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The success of coral reef ecosystems largely depends on mutualistic symbiosis between
scleractinian corals and the dinoflagellate photosymbiont Symbiodinium spp. However,
further investigation is needed to elucidate the flexibility of coral-algae associations
in response to environmental changes. In this study, we applied a molecular method
(high-throughput internal transcribed spacer 2 region of ribosomal RNA gene amplicon
sequencing) to explore diversity and flexibility of Symbiodinium associated with Galaxea
fascicularis, an ecologically important scleractinian coral species collected at five
locations around Hainan Island, South China Sea. The results revealed a high diversity
of Symbiodinium subclades with C2r and D17 being dominant in G. fascicularis. Clade
D Symbiodinium occurred most frequently in habitats where the annual average sea
surface temperatures are the highest, suggesting that temperature is an important
factor in determining Symbiodinium D abundance in G. fascicularis. The distribution
of coral-Symbiodinium associations are possibly mediated by trade-off mechanisms
which change the relative abundance of Symbiodinium clades/subclades under different
environmental conditions. These findings provide further evidence that reef-building
corals such as G. fascicularis can shuffle their symbionts to cope with environmental
changes, and have implications for our understanding of the ecology of flexible
coral-algal symbiosis.

Keywords: coral, Symbiodinium, symbiosis, diversity, flexibility

INTRODUCTION

The success of coral reef ecosystems in oligotrophic ocean depends largely on mutualistic
symbioses between reef-building corals and photosymbiontic algae of the genus Symbiodinium
(zooxanthellae). Symbiodinium is comprised of nine phylogenetic clades (A–I), each containing
multiple genetically distinct subclades or species (Baker, 2003; Pochon and Gates, 2010). Reef-
building corals readily form associations with clades A–D Symbiodinium, but partnerships with
clades F and G have also been reported (Lajeunesse, 2001; Baker, 2003; Lajeunesse et al., 2010a).
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The functional and physiological diversity within Symbiodinium
(Tchernov et al., 2004; Brading et al., 2011) strongly affects
the response of coral holobionts to environmental disturbances.
Heat tolerant Symbiodinium in clade D, for example, may
strengthen the thermal tolerance of corals exposed to heat stress
(Berkelmans and Van Oppen, 2006; Lajeunesse et al., 2009;
Keshavmurthy et al., 2012). Therefore, reef-building corals that
harbor multiple ecologically distinct Symbiodinium clades or
types are expected to be flexible and have more opportunities to
cope with environmental change (Baker, 2003; Little et al., 2004;
Berkelmans and Van Oppen, 2006) or mediate their sensitivity to
stress (Putnam et al., 2012).

Coral reefs are in serious decline worldwide as a result of
global warming and anthropogenic activities (Pandolfi et al.,
2011). However, it has been hypothesized that corals could
adapt to environmental perturbations by either shuffling existing
symbionts or switching to novel symbionts (Buddemeier and
Fautin, 1993; Baker, 2003; Baker et al., 2004). Knowing whether
corals can associate flexibly with a range of symbionts is a
necessary prerequisite to test this hypothesis. Changes in the
symbiont communities associated with scleractinan corals have
been observed following disturbance and are presumed to be
an important mechanism for acclimatization (Jones et al., 2008;
Silverstein et al., 2015). For instance, an increase in Symbiodinium
D1a has been previously reported following bleaching events
in Pacific and Caribbean corals (Baker et al., 2004; Lajeunesse
et al., 2009, 2010b). Moreover, flexible symbiosis in conspecific
and congeneric corals has been shown to be related to both
depth and geographical distribution (Sampayo et al., 2007;
Lajeunesse et al., 2010a; Huang et al., 2011; Lien et al.,
2013).

