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Abstract

Whole- genome sequencing (WGS) is fundamental to Mycobacterium tuberculosis basic research and many clinical applications. 
Coverage across Illumina- sequenced M. tuberculosis genomes is known to vary with sequence context, but this bias is poorly 
characterized. Here, through a novel application of phylogenomics that distinguishes genuine coverage bias from deletions, we 
discern Illumina ‘blind spots’ in the M. tuberculosis reference genome for seven sequencing workflows. We find blind spots to 
be widespread, affecting 529 genes, and provide their exact coordinates, enabling salvage of unaffected regions. Fifty- seven 
pe/ppe genes (the primary families assumed to exhibit Illumina bias) lack blind spots entirely, while the remaining pe/ppe 
genes account for 55.1 % of blind spots. Surprisingly, we find coverage bias persists in homopolymers as short as 6 bp, shorter 
tracts than previously reported. While G+C- rich regions challenge all Illumina sequencing workflows, a modified Nextera library 
preparation that amplifies DNA with a high- fidelity polymerase markedly attenuates coverage bias in G+C- rich and homopoly-
meric sequences, expanding the ‘Illumina- sequenceable’ genome. Through these findings, and by defining workflow- specific 
exclusion criteria, we spotlight effective strategies for handling bias in M. tuberculosis Illumina WGS. This empirical analysis 
framework may be used to systematically evaluate coverage bias in other species using existing sequencing data.

DATA SUMMARY
(1) Code used to analyse the primary data and produce the 

figures and tables is available via GitLab (https:// gitlab. 
com/ LPCDRP/ illumina- blindspots. pub/).

(2) Data used in the analysis are included or referenced in the 
supplementary tables; Table S7 is available via Zenodo 
(https:// zenodo. org/ record/ 3701840#. Xma5TaaVtGo).

INTRODUCTION
Mycobacterium tuberculosis is the leading cause of death 
from a single infectious agent, killing 1.5 million people 
globally in 2018 [1]. Drug- resistance in M. tuberculosis is a 
major challenge for tuberculosis (TB) control and effective 

treatment [1]. Today, whole- genome sequencing (WGS) is 
the most commonly used tool for establishing new markers 
for TB surveillance and identifying candidates for molecular 
diagnostics as M. tuberculosis evolves [2, 3]. Each sequencing 
technology has unique limitations, defined by both the 
sequencing instrument and library preparation methods 
(library prep), referred to together as ‘sequencing workflow’. 
While WGS presents many opportunities for understanding 
and controlling TB, workflow- specific shortcomings are 
poorly understood. In this paper, we empirically evaluate 
depth of coverage across seven common Illumina workflows 
to describe workflow- specific coverage bias, which affects 
genome assembly and variant calling [4].
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Illumina sequencing by synthesis (SBS) is by far the most 
commonly used WGS technology [5]. Its library preparation 
includes a DNA amplification step, which significantly reduces 
the quantity of DNA required for sequencing. Illumina library 
preparation also allows many samples to be multiplexed in 
a single run, lowering sequencing costs substantially. These 
qualities make Illumina SBS desirable for many applications. 
However, some aspects of Illumina SBS limit its reliability for 
certain downstream analyses. Several genomic features cause 
biases that reduce coverage when sequenced on Illumina SBS 
technologies, particularly in segments of the genome where 
they are prevalent. The most well- characterized of these is 
G+C content [4, 6, 7]. GC bias originates primarily in library 
preparation, during amplification by PCR [8]. PCR is biased 
against amplifying GC- and AT- rich amplicons, which results 
in disproportionate read copy numbers [7, 8].

Repeat regions, homopolymers and palindromes also report-
edly drive coverage bias in short- read sequencing [4, 7, 9–13]. 
The inability of short reads to unambiguously span repeat 
regions prevents them from being mapped confidently to the 
genome, thereby reducing coverage depth [7]. Homopolymers 
cause bias in some sequencing systems [4, 14], but Illumina 
states that homopolymers have virtually no effect on Illumina 
SBS [15]. Palindromic sequences can form hairpin and stem- 
loop structures during amplification, and have been shown to 
impede sequencing [9, 10, 16, 17]. Bias due to palindromes 
has been shown in sequencing by ligation (SBL) technolo-
gies and long- read SBS, but reportedly does not introduce 
bias in Illumina sequencing [10, 16–18]. Coverage bias due 
to these sequence attributes is influenced by two choices in 
the sequencing workflow: sequencing instrument and library 
preparation.

Many researchers are unaware that Illumina WGS data 
is affected by coverage bias, and take very low coverage to 
imply true deletions, ignoring coverage bias as a potential 
cause [19, 20]. Others are aware of this bias, and handle it 
by excluding large regions of the genome that meet field- 
standard criteria with limited knowledge of which locations 
are affected [7, 21, 22]. A common practice for handling 
Illumina sequencing bias in M. tuberculosis is to exclude all 
or part of the pe and ppe multigene families [22–25]. These 
genes make up 10 % of the coding capacity of the genome 
[26] and play roles in evading host immunity that are impor-
tant, yet poorly understood [27]. Indiscriminate exclusion 
of these families needlessly obscures valuable information 
from sites unaffected by coverage bias. Bias is not limited to 
pe/ppe genes, yet they are the primary excluded segments 
of the genome. Apart from pe/ppe genes (whose exclu-
sion is often attributed to repetitive segments rather than 
GC- richness), researchers rarely address GC bias, despite its 
well- characterized contribution to coverage bias. This fracture 
in how the M. tuberculosis WGS community handles Illumina 
bias highlights a need for specific, empirically determined 
exclusion criteria. In an initial step towards this, Tyler and 
colleagues [6] studied the fidelity of Illumina- sequenced M. 
tuberculosis genomes, and reported differential coverage bias 
between genomes prepared with Nextera and TruSeq library 

preps. They also reported that samples prepared with TruSeq 
resolved genomes into fewer contigs than Nextera and that 
certain regions, particularly GC- rich regions, could not be 
resolved with either library.

While these findings demonstrated differential coverage bias 
between library preps for M. tuberculosis, a systematic, single- 
base resolution analysis of positions in the M. tuberculosis 
genome that suffer from coverage bias is lacking. Here, we 
analyse coverage bias stratified across sequencing workflows 
to: (i) provide lists of blind spots in the M. tuberculosis refer-
ence genome with consistent coverage bias; (ii) characterize 
coverage bias for features of sequence composition known to 
be problematic.

We provide these deliverables for seven sequencing work-
flows separately, and in a pooled set. We find that blind spots 
distribute differently across the M. tuberculosis genome 
than accounted for by common practices in WGS analysis 
pipelines [7, 22–25] and overlap a variety of genes, including 

Impact Statement

In 2018, Mycobacterium tuberculosis killed more human 
beings than any other single infectious agent. Whole- 
genome sequencing (WGS) is a major tool for molecular 
epidemiology and molecular diagnostics development 
and, thus, a critical component in curtailing the global 
tuberculosis burden. Illumina is the most common WGS 
platform for sequencing M. tuberculosis, but its biases 
and pitfalls are currently dealt with heuristically (such as 
excluding all pe/ppe genes), if at all. Here, we system-
atically identify coverage- biased regions in the primary 
M. tuberculosis reference genome. After filtering out true 
deletions from 1547 Illumina- sequenced M. tuberculosis 
genomes, we apply a probabilistic model to classify 
systematically under- covered positions as blind spots in 
the genome. We provide genome- wide, workflow- specific 
lists of blind spots for seven combinations of sequencing 
instrument+library preparation. These lists enable Illu-
mina WGS studies to select sequencing workflows that 
maximize coverage for their genomic regions of interest, 
and set exclusion criteria from existing studies empiri-
cally, rather than heuristically. Workflow- stratified anal-
ysis of blind spot distribution across sequence features 
identified coverage- bias profiles dependent on work-
flow, and others that consistently pervade Illumina 
sequencing. One workflow markedly reduced coverage 
bias and reliably sequenced thousands of positions in pe/
ppe genes, regions that have consistently evaded Illumina 
sequencing. All workflows had heightened coverage bias 
in homopolymers of shorter length than had been previ-
ously reported to impede Illumina sequencing. These 
findings and lists can inform design and analysis of 
future M. tuberculosis Illumina WGS studies.
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several implicated in drug resistance. Workflow- stratified 
analyses identify a modified Nextera library prep [28] as the 
least biased option and reveal distinct coverage biases across 
Illumina sequencing workflows, and the unexpected finding 
of coverage bias at homopolymers of a shorter length than 
previously thought. The provided blind spot list [29] enables 
more informed interpretation of short- read sequencing data 
and improved WGS design for genome- wide association 
(GWA) and phylogenomic studies.

