network
of interest is known, these weights could for example be selected
according to the connectivity of the molecule in the network (as
shown in Fig. 1). Alternatively, weighting by size (or molecular
weight) would likely be a useful heuristic to avoid the problems
observed for the extensive kernel.

We also presented a proof-of-principle application of a reactive
ML model to the exploration of the methane combustion reaction
network. Here, a microkinetic simulation based on ML energetics
was carried out, revealing relevant pathways and elementary steps
in a large reaction network of 21,000 reactions. In our view, there
are two ways to proceed from here. On one hand, the relevant
subgraph thus extracted from of a much larger reaction network
could be studied in depth with first-principles methods. On the
other hand, we can envision an ML-driven computational reactor,
where this is done in a more integrated fashion. Important steps
(as identified by an ML-driven microkinetic simulation) could be
studied with DFT and the results used to retrain the ML model.
This would lead to an active-learning-type iterative procedure,
where the predicted energetics of the reaction network are con-
tinuously improved in a targeted fashion, and no subgraph
selection is necessary (within the computational constraints of the
microkinetic simulation).

Methods

Computational details. Reference geometries and energies were obtained using
DFT as implemented in FHI-Aims*071. Specifically, the PBEO functional’? was
used with tight integration settings and tier-2 numerical atomic orbital basis

sets. Dispersion interactions were treated via the pair-wise Tkatchenko-Scheffler
van-der-Waals correction’3. Approximate geometries were obtained with the UFF
forcefield®!.

Machine-learning models. All reported ML models are based on Kernel Ridge
Regression and use the SOAP kernel37-%0. SOAP representations were computed
with the quippy code (https://github.com/libAtoms/QUIP). Kernel matrices and
training/test splits were generated with the ml1tools package (https://github.com/
simonwengert/mltools.git). The atomic simulation environment was used
throughout to process molecular data’4.

Full methodological details are provided in the Supplementary information.

Data availability

All datasets used in this paper are available as Supplementary Data 1.

Code availability
The code used to fit the ML models is available at https://doi.org/10.5281/
zen0do.4025972.
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