Progress in surveying Symbiodinium diversity and ecology
has considerably improved our understanding of the flexibility
of coral-algae symbiosis (e.g., Baker, 2003; Baird et al., 2007;
Silverstein et al., 2012). However, most previous studies
only considered the dominant Symbiodinium types because
of the limitations of conventional screening approaches (e.g.,
Lajeunesse et al., 2010a; Zhou and Huang, 2011). More
recently, as high-resolution methods including quantitative PCR
and next-generation DNA sequencing have been increasingly
used (e.g., Mieog et al., 2009; Arif et al., 2014; Boulotte
et al., 2016; Ziegler et al., 2017), evidence for some corals
hosting unusual or rare Symbiodinium is increasing. These
less common symbionts have the potential to influence
the whole holobiont function, including bleaching resilience
(Mieog et al., 2009; Silverstein et al., 2012; Arif et al.,
2014; Thomas et al., 2014; Cunning et al., 2015c; Boulotte
et al., 2016). Therefore, coral-algal symbioses may be more
flexible than previously thought and need to be investigated
urgently to provide a better understanding of how flexibility
in coral holobionts enables them to cope with environmental
changes.

The coral species Galaxea fascicularis (Linnaeus, 1767)
is broadly distributed in the Indo-Pacific region and is an
ecologically important species in the South China Sea. Each
generation of G. fascicularis acquires symbiotic algae horizontally
and harbors multiple Symbiodinium clades or types, commonly

clades C and/or D (Lajeunesse et al., 2010a; Huang et al.,
2011). Previous studies have shown that Symbiodinium associated
with G. fascicularis is flexible with respect to both clades
C and D at regional (Huang et al., 2011) and local scales
(Zhou et al., 2012) in the South China Sea. However, coral-
algal associations are also dependent on local physicochemical
conditions (Lajeunesse et al., 2010a; Howells et al., 2012).
Hainan Island is the largest island in the South China Sea
and the coral reefs are affected by environmental conditions,
such as coast and summer upwelling (Jing et al., 2015). In the
present study, we investigated the Symbiodinium communities
associated with G. fascicularis around Hainan Island using
internal transcribed spacer 2 (ITS2) region of the ribosomal
RNA gene amplicon sequencing to explore the diversity
and flexibility of Symbiodinium. The result demonstrates that
G. fascicularis at Hainan Island exhibits a high level of
symbiont flexibility, and the changes in relative abundance
of thermally tolerant Symbiodinium clade D associated with
G. fascicularis are possibly driven by temperature. This
finding implies that symbiont shuffling is likely a defensive
mechanism of coral for local acclimatization to environmental
changes.

MATERIALS AND METHODS

Sample Collection
Samples of the scleractinian coral G. fascicularis were collected at
depths between 2 and 4 m from the coast of Hainan Island in the
South China Sea in September 2010 (Figure 1). At each location,
six to seven colonies separated by at least 5 m were collected and
fragments of approximately 4 cm2 were picked and preserved in
95% ethyl alcohol at field temperature and stored at −20◦C until
DNA extraction took place.

DNA Extraction and Amplicon
Sequencing
Total DNA was extracted as described previously (Zhou et al.,
2012). The quality and quantity of the DNA were determined
with a NanoDrop spectrophotometer (Thermo Fisher Scientific,
United States). Purified DNA samples were stored at −20◦C for
future use.

All samples were PCR amplified using a pair of
barcoded Symbiodinium-specific primers: ITSintfor2
(5′-GAATTGCAGAACTCCGTG-3′) and ITS2-reverse (5′-
GGGATCCATATGCTTAAGTTCAGCGGGT-3′) (Lajeunesse
and Trench, 2000) targeting the ITS2 region of the ribosomal
RNA gene for Symbiodinum. PCR amplification was carried
out on a thermocycle controller (Bio-Rad, United States) with
the following program: initial denaturing at 94◦C for 5 min;
35 cycles at 94◦C for 30 s, 51◦C for 30 s, and 72◦C for 30 s;
and a final extension at 72◦C for 5 min. All PCR products
were purified using the Qiagen Agarose Gel DNA Purification
Kit (Qiangen, China) and quantified with the NanoDrop
spectrophotometer. All amplification products were mixed in
equal amount followed by sequencing on an Illumina Miseq
platform using the 2 × 300 bp mode at Novogene (Beijing,
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FIGURE 1 | A geographic map showing five sampling locations at Hainan Island, China. Red dots represent sampling sites.

China). The raw data were submitted to the NCBI Sequence
Read Archive under accession number SRP066283.