METHODS
Sequence processing
First, we searched the NCBI (National Center for Biotech-
nology Information) database for M. tuberculosis genomes 
uploaded between January 1st 2016 and March 24th 2019, 
and sequenced on an Illumina instrument, producing 5131 
candidate genomes. Genomes without reported library prep, 
or prepared with a library prep other than a traditional or 
modified Illumina library, were excluded, leaving 1965. 
Candidate SRA IDs were pulled using SRA toolkit’s [30] 
--prefetch function and raw fastq files were obtained from 
NCBI using SRA- tools --fastq- dump. After each file was 
downloaded, reads were aligned to a reference genome using 
a parallelized in- house pipeline: first, the downloaded raw 
reads were trimmed to remove low- quality ends using Trim-
momaticPE (- phred33 LEADING:3 TRAILING:3 SLIDING-
WINDOW:4:15) [31]. After trimming, reads were aligned to 
the H37Rv reference genome (NC_000962.3) using bowtie2 
(- x H37Rv −1–2 S) [32]. The SAMtools [33] package was 
then used to sort (--output- fmt BAM), index and produce an 
mpileup (- q 20 f) file. Only genomes from sequencing instru-
ment and library prep combinations (sequencing workflows) 
with ≥25 total genomes were included. Aligned genomes 
with a low genome- wide mean depth of 37 or less were then 
excluded, leaving 1547 genomes (Fig. 1). A custom Python 
script was then implemented to find positions that met our 
low- coverage criteria for each genome. Finally, VarScan2 
mpileup2cns (--min- avg- qual 20 --min- coverage 10 --vari-
ants --output- vcf 1 --strand- filter 0) [34] was used to identify 
variants for building phylogenies.

The DNA extraction protocol and the software chosen for 
the sequence processing pipeline may affect the nature and 
number of the discovered low- coverage positions. While 
this pipeline could potentially be optimized to salvage blind 
spots by choosing a different alignment algorithm, adjusting 

parameters or by subsequently performing indel realignment, 
such optimization would be application specific. Our goal 
was to survey coverage bias in M. tuberculosis, so we have 
chosen common, field- standard software to represent typical 
M. tuberculosis sequencing applications. Irrespective of the 
sequencing processing pipeline selected, differences in extrac-
tion methods could influence coverage bias. Importantly, all 
1547 samples included in this study were extracted using 
a N- cetyl- N,N,N- trimethylammonium bromide (CTAB) 
extraction protocol, thereby eliminating the confounding 
effects that different extraction methods across projects would 
have caused.

Identifying low-coverage positions
Sequencing depth or coverage refers to the number of reads 
that map to a position during alignment, and mean coverage 
is the mean of coverage across all positions in the genome. 
Instead of an absolute coverage threshold, we defined low 
coverage using a relative threshold specific to each genome. 
We express relative coverage of each position (Di) as the 
ratio of the detected coverage at that position (di) to the 
mean coverage (μCi) in the genome (Equation 1). We sought 
to determine which bases in each genome belonged to the 
set of low- coverage positions (KLC) for that genome. A given 
position k belonged to KLC when its relative coverage was ≤0.1 
(Equation 2).

 Di = di
µCi   (Equation 1)

 Di ≤ 0.1 ⇒ k ∈ KLC  (Equation 2)

Phylogenetic filtering
When mapping reads to a reference, positions in the refer-
ence genome that are absent in the clinical genomes (true 
deletions) would be considered low coverage. To account 
for this, we implemented a phylogenomic filtering step to 
identify and exclude true deletions from consideration as 
low- coverage positions on a genome- specific basis. First, a 
maximum- likelihood phylogeny was created using RAxML 
[35] version 8.1.1 with a general time reversible model of 
evolution and 100 bootstrap replicates on a concatenation of 
70 057 SNPs, gathered from each genome’s VCF file, which 
were generated using VarScan2 (from our reference- based 
assembly pipeline). Mycobacterium bovis and 'Mycobacterium 
canetti' were used as outgroups. The tree was visualized and 
manipulated using the iTOL [36, 37] web tool.

Fig. 1. Isolate inclusion criteria. A total of 1965 Illumina sequenced isolates were downloaded from NCBI with fastq- dump. Of these 
isolates, 1800 passed through our in- house sequence processing pipeline. Isolates with ≤37 mean depth of coverage were excluded. 
Finally, excluding isolates sequenced with a workflow comprising fewer than 25 members left 1547 genomes to be used in downstream 
analyses.
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Next, we found which genomes shared each low- coverage 
position. For each position, the set of genomes with low 
coverage at the position was checked for monophyly on the 
phylogenetic tree, using the ete3 [38] Python package, run 
on the newick file generated by RAxML [39]. Each position 
with all low- coverage members belonging to a monophyletic 
group of a size larger than the minimum number required 
to qualify as a blind spot (n=5, calculated according to 
Equation 5) was considered a true deletion, rather than a 
potential blind spot. True deletions identified through these 
steps were removed from downstream analyses. Following 
filtering, the remaining low- coverage positions (Fig. 2) were 
screened for polyphyletic groups containing monophyletic 
subgroups at least as large as the threshold for counting as 
a blind spot (n=5; Equation 5). In such cases, the genomes 
comprising these monophyletic subgroups were excluded 
from G, the total number of genomes containing the posi-
tion of interest, when determining blind spot classification 
(Equation 5). It is possible that an evolutionary event could 
result in a hard- to- sequence mutation, in which case these 
positions would be both monophyletic and genuine blind 
spots. The goal of this study was to minimize false positives 
and report a high- confidence set of blind spots. With this 
in mind, we filtered out all monophyletic positions, thereby 
possibly excluding some true blind spots to ensure high 
specificity.

Classifying blind spots
We took a probabilistic approach to determine the threshold 
for how many genomes a low- coverage position had to occur 
in to be considered a blind spot. In a genome, each position, k, 
was considered to have low coverage if the coverage at position 
k was less than di (Equation 2). Each of the positions meeting 
this criterion were then included in set of positions with low 
coverage (KLC) for the genome. Positions that were true dele-
tions in monophyletic groups and monophyletic subsets in 
polyphyletic groups were then excluded from KLC using the 
phylogenetic approach described above. Given the size of the 
set of positions included in KLC, we calculated the probability 
(E) that, by chance, a given position k belonged to KLC across 
genomes (Equation 3). Therefore, En is the probability that a 
given position k has low coverage in n genomes, by chance 
(Equation 4). This probability was calculated separately for 
each instrument/library prep workflow.

 P
(
k ∈ KLC

)
= median

( size of
{
KLC

}
−true deletions

genome size− true deletions

)
= E 

 (Equation 3)

 P
((

k ∈ KLC
)n) = En  (Equation 4)

Next, we calculated the probability (PLC) that position k had 
low coverage in n of G total genomes in the workflow by 
random chance (Equation 5). The value of G was specific to 
each position because a base with low coverage could have 
been a true deletion in some genomes and a potential blind 
spot in others (Fig. 2b). In other words, for a given position, 
G excluded the number of genomes in which the position was 

truly deleted (determined using the monophyletic subsets in 
polyphyletic groups).

