Supporting information

Atomically-Precise Au₂₂(Lys-Cys-Lys)₁₆

Nanoclusters for Radiation Sensitization

Elham Zeinizade, a,b Goonay Yousefalizideh,c Parimah Aminfar,c Matthew Horn, a Lili Ding, a Layla Pires, a Alina Jaglanian, a Lucie Malbeteau, a Kristen Harrington,c Carla Calçada, a Mohamad Dukuray, a Brian C. Wilson, a,b Marianne Koritzinsky, a,b,d,e Juan Chen, a Kevin G. Stamplecoskie, c Gang Zheng a,b,e*

^a Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada, M5G 1L7

^b Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada, M5G 1L7

^c Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada

^d Department of Radiation Oncology, University of Toronto, ON, Canada

^e Institute of Medical Science, University of Toronto, Toronto, Ontario, M5G 1L7

*Corresponding Author: juan.chen@uhn.ca, kevin.stamplecoskie@queensu.ca, gang.zheng@uhn.ca.

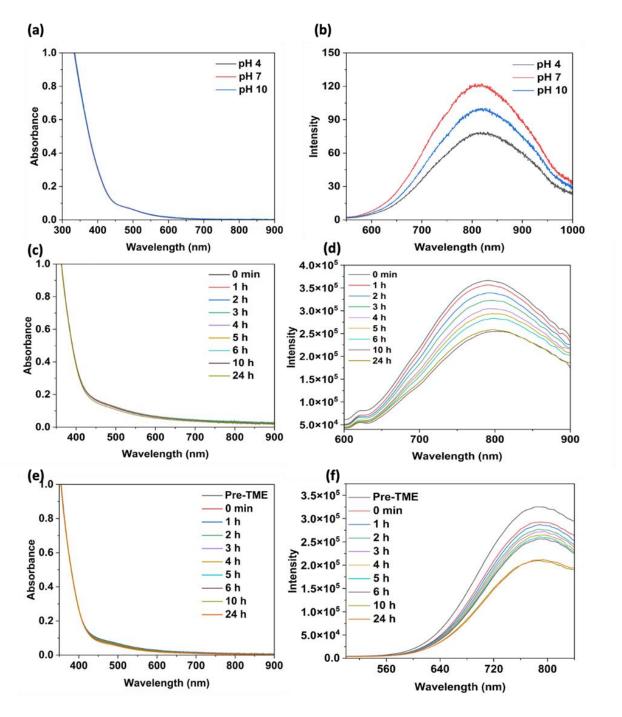
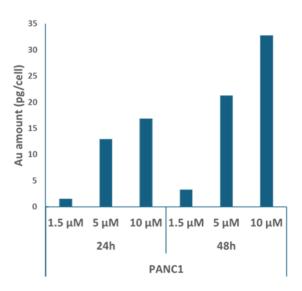



Figure S1. (a) absorbance and (b) emission spectra of $Au_{22}(Lys-Cys-Lys)_{16}$ nanoclusters at various pH. (c) absorbance and (d) emission spectra monitored for 24 h in 50% FBS in PBS. (e,f) corresponding spectra in TME conditions.

Figure S2. Nanocluster intracellular uptake (gold content measured by ICP-MS) in the PANC-1 cells, varying the incubation time and concentration.

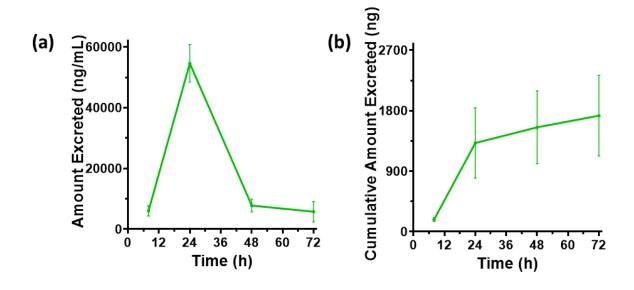


Figure S3. Renal clearance of AuNCs following 10 mg/kg i.v. injection: Means \pm 1 s.d., N=5 mice (a) gold concentration in excreted urine at different time period, and (b) total gold in the collected urine.