ITS2 Sequencing Data Processing
Overlapping paired-end reads were merged to obtain fragments
using PEAR (Zhang et al., 2014). After de-multiplexing and
quality control, a custom BLAST Symbiodinium-specific
database of ITS2 types was downloaded (Arif et al., 2014),
containing 408 ITS2 sequences. For each sample, datasets
were randomly subsampled to 10,411 sequences (the lowest
read number) which were subsequently searched against
the database using BLASTn. Sequences were assigned
to the ITS2 types that gave the highest identity in the
BLASTn hits (Tong et al., 2017). The resulting counts of
Symbiodinium ITS2 types were merged for downstream
statistical analysis.

Environmental Data
Aqua-MODIS sea surface temperature (SST) and chlorophyll a
concentration (Chl a) with a spatial resolution of 4 km at each
sampling location from January 2006 to December 2010 were
obtained from NASA1.

Statistical Analyses
The Shannon–Wiener (H′) diversity index was calculated
to assess the level of alpha-diversity across samples from
different locations. One-way analysis of variance and post hoc

1https://modis.gsfc.nasa.gov/

Tukey’s HDS comparisons were conducted to test the
significance of differences in diversity between sampling
locations. The similarity of Symbiodinium assemblages
was also characterized by non-metric multidimensional
scaling (nMDS) using the Bray–Curtis distance metric
after data transformation. Analysis of variance (ADONIS)
was performed to test the significance of differences in
Symbiodinium communities among different sampling
locations. The significant relationship between environmental
variables (SST and Chl a) and Symbiodinium community
composition was assessed using Monte Carlo permutation
methods. All statistical analysis were conducted using the vegan
package (Oksanen et al., 2015) in the R software environment
(R 3.1.2).

RESULTS AND DISCUSSION

Symbiodinium Community Diversity and
Flexibility
In total, 997,760 qualified sequences were obtained from 32
samples (10,411–51,626 sequences per sample). A total of 119
Symbiodinium ITS2 subclades were assigned based on alignment
with the ITS2 database at the 97% similarity level, covering clades
B, C, D, and F. Overall, clade C comprised the highest proportion
of sequences (averagely 85.6%), followed by clade D (averagely
13.6%) and then rare clades B and F (Figure 2A). C2r and D17
were the most dominant ITS2 subclades representing > 99% of
the sequences for all samples. All individual colonies contained
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FIGURE 2 | Symbiodinium compositions for complete dataset. (A) Symbiodinium compositions at clade level. Bars represent the percentage of each clade.
(B) Distribution of taxonomic abundances among Symbiodinium subclades.

FIGURE 3 | Non-metric multidimensional scaling (nMDS) plotting of Symbiodinium communities using subclade data among locations. Axes do not represent any
measured parameters, but define a 2-D space that allow the best spatial representation of sample similarity, based on Bray–Curtis similarity indices.

multiple Symbiodinium subclades belonging to different clades.
Despite a high number of distinct Symbiodinium types, most of
them had abundances lower than 0.1% (Figure 2B), indicating
that rare subclades are present in heterogeneous Symbiodinium
assemblages.

It is believed that low abundances of cryptic Symbiodinium
have largely been overlooked by conventional screening
techniques (Mieog et al., 2009). An increasing body of evidence
shows that highly diverse rare taxa with important ecological
roles are prevalent elsewhere (Lynch and Neufeld, 2015) and are
being increasingly explored in reef-building corals (Silverstein
et al., 2012; Green et al., 2014; Quigley et al., 2014; Kennedy

et al., 2015; Boulotte et al., 2016). The Symbiodinium types
in clades B and F associated with G. fascicularis are unusual,
which have rarely been reported from the South China Sea
(Huang et al., 2011; Zhou and Huang, 2011; Zhou et al., 2012;
Tong et al., 2017) or other regions (Lajeunesse et al., 2004,
2010a). The results presented here suggest that G. fascicularis
exhibits a high cryptic diversity and flexibility in symbiotic
associations. It has been shown that rare Symbiodinium types
(e.g., type D1) have the potential to enable the coral host to
resist heat stress through symbiont shuffling or switching
(Lajeunesse et al., 2009; Silverstein et al., 2012, 2015; Bay
et al., 2016; Boulotte et al., 2016). For example, Acropora can
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FIGURE 4 | A heatmap visualization of the dominant subclades of Symbiodinium (relative abundance > 0.1% in one sample at least). The top scales “–2, –1.5, –1,
–0.5, and 0” showed the relative abundance of “0, 2, 9, and 99%,” respectively.

change its thermally tolerant symbiont abundance from rare
to dominant in a response to heat stress (Berkelmans and Van
Oppen, 2006). Community diversity and functional redundancy
may contribute to the stability of community resistance and
resilience (Oliver et al., 2015), which has been characterized
in coral holobionts (Silverstein et al., 2012, 2015). Highly
diverse and flexible Symbiodinium may facilitate the ability of
G. fascicularis to survive successfully in various habitats they
experience throughout the Indo-Pacific area. However, the
real contribution of rare symbionts to the host coral and their
ecological significance is still unclear and needs to be addressed
in future (Lee et al., 2016).