 
P
((

k ∈ KLC
)n |G

)
=


 G

n


× En = G!

n!×
(
G−n

)
! × En = PLC

 
 (Equation 5)

To determine the acceptable false- positive rate (Fp), we first 
set a threshold for the number of false positives we considered 
‘acceptable’ to include. We sought to capture a minimal set of 
blind spots and be conservative in the number of false posi-
tives included. With this objective in mind, we accepted only 
0.1 false positives in our set of classified blind spots. A false- 
positive rate of 6×10−7 yields 0.1 false blind spots; therefore, 
we set Fp to this value. Using this acceptable false- positive 
rate (6×10−7) and our known genome size (4 411 532 bp), we 
defined our blind spot detection threshold (F) as a function 
of the median (across genomes in each sequencing workflow) 
number of low- coverage positions (KLC) that were not deleted 
(Equation 6).

 
F = median

(
size of

{
KLC

}
−true deletions(

1+ 1
Fp

)
×genome size   (Equation 6)

For each position that had low coverage in a genome, PLC was 
calculated and compared to the blind spot detection threshold 
F to determine whether the position had low coverage in more 
genomes than we would expect by chance. If the observed 
probability of a position appearing as low coverage in n 
genomes by chance out of G genomes in a workflow was lower 
than our detection threshold, we included that position in our 
final set of blind spots, Bs (Equation 7).

 k ∈ Bs if k ∈ KLC for n isolates such that PLC ≤ F  
 (Equation 7)

Annotating sequence attributes
Homopolymers
Homopolymers were defined as any sequence of consecu-
tive (n >1) identical bases (guanine, cytosine, thymine or 
adenine). Homopolymers were retrieved from the H37Rv 
genome (NC_000962.3) with a custom shell script.

Repeats
To identify repeat regions, we used the Tandem Repeats 
Finder open source software (TRF) [40] with the following 
parameters: (2 7 7 80 10 50 500 -d –m). TRF uses Smith–
Waterman alignment to detect repeats, and filters candidate 
repeats based on alignment score values the user inputs.

G+C content
Prior work has demonstrated that the primary driver of GC 
bias is the G+C content [(guanines+cytosines)/total bases] of 
fragments during PCR amplification [41]. For a given base, 
the probability that its flanking bases will co- occupy the same 
fragment diminishes as a function of the distance between 
them. However, relatively distant bases (up to the length of 
the fragment) will sometimes contribute to G+C content. 
To capture bases with extreme G+C content in fragments at 
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Fig. 2. Phylogenetic filtering of true deletions reduces blind spot false discovery rate. True deletions can confound naïve coverage- based 
analysis. Our phylogenetic filtering method is depicted, showing positions where low- coverage positions (red) were frequent enough to 
meet blind spot criteria when called naïvely. Example positions with (a) monophyletic and (b) polyphyletic distributions of genomes with 
low coverage (<10 % of mean genome coverage) are depicted prior (left) and following (right) phylogenetic filtering. (c) Distribution of 
genomes harbouring numbers of true deletions identified by phylogenetic filtering. The high number of genomes with identical numbers 
of true deletions suggests phylogenetic filtering captured clonal expansions harbouring deletions that would have otherwise inflated 
the blind spot count.
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multiple scales that might contribute to GC bias, we indepen-
dently considered G+C content in variably sized windows, 
calculating G+C content around each base of the H37Rv 
genome for each window size (50 bp and between 100–1000 
bp, in 100 bp intervals).

Palindromes
We identified palindromes in the H37Rv genome using the 
emboss [42] suite’s palindrome software. This component of 
the EMBOSS software package scans the genome for inverted 
matches, and filters based on user- defined match/mismatch 
and gap requirements. We included palindromes with stem 
length ≥7 bp [43] and allowed for mismatches and/or gaps 
based on emboss’s recommended settings to capture a wide 
range of candidate palindromes.

Defining thresholds to classify sequence attributes
We took an iterative, empirical approach to determine thresh-
olds for the following attributes: homopolymer length, repeat 
period size (length of subunit being repeated), repeat length 
(total length of the repeated subunits) and ‘extreme’ G+C 
content. Within each iteration, sequencing attributes were 
binned on their criteria (e.g. length of homopolymer) and 
examined bin- wise for deviation from the ‘unexplained’ blind 
spot fraction (blind spots in positions qualifying for none of 
the attributes). The bases classified as one or more of the other 
attributes in the previous iteration were excluded from this set 
of unexplained positions. Thresholds for each criterion were 
set at the first (i.e. least extreme) bin/category where blind 
spots were significantly more prevalent than blind spots in 
unexplained sequences [two- sided Fisher’s exact test, 2.5th 
quantile of odds ratio (OR) >2] and increased monotonically 
thereafter. We iterated through this process until thresholds 
for all three attributes stabilized. All statistical tests for deter-
mining thresholds were implemented in R.

For the first iteration, homopolymers were binned by length 
and the fraction of blind spots in each bin was compared to 
the fraction of blind spots in all other positions in the genome. 
The minimum homopolymer length that was significantly 
enriched for blind spots was set as the threshold. The same 
process was performed on tandem repeat lengths, binned 
in intervals of two. Shorter repeats that did not meet the 
threshold for length were then separated on period size and 
investigated for enrichment of blind spots, though none were 
significantly enriched.

The threshold for extreme G+C content was determined 
empirically and calculated separately for each window size. 
G+C content was calculated for the number of bases in the 
window, half on each side flanking the base of interest. G+C 
content was then binned in 2% intervals for each window 
size. In each bin, the proportion of blind spots was calculated 
(no. of blind spots matching criteria/total positions in genome 
matching criteria) and compared to the proportion of blind 
spots in sites unexplained by homopolymers and repeats. 
While all bins were investigated for bias (high and low G+C 
content), only GC- rich bins had significantly disproportionate 

blind spot fractions. Therefore, we set thresholds only for high 
G+C content for each window size. Bases were classified as 
considered GC- rich if their G+C content exceeded thresholds 
for any of the windows.

Instrument and library preparation error profiles
We identified blind spots separately for each combination 
(n=7) of instrument and library prep (sequencing workflow). 
The instruments included were NextSeq 500, MiSeq, HiSeq 
2000 and HiSeq2500. Library preps included were TruSeq, 
Shotgun Nextera, Nextera XT and modified Nextera. We 
defined two sets of blind spots to be used for different purposes 
throughout the analysis: (i) a ‘pooled’ set (n=1547 genomes) 
and (ii) a ‘comparison’ set (n=175 genomes, 25 per workflow). 
After using the blind spots classified separately within each 
workflow using all available genomes (Table S1, available with 
the online version of this article), these workflow- specific sets 
were pooled into a single pooled set (Table S2) to capture 
additional blind spots. Since the blind spot criteria is conserv-
ative, favouring false negatives over true positives (Equation 
6), evaluating additional genomes is likely to increase true 
positives with a negligible increase in false positives. However, 
blind spot classification depends on the number of genomes 
considered, thereby adding the confounding effect of sample 
size when comparing the number of blind spots in each work-
flow. To enable fair comparison between workflows, we also 
determined the comparison set of blind spots by classifying 
blind spots using the same number of genomes within each 
workflow. The workflow with the smallest sample size (n=25) 
was the NextSeq 500 instrument paired with TruSeq library 
prep. Genome- wide mean coverage was then used to select 25 
genomes from the other six workflows with the most similar 
mean coverage. Blind spots were classified using these curated 
sets of genomes. This comparison set was used for the strati-
fied parts of our analysis when contrasting the factors that 
challenge each sequencing workflow.

Statistical tests – comparisons between 
sequencing instruments, library preparation 
methods and their combinations
When comparing blind spots between sequencing workflows 
(combinations of instrument and library prep), statistical 
tests were chosen according to the number of groups being 
compared, whether they distributed normally and whether 
they had similar variance. When more than two workflows 
were compared, ANOVA was used to compare all that 
distributed normally and had variances within fourfold of one 
another (the ‘rule- of- thumb’ for approximately equal vari-
ance of greatest variance must be no more than four times the 
smallest), and post- hoc Tukey tests were performed pairwise 
to estimate differences between means. Comparisons between 
non- normally distributed combinations were done pairwise 
using Wilcoxon signed rank sum test. Comparisons between 
the non- bootstrapped sequencing workflow were performed 
pairwise using one sample t- tests. Pairwise comparisons 
between normally distributing combinations of similar 
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variance were evaluated with paired t- tests. All statistical tests 
were implemented in R [44].

Annotating blind spots
Overlap between pooled blind spots and annotated coding 
regions in the H37Rv reference genome (NC_000962.3), 
downloaded from MycoBrowser (https:// mycobrowser. epfl. 
ch/), was used to determine genes affected by blind spots. 
Genes containing blind spots were grouped by gene family 
and the fraction of bases in each family that were blind spots 
was calculated, along with the fraction of blind spots that 
were bases in genes of each family. To find genes implicated 
in drug resistance, we joined the gene- based blind spot list 
with a curated list of resistance- implicated genes from recent 
publications (Table S3).

RESULTS
The objective of this work was to precisely describe the 
coverage bias of common Illumina sequencing workflows 
for M. tuberculosis WGS and translate them into actionable 
knowledge for researchers designing or interpreting the results 
of M. tuberculosis WGS studies. We took a phylogeny- aware, 
probabilistic approach to classify blind spots, and stratified 
our analysis by sequencing instrument and library prep 
(sequencing workflow). We defined low coverage relative to 
each genome’s mean overall coverage (<10%), rather than an 
absolute threshold (e.g. <5 reads), mitigating the confounding 
effect of mean sequencing depth when applying an absolute 
threshold (Fig. 3b). By analysing coverage bias stratified across 
sequencing instrument and library preparation technique, 
we contrast how problematic sequence attributes challenge 
different sequencing workflows. We applied this approach to 
1547 recently sequenced genomes (Table S1) across popular 
Illumina sequencing workflows to identify Illumina blind 
spots in the genome [29] that are systematically under- 
represented due to coverage bias.

Phylogenetic filtering removes deletions 
masquerading as blind spots
If one assumes low coverage invariably indicates coverage 
bias during sequencing, true deletions would be included 
spuriously as blind spots. To remove such confounding 
phylogenetic events from our analysis, we filtered out posi-
tions where low coverage was localized to one portion of the 
phylogeny (monophyly) in more genomes than expected by 
chance. This filtered out positions both from monophyletic 
groups (Fig. 2a) of genomes and monophyletic subsets (≥5 
genomes) within polyphyletic groups of genomes (Fig. 2b), 
removing true deletions to capture true blind spots. True- 
deletion frequency (mean=23) distributed irregularly among 
genomes (Fig. 2c), consistent with the clonal nature [45] of 
M. tuberculosis evolution. Following phylogenetic filtering, 
positions were classified as blind spots if they occurred in 
enough genomes within a sequencing workflow to meet our 
probability- based threshold (Equation 7).

Catalogue of blind spots in the M. tuberculosis 
genome
We defined two sets of blind spots: a pooled set (n=1547 
genomes) and a comparison set (25 per each of the seven 
workflows, n=175 genomes). The pooled set is the union of 
blind spots across workflows, where blind spots are calculated 
separately for each workflow using all available genomes. 
This maximizes capture of true- positive blind spots, but is 
weighted unequally across sequencing workflows due to ineq-
uity in genomes per workflow [NextSeq 500, TruSeq (n=25); 
HiSeq 2000, Shotgun Nextera (n=61); HiSeq 2500, TruSeq 
(n=70); HiSeq 2500, Nextera XT (n=87); HiSeq 2500, Shotgun 
Nextera (n=159); MiSeq, TruSeq (n=284); HiSeq 2000, modi-
fied Nextera (n=861)] (Table S4). This set includes blind 
spots present when using any of the seven workflows, which 
is useful for researchers who are using data from multiple 
workflows or workflows not included in this study. This 
pooled set comprises 3.6 % (159 659 positions) of the H37Rv 
reference genome (Table S2), scattered across the genome 
(Fig. 3a) in 5888 regions. Only 1.1 % of blind spots appear 
as single positions, while the majority appear in consecutive 
positions, forming clusters (mean length 27 bp, range 1–1816 
bp), consistent with the idea that coverage bias is driven by 
sequence context.

The comparison set of blind spots was created using the same 
number of genomes (n=25) from each sequencing workflow, 
accounting for the positive relationship between number of 
genomes in a group and number of blind spots classified in 
the group. In this comparison set (Table S5), 8379 (8 %) blind 
spots were shared among all seven workflows, while most sites 
only have coverage bias for a subset of workflows. Many blind 
spots were specific to only one workflow (uniquely present) or 
were present in all other workflows but one (uniquely absent) 
(Table 1). Notably, 10 519 of the blind spots in the comparison 
set are uniquely absent among genomes sequenced with the 
HiSeq2000/modified Nextera workflow, more than all blind 
spots uniquely absent in the other six workflows combined. 
The intersection of blind spots between the remaining six 
workflows would increase from 8379 to 18 898 if HiSeq2000/
modified Nextera were not considered, a more than twofold 
increase. This workflow is able to resolve more than half of 
the blind spots present among all other workflows considered, 
suggesting it mitigates bias in regions that challenge other 
sequencing workflows.

Tyler et al. reported 124 and 195 ‘ultra- low coverage’ (ULC) 
hotspots in genomes prepared with TruSeq and Nextera 
libraries [6], respectively. These ULC regions were defined 
by arbitrary absolute low coverage (<5×) and length (>10 bp) 
thresholds. While we used a different version of the reference 
genome for assembly and different methods for identifying 
coverage bias, our blind spots capture a majority of their 
ULC regions (83 % for TruSeq and 63 % for Nextera). Our 
approach captured more coverage- biased sites, but the overlap 
between blind spots and Tyler and colleagues’ ULC positions 
show congruent results despite methodological differences, 
attesting to the reproducibility of coverage- bias analyses.

https://mycobrowser.epfl.ch/
https://mycobrowser.epfl.ch/
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Fig. 3. Illumina blind spots in M. tuberculosis WGS. (a) Distribution of blind spots from the pooled set (the union across all seven sequencing 
workflows) across the genome of M. tuberculosis virulent type strain H37Rv. The H37Rv genome is binned into 50 kb segments and the 
fraction of blind spots (red) is shown for each bin. The dashed blue line represents the baseline fraction of blind spots across the genome 
(3.6%), highlighting areas with disproportionate levels of blind spots. (b) Comparison of blind spot classification when only using our 
relative threshold (grey) versus when using either our relative threshold or the previously used absolute (red) threshold (coverage <5) 
[6] for classifying a position as having low coverage. Each position in the pooled set of blind spots is plotted according to its coverage (y- 
axis) and the mean coverage (x- axis) across the genome. Mean coverage is binned (bin width=20) and jittered within each bin, with each 
point rendered at 0.05 opacity to visualize density. Within any given sequencing workflow, the fraction of blind spots that are considered 
low coverage according to the relative threshold but not the absolute threshold increases in step with mean coverage. Therefore, when 
defining low coverage using an absolute threshold, genomes with higher mean coverage appear to have fewer blind spots, whether or 
not this is truly the case.
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Sequencing workflow affects prevalence of blind 
spots in Illumina WGS studies
To compare blind spots between workflows, we evaluated 
the number of blind spots in 100 bootstraps of 25 genomes 
(the minimum genomes in any given workflow; Table S6). 
Our methods for estimating the expected difference in the 
number of blind spots between sequencing workflows differed 
according to how the number of blind spots distributed 
among the bootstraps (Methods). However, when asking 
whether a given sequencing workflow produces significantly 
more/fewer blind spots than another workflow, we employed 
methods to capture what difference would be meaningful to 
researchers for WGS experimental design. When designing 
sequencing experiments, researchers often operate under 
significant financial or logistical constraints. When opting for 
a sequencing workflow that requires a more expensive library 
preparation or use of an instrument outside of their institu-
tion or trusted collaborators, they likely want to be confident 
that their sequencing experiments deliver fewer blind spots 
every time, or nearly so. Taking this into consideration when 
comparing sequencing workflows, we qualified the number 
of blind spots between workflows as significantly different 
only when the number of blind spots differ >99 % of the 
time, rather than considering an arbitrarily small difference 
between means as significantly different. We use the relation-
ship described by Payton and colleagues [46] to estimate this 
from the overlap of the range in 2.5th–97.5th quantiles of two 
distributions under comparison.