The G. fascicularis holobiont can be viewed as a highly
complex symbiotic system with the flexibility to associate
with a wide range of Symbiodinium (Blackall et al., 2015).
It has been suggested that the mode of transmission of
symbionts can affect the flexibility of coral-algal symbiosis (Baker,
2003; Fabina et al., 2012). Therefore, horizontal transmission
of endosymbionts in each generation may provide greater
opportunities for G. fascicularis to obtain multiple symbionts
from the external environment. However, emerging evidence
shows that many corals can host multiple Symbiodinium
subclades without correlation with the mode of transmission (van
Oppen, 2004). In addition, other factors such as environmental
variability, host recognition and maintenance mechanisms can
also influence the flexibility of coral-algal associations (Baker,

2003; Rodriguez-Lanetty et al., 2006; Dunn and Weis, 2009).
Moreover, the development of coral especially in early life stages
has additional effects on symbiont acquisition and selection
(Abrego et al., 2009; McIlroy and Coffroth, 2017; Zhou et al.,
2017). For example, Abrego et al. (2009) demonstrated that the
symbiont associations in juvenile Acropora are more flexible than
those in adults.

Temperature Drives the Symbiodinium
Assemblages in G. fascicularis
No significant differences in the Shannon diversity index
were detected among sampling locations (one-way ANOVA;
F= 1.618, p= 0.198). However, there were significant differences
in the Symbiodinium assemblages between sampling locations
(Figure 3; ADONIS, p = 0.01), demonstrating that coral-algal
symbiosis is highly flexible around Hainan Island. Importantly,
these differences were attributed to changes in the relative
abundance of existing Symbiodinium types in individuals. Of six
colonies of G. fascicularis at Basuo, four were dominated by clade
D with sparse clade C, whereas the others contained abundant
clade C with rare clade D. At subclade level, D17 dominated at
Basuo, whereas C2r dominated in other locations (Figure 4). The
abundance of each of the D1a, D2, and D6 subclades was higher at
Basuo than at other locations, indicating that these holobionts are
likely to be locally adapted through shifts in symbiont community
composition.
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FIGURE 5 | Changes in dominant Symbiodinium clades, sea surface
temperature (SST), and chlorophyll a (Chl a) concentrations. (A) Log ratio
of Symbiodinium clade D/C relative abundance at each location. (B) Variation of

(Continued)

FIGURE 5 | Continued
SST at each location. (C) Variation of Chl a concentrations at each location.
Average monthly satellite measurements (SST and Chl a) from January 2006
to December 2010 were acquired from the Giovanni online data system,
which is maintained by the NASA Goddard Earth Sciences Data and
Information Services Center. Each dot represents the monthly average ± SD.
Boxplots showing median, first and third quartiles, and maximum and
minimum seasonal ranges by location.

Sea surface temperatures and Chl a concentrations from
2006 to 2010 at each location were employed to investigate
the relationships between environmental conditions and
Symbiodinium communities (Figure 5). Monthly average SSTs at
Mulan Bay, Long Bay and Dazhou Island decreased sharply in
July, possibly due to the Qiongdong Upwelling in summer (Jing
et al., 2015). Of the sample locations, Leigong Island experienced
the largest annual fluctuation in monthly average SST (∼11◦C).
Annual average SSTs was highest at Basuo (26.4◦C), followed
by Dazhou Island (25.5◦C), Long Bay (25.3◦C), Leigong Island
(24.7◦C), and Mulan Bay (24.5◦C). The monthly average Chl
a concentrations of all the locations showed little variation
throughout the year, but Long Bay and Dazhou Island had lower
yearly average Chl a concentrations. Symbiodinium communities
at Basuo was significantly correlated with spring average SSTs
(Monte Carlo permutation test; p < 0.05), but there were no
significant differences between Symbiodinium communities and
Chl a concentrations (Monte Carlo permutation test; p > 0.05).
G. fascicularis had a high specificity for Symbiodinium clade D at
Basuo where annual average SSTs were the highest (Figure 5). In
contrast, Chl a values at all locations did not show any patterns
or trends consistent with observed Symbiodinium distribution
patterns.