Before comparing sequencing workflows, we examined the 
relationship between mean coverage among genomes in 
bootstraps and blind spots. While 3/6 sequencing workflows 
correlated significantly (P <0.05, 2 negative, 1 positive) yet 
modestly with coverage (−0.27<R<0.29), the coverage–blind 
spot relationship does not appear to bias our conclusions 
regarding differences between workflows (Fig. 4a).

Coverage bias between instruments
We investigated the number of blind spots between libraries 
prepared with the same kit but sequenced on different instru-
ments, focusing on evaluating differences in the expected 
number of blind spots when sequenced on each workflow 

(Fig. 4d). We first contrasted blind spots between samples 
prepared with TruSeq, allowing us to compare HiSeq 2500, 
MiSeq and NextSeq 500. Among these three instruments, 
NextSeq had the fewest mean blind spots (P <2.2×10−16, one- 
sample t- test), while HiSeq2500 had modestly fewer blind 
spots than MiSeq [mean difference=1397, confidence interval 
(CI) 522–2273, P=8.99×10−5, Tukey multiple comparisons 
of means], but an insignificant difference in the expected 
number of blind spots. While the relatively low representation 
(n=25) of NextSeq 500/TruSeq genomes in our study makes 
this conclusion tentative (with no bootstrapping, we cannot 
evaluate a CI), the number of blind spots in its single sampling 
of 25 genomes is fewer than in any of the 100 bootstraps for 
MiSeq or HiSeq 2500 workflows prepared with the TruSeq 
library prep (Fig. 4a). To evaluate the remaining instrument 
(HiSeq 2000), we compared it to HiSeq 2500 using workflows 
prepared with the same library prep kit (Shotgun Nextera). 
HiSeq 2500 had a lower mean number of blind spots than 
HiSeq 2000 (mean difference=8840, CI 7964–9716, Tukey 
multiple comparisons of means) and a significantly lower 
expected number of blind spots (difference between 95 % CI 
6040–11 329) (Fig. 4c, d). By combining the results from these 
comparisons, we tentatively conclude that among the instru-
ments we evaluated, sequencing with NextSeq leads to the 
fewest blind spots in the M. tuberculosis genome. However, 
examining more genomes sequenced on NextSeq, and evalu-
ating its performance in combination with additional library 
prep kits, is needed to substantiate this conclusion. We cannot 
rule out non- additive combinatorial effects between instru-
ment and library prep, which could condition instrument bias 
on library prep.

Coverage bias between library preparation methods
We investigated the number of blind spots between genomes 
sequenced with the same instrument but prepared with 
different kits. First, to compare Nextera XT, Shotgun Nextera 
and TruSeq library preps, we contrasted blind spots between 
workflows sequenced with HiSeq2500. Among these three 
kits, Shotgun Nextera had the lowest mean number of blind 
spots (estimated difference between means=10 903, CI 
10 027–11 779, Tukey multiple comparisons of means) and 
a significantly lower expected number of blind spots (differ-
ence between 95 % CI 8228–13 987) (Fig. 4c). To evaluate the 
remaining library prep, modified Nextera, we compared blind 
spots between workflows sequenced with HiSeq2000. After 
combining these two comparisons, modified Nextera library 
prep appears to markedly reduce the number of positions 
impacted by coverage bias in M. tuberculosis. HiSeq2000/
modified Nextera (the only workflow evaluated with modi-
fied Nextera) had the lowest number of expected blind spots 
among all workflows (difference between 95 % CI 12 740–
20 114 compared to HiSeq 2500/Shotgun Nextera), and a 
lower mean number of blind spots than the workflow with 
the same instrument and Shotgun Nextera library prep (esti-
mated difference between means=25 863, CI 24 987–26 738, 
Tukey multiple comparisons of means). This gap in blind 
spots between the HiSeq 2000/modified Nextera sequencing 
workflow and the next best performing sequencing workflow 

Table 1. Number of blind spots uniquely present or absent in each 
sequencing workflow

Instrument Library prep Uniquely 
present

Uniquely 
absent

NextSeq 500 TruSeq 5359 3256

MiSeq TruSeq 5726 1337

HiSeq 2500 TruSeq 2590 451

HiSeq 2000 Modified Nextera 3314 10 519

HiSeq 2000 Shotgun Nextera 1869 158

HiSeq 2500 Nextera XT 5387 2302

HiSeq 2500 Shotgun Nextera 612 111
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Fig. 4. Blind spot prevalence across all instruments, library preps and their combinations. (a) Scatterplot and correlations between the 
number of blind spots (y- axis) and mean coverage (x- axis) among 25 genomes for each bootstrap (n=100 per instrument/library prep 
workflow). Correlation coefficients are displayed for each workflow. *P <0.05, **P <0.01. (b) Distribution of the number of blind spots 
across bootstraps for each workflow. (c) The number of blind spots (y- axis) across the seven sequencing workflows (x- axis) (n=175, 
25 genomes for each instrument/library prep workflow). Error bars represent ±1 sd from the mean number of blind spots across 
bootstraps. ***Non- overlapping 95 % CI. (d) Pairwise comparison between sequencing workflows of estimated mean blind spots (row- 
wise, bottom left) and expected difference in number of blind spots (99 % interval, inferred by 95 % CI boundaries, as described elsewhere 
[46]; column- wise, top right). Statistical tests were chosen according to distribution and equality of variance. Normal distributions 
of equivalent variance were compared with Tukey multiple comparisons of means; comparisons involving one or more sequencing 
workflows with non- normal distributions were compared with Wilcoxon rank sum test; one sample t- tests were used to compare the 
blind spots in the single NextSeq 500/TruSeq set to the mean blind spots across bootstraps in other workflows. ***P <1×10−5. ns = not 
statistically significant, NA = notapplicable for non- bootstrapped sequencing workflow.
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(Fig.  4c, d), HiSeq 2500/Shotgun Nextera, is particularly 
impressive considering that HiSeq 2500 outperforms HiSeq 
2000 with the same library preparation, and that Shotgun 
Nextera was the best performing library prep on HiSeq 2500. 
Overall, this analysis demonstrates that choice of sequencing 
workflow can alter the range of blind spots in Illumina WGS 
studies by tens of thousands of positions.

Common sequence attributes across library preps 
and instruments challenge sequencing
Next, we investigated how sequence attributes previously 
implicated in coverage bias associate with Illumina blind 
spots in M. tuberculosis. Extreme G+C content [4], tandem 
repeats [7], homopolymers [4, 11–13] and palindromes [9, 10] 
cause coverage bias for some SBS and SBL technologies, but 
only repeats and G+C content are mentioned by Illumina’s 
documentation and implicated in SBS chemistry biases [15]. 
After isolating the positions meeting the general criteria for 
each attribute, we took an iterative approach (Methods) to 
set thresholds for defining each sequence attribute and clas-
sified all positions in the H37Rv genome accordingly (Table 
S7; https:// zenodo. org/ record/ 3701840#. Xma5TaaVtGo) [29]. 
For all sequence attributes, blind spots became markedly 
more abundant as the extremity of each increased (Fig. 5a–c).