It is well-known that Symbiodinium clade D occurs more
frequently in areas with high SST and high turbidity (e.g.,
Lajeunesse et al., 2010a; Keshavmurthy et al., 2012). Furthermore,
it is evident that heat tolerant Symbiodinium can confer thermal
tolerance to its host coral but at a cost of reduced growth
rate, a decline in reproduction and increased susceptibility to
disease (e.g., Little et al., 2004; Berkelmans and Van Oppen,
2006; Silverstein et al., 2015). It has been suggested that symbiont
compositions may be regulated to maintain optimal benefit to the
host in a given environment (Cunning et al., 2015a,b). Such trade-
off mechanisms may depend on both biotic (e.g., host species,
host ontogeny, and symbiont competition) and abiotic (e.g.,
temperature, light, and nutrients) factors, and may also involve
stochastic processes and selective pressures. In the present study,
relative high abundances of Symbiodinium clade D at Basuo
where the annual average SST is the highest are possibly mediated
by a cost-benefit trade-off by the coral G. fascicularis. These
observations agree with our previous investigations (Huang
et al., 2011; Tong et al., 2017), which reported that clade
D in G. fascicularis was more prevalent in tropical locations
than in subtropical locations from the South China Sea, which
might be attributed to the latitudinal temperature gradients.
It is known that temperature has a profound influence on
the ecological structure of coral communities (Brown et al.,
2004). Previous studies also found that temperature is the main
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determinant to the geographic distribution of Symbiodinium
in both conspecific corals (Lajeunesse et al., 2010a) and local
adaptation (Howells et al., 2012). We suggest that temperature is
the main environmental factor influencing the spatial variability
of Symbiodinium assemblages in G. fascicularis around Hainan
Island. However, other undetermined environmental factors,
such as light intensity, and nutrient levels may also contribute to
the biogeographical patterns of host-Symbiodinium associations
(Baker, 2003), which can be investigated thoroughly in the future.

A better understanding of the spatial patterns will allow us to
predict how corals will respond to environmental change over
time (Dunne et al., 2004). In the present study, it may also
reflect the capacity of the coral G. fascicularis to respond to
environmental disturbances (e.g., thermal bleaching) by shuffling
its internal symbionts. Some coral-algal associations remain
remarkably stable over time (Thornhill et al., 2009; Williams
et al., 2015) or revert to their original status after thermal
bleaching (Lajeunesse et al., 2010b), which can be explained
by the trade-off mechanism (Cunning et al., 2015b). More
recently, it has been shown that symbiont shuffling in reef-
building corals is attributed to the magnitude of the disturbance
and the recovery conditions (Cunning et al., 2015a; Silverstein
et al., 2015). The combinations of long-term, in situ field
observations and elaborate laboratory experiments may provide
more supporting evidence for symbiont shuffling in a better
understanding of how coral will adapt to future climate changes.
With the advances in ‘omic’ technologies, it is becoming feasible
to elucidate the molecular mechanism of local acclimation and
symbiont shuffling by analyzing biochemical complementarity of
the symbiotic partners (e.g., Lin et al., 2015).

CONCLUSION

This study characterized the geographic patterns of host-
Symbiodinium associations in an ecologically important

scleractinian coral G. fascicularis using high-throughput
sequencing of ITS2 amplicons. We confirmed that G. fascicularis
at Hainan Island exhibits a high level of symbiont flexibility,
with the thermally tolerant Symbiodinium types in clade D
being prevalent and highly abundant at locations with the
highest annual average SSTs. These findings suggest that
symbiont shuffling has the potential to serve as a trade-off
mechanism for local acclimatization in G. fascicularis. The
present study provides a better understanding of Symbiodinium
diversity and distribution, which is important to predict
the persistence of coral-algal associations in the presence
of increasing environmental perturbations such as global
warming.
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