Following classification, we asked how each sequence attribute 
changed the odds of a position being a blind spot. Over half 
(39 188/75 458, 51.9 %) of the bases within 1588 repetitive 
regions (≥30 bp) were blind spots, a staggering 37.8- fold 
(CI 37.2–38.4) greater frequency than non- repeat regions. 
G+C content was binned by G+C mol% within windows of 
length 50–1000 bp (at intervals of 100 bp other than the 50 bp 
window), and thresholds were calibrated separately for each 
window size. Because the G+C mol% within the amplified 
fragment during PCR can dictate coverage bias [4], positions 
were considered GC- rich if they exceeded the threshold in 
any of the window sizes (Table S8). Among 851 580 GC- rich 
positions, 98 967 (11.6 %) were blind spots, 7.58- fold the 
frequency of non- GC- rich positions (CI 7.50–7.66). In 
homopolymeric sequences (length ≥6 bp), blind spots were 
5.5- fold (CI 5.28–5.93) more prevalent (1023/5961, 17.2 %) 
than in non- homopolymeric sequences. This could be viewed 
as surprising, considering Illumina maintains that homopoly-
mers do not introduce coverage bias in their SBS technologies 
[15]. Nearly one in seven bases in the M. tuberculosis genome 
(651 837 bases) are within palindromic regions (length ≥7 
bp), of which 36 374 (5.58 %) were blind spots, a 1.7- fold 
(CI 1.72–1.76) enrichment compared to non- palindromic 
sequences, considerably smaller than the other attributes. 
The modest blind spot enrichment in palindromic sequences 
also conflicts with previous literature, as they typically only 
challenge SBL technologies [10]. Of the remaining positions 
that met criteria for none of the four problematic attributes, 
only 1.6 % are blind spots (unexplained blind spots).

Next, we asked how being a blind spot changed the odds that a 
position would possess each sequence attribute, and evaluated 
overlap between sequencing attributes in the M. tuberculosis 

genome as a potential explanation for the blind spot enrich-
ment in homopolymeric and palindromic sequences. High 
G+C content is considerably more prevalent among blind 
spots than the other sequencing attributes (62.0 % versus 
24.5 % for repeats, the next highest; Fig. 5d). G+C content 
among blind spots (73.0 mol%) is significantly greater (P 
<2×10−16, Fisher’s exact test) than the G+C content of the 
H37Rv genome (65.6 mol%) (Fig. 5c), and alone ‘explains’ 
30.0 % (47 819) of blind spots (Fig. 5e), dwarfing the number 
explained exclusively by repeats, homopolymers or palin-
dromes. Unlike GC- rich blind spots, for other attributes, the 
overwhelming majority of blind spots are classified as multiple 
problematic sequence attributes, most often with high G+C 
content. Most (69.2 %) blind spots can be explained by at 
least one of these four attributes, yet 49 154 (30.8 %) remain 
unexplained.

While we have described the likelihood of a position being 
a blind spot given a sequence attribute, we have not done 
so when attributes are isolated, nor have we evaluated the 
effect of sequencing workflow on this relationship. To fill these 
gaps, we calculated the blind spot fraction for each problem-
atic attribute, first by considering all positions meeting the 
sequence criteria (Fig. 6a) and then considering only posi-
tions that meet the criteria for one attribute (Fig. 6b). Other 
than for isolated palindromes, the blind spot fraction of all 
sequencing attributes exceeded the blind spot fraction for 
unexplained positions, both overall (Fig. 6a) and in isolation 
(Fig. 6b).

Across all sequencing workflows, tandem repeats are the 
most problematic attribute, both in combination with other 
attributes (Fig. 6a), and in isolation (Fig. 6b). This result is 
consistent with the literature consensus that repeats introduce 
mapping ambiguity, creating assembly gaps and depleting 
coverage [6, 12, 47]. It is unsurprising that this problem 
persists irrespective of library preparation or sequencing 
instrument, as it is inherent to short- read assembly. While 
GC- rich regions explain the most blind spots, a given GC- rich 
position is less likely to be a blind spot than a given homopol-
ymeric or tandem repeat position (Fig.  6). GC- richness 
accounts for such a large fraction of the blind spots because 
the entire H37Rv genome is GC- rich (65.6 %). The proportion 
of blind spots in homopolymeric regions was higher than the 
unexplained blind spot fraction, even in isolation (Fig. 6a, 
b). This departs from what has been previously described in 
the literature and refutes Illumina’s documentation that states 
homopolymers do not cause sequencing errors in Illumina 
SBS [15].

Isolated palindromic regions lacked coverage bias across all 
workflows (Fig. 6b), consistent with prior reports that palin-
dromic sequences do not challenge SBS methods [10, 17]. 
Curiously, strictly palindromic positions had less coverage 
bias than unexplained positions (Fig. 6b), suggesting addi-
tional factors contribute bias and are absent or less prevalent 
in palindromic regions. This observation may be explained 
partially or wholly by homopolymers, GC- rich and repeti-
tive regions with slight coverage bias beyond the resolution of 

https://zenodo.org/record/3701840#.Xma5TaaVtGo
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Fig. 5. Relationship between blind spot prevalence and sequence attributes previously implicated in coverage bias. (a–c) The blind spot 
fraction (y- axis) among positions binned by attribute- specific parameters. For each attribute, only positions meeting criteria for no other 
attributes are considered. (a) Homopolymers (binned by length, bin size=1). (b) Tandem repeats binned at different lengths to show the 
general trend between blind spot fraction and repeat length (top main chart, range=0–500, bin size=20) and to show precise threshold 
value (pop- out expanded region, range=0–50, bin size=2). (c) G+C content (window sizes 50 bp and 100–1000 bp by increments of 100 
bp). Positions were classified as ‘high GC’ if they exceeded the threshold for any window size. Palindromes were classified according 
to previously defined criteria [43]. (d) The total number of blind spots (y- axis) stratified by sequence attributes (x- axis). Blind spots are 
grouped and coloured according to the set of sequence attributes they meet criteria for. Bar segments are coloured as follows: groups 
of blind spots that only meet criteria for a single sequence attribute (grey), for at least two attributes (colours – see key for details), and 
those that meet criteria for none of the four sequence attributes (white). (e) Number of blind spots meeting criteria for each combination 
of sequence attributes.
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our thresholding criteria (OR >2) and, therefore, considered 
unexplained.

Error profiles differ across sequencing protocols
To investigate the blind spot fraction within each attribute, we 
stratified our analysis across sequencing workflows, using the 
comparison set of blind spots (Fig. 6). By examining differ-
ences in coverage bias for the problematic attributes between 
workflows, we can gain an understanding of the source(s) of 
coverage bias. The HiSeq 2000/modified Nextera workflow 

exhibited the least coverage bias in GC- rich (P <2.2×10−16, 
OR 3.26, CI 3.14–3.37) and homopolymeric (P=0.0091, OR 
1.51, CI 1.10–2.09) sequences, whereas HiSeq2500/Shotgun 
Nextera had the least bias (P <6.62×10−8, OR=1.27, CI 
1.16–1.38) in repeat regions (two- sided Fisher’s exact test; 
Fig. 6b). HiSeq2000/modified Nextera also had marginally 
(OR 1.08, CI 1.05–1.11) yet significantly (P <1.06×10−9) less 
coverage bias in unexplained sequences (Fig. 6). This could 
be explained by marginal effects of sequences with GC- rich 
and shorter homopolymers that show signs of coverage 

Fig. 6. Blind spot prevalence in sequence attributes stratified by instruments and library preps. (a) The blind spot fraction (y- axis) 
in positions with sequence attributes (x- axis) across combinations of Illumina library preps and sequencing instruments (n=175, 25 
genomes for each instrument/library prep workflow). Dashed lines denote the blind spot fraction for sequences not meeting criteria for 
any of the sequence attributes (blue line), and the mean blind spot fraction for each attribute across instrument/library prep workflows 
(grey lines). (b) Shows the same as (a), but only considering positions that meet criteria for a single sequence attribute. For each 
attribute, the workflow with the lowest blind spot fraction was compared to the workflow with the second lowest blind spot fraction, and 
indicated when their difference was significant (two- tailed Fisher’s exact test, *P <0.01, ***P <0.0001). ns = not statistically significant, 
NA = not applicapble for non- bootstrapped sequencing workflow.
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bias (Fig. 5a–c), but did not qualify for these attributes by 
our definitions. One study that used other bacterial species 
with extreme overall G+C content to compare coverage 
bias for eight different library preparation kits found that 
Nextera XT introduces the most G+C content- associated 
sequencing bias. Their results are consistent with our finding 
that the HiSeq2500/Nextera XT exhibits more blind spots in 
GC- rich regions compared to other workflows with the same 
sequencing instrument (Fig. 6a, b).

Across Shotgun Nextera library preps, runs sequenced 
on HiSeq2000 had more severe coverage bias in all three 
problematic sequence attributes. This observation makes 
the comparatively low coverage bias in HiSeq2000/modi-
fied Nextera even more remarkable, though it is unclear 
whether the reductions in coverage bias by modified Nextera 
(compared to Shotgun Nextera on the same instrument) and 
HiSeq2500 (compared to HiSeq2000) are additive.

Common exclusion criteria are neither sensitive 
nor specific to Illumina coverage bias
While many researchers are unaware of coverage bias, some 
recognize the problem and address it by omitting large 
regions of the M. tuberculosis genome that are associated 
with known sequencing biases. These omitted regions are 
typically restricted to members of the pe, ppe and pe_pgrs gene 
families (pe/ppe genes), disregarded due to their hypervari-
able nature, repetitive elements and propensity for erroneous 
read mapping [22, 23, 48]. However, we identified blind spots 
beyond these regions. To identify which genes are affected by 
blind spots, we queried our pooled set of 159 659 blind spots 
against the H37Rv annotation (NC_000962.3). These blind 
spots are scattered throughout the genome and overlap 529 
genes (Table S9). Cumulatively, the pe/ppe genes account for 
only 55.1 % of all blind spots (Table 2, bottom row), meaning 
almost half of blind spots fall in other regions that are not 
typically omitted from Illumina sequenced M. tuberculosis 
genomes. Meanwhile, over two- thirds (66.9 %) of positions 
in pe/ppe genes are not blind spots, meaning that many sites 
within pe/ppe genes are needlessly excluded. Beyond pe/ppe 
genes, other clinically important genes harbour blind spots, 
including effectors that subvert human immunity (esx genes) 
[49] and synthesize virulence lipids (pks genes) [50], among 
others (Table S9).

Next, we used the comparison set of blind spots (Table S5) 
to investigate which genes are affected by blind spots when 
using each sequencing workflow. A total of 92 genes contain 
blind spots regardless of sequencing workflow, while 98 
genes contain blind spots only in a single workflow (Table 
S10). HiSeq2000/modified Nextera had the fewest genes 
affected by blind spots (152 genes) and NextSeq 500/TruSeq 
had the most (248 genes). We then compared how well 
the seven sequencing workflows capture the pe/ppe genes. 
When pe, ppe and pe_pgrs genes were considered together, 
the HiSeq 2000/modified Nextera workflow had the fewest 
blind spots in pe/ppe genes, capturing over 92 % of each 
(sub)family, while the HiSeq 2500/Nextera XT workflow 

had more than four times as many and the most among 
workflows (Table 2).

Blind spots affect genes implicated in drug 
resistance
To identify potential blind spots of clinical relevance, we 
screened the pooled set of blind spots against genes previ-
ously implicated in drug resistance (Table S3). Eight genes 
with blind spots have been previously implicated in resistance 
(Table 3), underscoring the importance of coverage bias in 
clinical WGS studies. Systematic coverage bias in these genes 
could obscure resistance signals in Illumina GWA studies, 
or potentially lead to false associations, if low coverage due 
to bias were taken to imply deletion. It should be noted that 
pks12 may sometimes be lost following prolonged subcul-
turing [51], which would not be filtered out by our phyletic 
filtering if it arose convergently during culturing. Therefore, 
some positions in the pks12 gene (and possibly others) may 
not reflect true blind spots, but instead selection during 
culture between isolation and sequencing.

DISCUSSION
Despite driving the TB pandemic and being among the most 
frequently sequenced prokaryotes, M. tuberculosis coverage 
bias is poorly understood, and dealt with in varied ways across 
research groups. Here, we have implemented a framework to 
identify high- confidence blind spots from publicly available 
genomes, stratified by sequencing workflow, demonstrating 

Table 2. Blind spot prevalence in pe, ppe and pe_pgrs genes

pe_pgrs%=(pe_pgrs positions that are blind spots divided by total pe_
pgrs positions). bs%=(pe_pgrs positions that are blind spots divided 
by total blind spot positions). Values for ppe and pe columns were 
calculated analogously (e.g. the blind spot fraction of positions within 
pe, ppe and pe_pgrs genes and the fraction of blind spots that fall within 
each gene set). Fractions were calculated using the comparison set of 
blind spots classified in each workflow (top rows) and the pooled set 
of total blind spots classified within any sequencing workflow (bottom 
row).

Platform Library 
prep

pe_pgrs% 
(bs%)

ppe% 
(bs%)

pe% 
(bs%)

NextSeq 500 TruSeq 14.3 (38.5) 2.54 (6.25) 0.88 (0.46)

MiSeq TruSeq 32.6 (63.1) 2.71 (4.78) 2.00 (0.75)

HiSeq 2500 TruSeq 30.0 (59.4) 2.54 (4.58) 2.31 (0.89)

HiSeq 2000 Modified 
Nextera

7.42 (28.9) 1.65 (5.87) 0

HiSeq 2000 Shotgun 
Nextera

22.6 (50.4) 3.04 (6.20) 2.30 (0.99)

HiSeq 2500 Nextera XT 35.2 (70.1) 1.25 (2.27) 0.93 (0.36)

HiSeq 2500 Shotgun 
Nextera

21.3 (51.6) 2.44 (5.39) 0

Pooled – 61.3 (48.5) 7.58 (5.47) 7.45 (1.14)
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consistent platform- wide coverage bias in repetitive regions, 
and workflow- specific degrees of difficulty with GC- rich and 
homopolymeric sequences. We used a stringent false- positive 
rate to capture blind spots with high specificity. As a result, 
sensitivity is limited by the number of genomes examined. 
The number of blind spots we identified is a conservative 
estimate and could be expanded with additional genomes.

Comprising nearly 10 % of the genome’s coding capacity 
and unique to mycobacteria, pe/ppe genes were chief among 
the interests following publication of the H37Rv genome 
sequence in 1998 [26]. However, despite repeated implica-
tion of pe/ppe genes in TB pathogenesis, their recalcitrance 
to Illumina sequencing has led to their near uniform exclu-
sion from many WGS studies. Our results refute the utility 
of this practice, demonstrating that while many pe/ppe genes 
contain blind spots (Table 2), numerous others – in some 
cases entire pe/ppe genes – do not suffer from severe coverage 
bias with Illumina sequencing. However, we find that tens of 
thousands of other positions typically included in Illumina 
WGS studies harbour positions with severe coverage bias and 
warrant exclusion (Tables S2 and S5). These findings provide 
more granular criteria for handling Illumina bias in the M. 
tuberculosis WGS.

GC bias is a known issue for Illumina sequencing, yet it is 
rarely addressed in M. tuberculosis WGS studies. Although 
repeats are the most problematic when present (Fig. 6), our 
results show that 10- fold more blind spots can be attributed 
exclusively to high G+C content than exclusively to repeats 
(Fig. 5e). While increasing the amount of native DNA can 
improve coverage across the genome and alleviate the effect 
of GC bias, it is a common misconception that increasing 
DNA through amplification can have a similar effect and 
improve coverage uniformly. Instead, amplification bias 
will further exacerbate the problem in GC- rich regions 
(Fig.  7a–f). Remarkably, however, the modified Nextera 
library preparation virtually eliminates blind spots in isolated 

GC- rich positions (Fig. 6b). The superior performance of this 
protocol (Fig. 6) was remarkable, particularly considering it 
was introduced more as a cost- saving measure than one to 
mitigate coverage bias [28]. The modified Nextera protocol 
substitutes the standard Nextera DNA polymerase with a 
high- fidelity DNA polymerase enzyme [28], which mitigates 
PCR amplification bias [52]. We recommend this modified 
Nextera library prep for short- read sequencing of M. tuber-
culosis, and encourage further development of methods that 
reduce amplification bias.

Importantly, mean genome- wide coverage seems to affect 
blind spot coverage differentially (Fig. 7). For some blind 
spots, coverage increases linearly or sublinearly with mean 
genome- wide coverage (Fig. 7b), while others remain static 
(Fig.  7c, f). Depending on the attributes contributing to 
the bias, some may be salvageable with more amplification 
(particularly with the modified Nextera library preparation; 
Fig. 7e), while providing more native DNA is required to 
salvage others. Further experimentation and analysis are 
required to rigorously define recoverability of each type of 
blind spot.

Beyond species- specific insights, our findings clarify two 
contested notions about sequencing attributes contributing 
to coverage bias: we refute the assertion that homopolymeric 
sequences pose no issue for Illumina sequencing [15], and 
find no coverage bias in palindromic sequences. Our finding 
that homopolymers associate with coverage bias, even in 
isolation (Fig.  6b), is particularly noteworthy considering 
that M. tuberculosis homopolymers are invariably short (≤9 
bp). Some researchers contend that homopolymers do not 
drive coverage bias in Illumina SBS [14, 15], and those who 
support homopolymer- driven coverage bias suggest it is 
exclusive to long homopolymers [4, 12, 13]. Here, we show 
that even positions within short homopolymers are manifold 
more often blind spots than non- homopolymeric positions 
(Figs 5a and 6b). This finding calls into question the prevailing 

Table 3. Resistance- implicated genes with blind spots

Genes implicated is resistance to anti- TB drugs that harbour blind spots. The absolute number of blind spots, proportion of bases in the gene affected 
(blind fraction) and the PubMed ID of the study that implicated the gene in resistance (PMID) are shown.

Gene No. of blind spots Blind fraction (%) Drug PMID

pks12 3002 24.10 CIP, MDR 15 328 105, 29 281 674

iniB 170 11.80 INH, ETH 27 665 704

Rv2820c 45 4.90 ETH 29 358 649

Rv0194 73 2.04 STR, TET 18 458 127

mmpL4 47 1.62 RIF 23 431 276

ppsA 89 1.58 RIF 23 002 228

ppsD 2 0.04 RIF 23 002 228

pks2 1 0.02 POA 27 759 369

CIP, Ciprofloxacin; ETH, ethambutol; INH, isoniazid; MDR, multi- drug resistance; POA, pyrazinoic acid; RIF, rifampicin; STR, streptomycin; TET, 
tetracycline.
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notion that short homopolymers do not bias coverage [11, 15], 
suggesting instead that they systematically reduce coverage at 
lengths as short as 6 bp, and perhaps lower (Fig. 5a). Indel 
realignment could potentially mitigate some coverage bias 
in homopolymers, but was not implemented in the studies 
reporting homopolymer- driven bias exclusive to long tracts 
[4, 12, 13]. Moreover, indel realignment is uncommon in 
M. tuberculosis WGS studies [22]. Therefore, the concern of 
homopolymer- driven bias is still pertinent even if mitigated 
to some extent by indel realignment. A homopolymeric tract 
in glpK of M. tuberculosis has garnered recent attention for 
undergoing frequent, reversible, frameshifts [53, 54]. Variants 
with such rapid emergence and reversal could theoretically 
pass our phylogenetic filtering method, yet none of the posi-
tions comprising the phase- variable glpK homopolymeric 
tract were identified as blind spots (Table S7). Moreover, 
the persistence of this bias in the absence of other known 
attributes and its workflow- specific attenuation (Fig.  6b) 
strengthens our conviction that the bias is genuine and 
homopolymer- driven. Based on these observations, true 

variants that bypassed phylogenetic filtering are likely not 
the cause of low coverage at homopolymers. Yet we cannot 
rule out the possibility of flanking elements contributing to 
the bias [4]. In future work, systematic empirical testing of 
potential sources of homopolymer bias across multiple labs 
could pin down the contributing factors.

The observation that the modified Nextera library prepara-
tion attenuates homopolymer bias (Fig. 6) suggests the bias 
originates during PCR amplification, presumably by reducing 
polymerase slippage [55]. Unlike GC- rich and homopoly-
meric positions, modified Nextera did not improve coverage 
in repeats, consistent with ambiguous mapping driving 
coverage bias in repetitive elements, an inherent weakness of 
short- read technologies. Illumina SBS instruments beyond 
those examined here are available. However, they do not 
address the fundamental factors driving coverage bias, but 
rather improve sequencing affordability and throughput (e.g. 
NovaSeq and NextSeq 2000) or portability (MiniSeq and 
iSeq). Long- read technologies (LRTs) offer potential solutions 

Fig. 7. Relationship between mean coverage across the genome and coverage depth in blind spots. (a) Illustrations of theoretical linear 
(blue), sublinear (purple) and constant (red) functions of dependence between coverage depth in blind spots and genome- wide coverage. 
The type of function relating coverage depth in a blind spot and mean coverage is determined by (i) the nature and source of the coverage 
bias, and (ii) the method for increasing mean coverage. At positions with bias resulting from events with fixed likelihood, coverage depth 
would increase linearly (blue) with mean coverage, with slope equal to the frequency of the event biasing coverage. For instance, a 
position situated a number of base pairs away from a large repetitive element, such that 5 % of the time the position ends up on the same 
read as the repeat, would fail to map on those occasions. Therefore, the coverage at the position would be 5 % of the mean coverage, 
regardless of its magnitude (i.e. a linear relationship). Sublinear relationships (purple) can form when the source of bias compounds as 
mean depth increases. This could occur for positions in GC- rich regions during PCR, as the DNA fragments for which the polymerase 
has greater affinity will be preferentially amplified, increasing their relative abundance and, thus, the magnitude of bias for the next 
amplification cycle. The final relationship is a constant function (red), where the absolute coverage depth at the position of interest does 
not change as mean coverage changes. This can occur when large repeats cannot be mapped onto the reference genome unambiguously, 
as mappability does not depend on coverage. Which of the functions depicted in (a) predominates depends not only on the source of bias, 
but also on the method used for increasing coverage. For instance, GC- rich sequences will likely relate sublinearly to mean depth if PCR 
amplification is employed to increase mean coverage, whereas additional growth to generate more DNA would presumably increase 
linearly (assuming no additional attributes that would challenge mapping are present). (b–f) Observed relationships at representative 
blind spots in our study. While modified Nextera outperformed other workflows overall, there are still many positions where coverage 
follows a sublinear (b) or constant (c) function. Conversely, there are also positions that increase linearly with mean coverage across all 
workflows (d). Improved recoverability with modified Nextera is apparent at many high G+C positions (exemplified in e), ostensibly due 
to decreased amplification bias of the high- fidelity DNA polymerase used in the PCR step of the modified Nextera protocol. Lastly, there 
still remain unresolved sources of bias. The position in hypothetical gene Rv2262c (f) met criteria for none of the sequencing attributes 
we examined, yet demonstrates a constant function across all sequencing workflows.



17

Modlin et al., Microbial Genomics 2021;7:000465

for coverage bias, particularly for repeat regions [4]. While 
LRTs are still catching up to the affordability of Illumina short 
reads, they have recently made significant advances in single- 
read accuracy (Pacific Biosciences SMRT- sequencing) and 
portability (Oxford Nanopore). Applying this framework to 
identify blind spots across LRTs is an important next step 
toward a comprehensive knowledgebase of coverage bias 
across sequencing technologies.

By applying a phylogeny- aware coverage analysis framework 
to map Illumina blind spots onto the genome of virulent 
type strain H37Rv, we provide a comprehensive road map 
for setting workflow- specific exclusion criteria for M. tubercu-
losis WGS studies. The pooled set we report [29] encompasses 
blind spots present across any sequencing workflow, useful 
for interpreting Illumina WGS data where workflow is not 
specified and for studies analysing genomes sequenced with 
a variety of workflows, as is common in large- scale GWA 
studies [56, 57]. The comparison set of blind spots is useful 
for identifying which positions suffer from coverage bias on 
a workflow- specific basis. These lists both inform design of 
future Illumina WGS experiments and provide a lens through 
which existing data can be interpreted. While we applied this 
framework to M. tuberculosis, it can also be used to systemati-
cally evaluate coverage bias in other species without requiring 
expensive, time- consuming generation of new genomic data.
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