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1 | INTRODUCTION

In the field of radiotherapy (RT) in recent years, there
has never been any diminution in enthusiasm of adopt-
ing artificial intelligence (Al),in the form of deep learning
and/or machine learning, mainly for external beam treat-
ment applications. A PubMed search with the keywords
“artificial intelligence” and “radiotherapy” would return
thousands in publications, whereas if the keywords are
changed to “artificial intelligence” and “brachytherapy,”
results would end up in lower hundreds. The interest
in applying Al toward the brachytherapy planning pro-
cess, including applicator digitization, contouring, plan
optimization, and so forth has never fully blossomed.
The reasons might be mainly twofold: (1) Al requires
large amount of uniform training data, while “brachyther-
apy” might be the antonym of “uniform” and “large data,’
considering the treatment variations and case amount
at each institution; (2) each treatment planning step is
straightforward but poses unique challenges, consider-
ing the use of multi-modality images, image artifacts
from applicators, case-specific dose distribution, and so
forth. Taking a walk down the memory lane, brachyther-
apy treatment planning has been advancing slowly in
general compared to external beam RT, going from stan-
dard pear-shape planning not too long ago to MRI-
guided high-risk clinical planning volume gold-standard
in the recent years. When considering devoting limited

resources in further advancing brachytherapy, should we
take such a big leap to Al or should we take a conserva-
tive route exploring more traditional computation meth-
ods? In other words, do we have the faith that Al can
ultimately overcome those challenges in brachytherapy
and provide better solutions? In this debate, Dr. Xun Jia
argues for the proposition that “Al can overcome chal-
lenges in brachytherapy treatment planning,” while Dr. J.
Adam M. Cunha argues against it.

Dr. Xun Jia is Professor and Associate Vice Chair of
Medical Physics Research at the Department of Radi-
ation Oncology, University of Texas Southwestern Med-
ical Center (UTSW). He received his master's degree
in applied mathematics in 2007 and Ph.D. degree in
physics in 2009, both from the University of California
Los Angeles. After his postdoctoral training in medical
physics from the Department of Radiation Physics and
Applied Sciences, University of California San Diego,
he became a faculty in the same department in 2011.
He moved to UTSW in 2013. Over the years, Dr. Jia
has conducted productive research on cone beam CT
reconstruction, GPU-based Monte Carlo radiation trans-
port simulation, deep learning for image processing and
RT treatment planning, and development of a preclinical
small animal radiation research platform. He has pub-
lished ~150 peer-reviewed manuscripts. His research
has been funded by NIH, the State of Texas, industrial,
and charitable funding agencies. Dr. Jia currently serves
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as an Executive Editorial board member of Physics in
Medicine and Biology. He is the recipient of John Laugh-
lin Young Scientist Award of American Association of
Physicists in Medicine in 2017.

Dr. J. Adam M. Cunha is a resident of the San
Francisco Bay Area in Northern California. He is an
Associate Professor in the Department of Radiation
Oncology at the University of California, San Francisco.
Dr. Cunha first started working with machine learning
in 2002 where it was a crucial part of his Ph.D. thesis
searching for rare sub-atomic particles at the SLAC
National Laboratory. Since transitioning into medical
physics Dr. Cunha has dedicated his career to improving
brachytherapy practice. He has focused his research
on optimization and hardware development including
robotic devices, electromagnetic tracking, 3D printing,
and treatment planning algorithms.

2 | OPENING STATEMENT

2.1 Xun Jia, PhD

Brachytherapy treatment planning generally encom-
passes steps of imaging, structure delineation, dose
calculation, plan optimization, and so forth. The goal
here is to accurately accomplish these steps in a
timely fashion. In recent years, numerous studies and
commercial products have demonstrated success in
building Al models to solve various problems in these
steps. For instance, Al-based segmentation algorithms
can accurately delineate the treatment target, organs
at risk, and brachytherapy applicators and seeds for
commonly used imaging modalities in brachytherapy,
such as CT, MRI, and ultrasound.’® Al methods for
dose calculations have also become available to enable
calculations with tissue heterogeneity considered.*
Compared to external beam RT, there are unique chal-
lenges in brachytherapy. Yet it is conceivable that, with
proper adjustments, Al tools built-in external beam RT
can be adapted to solve brachytherapy problems. Take
the organ segmentation problem as an example, Al mod-
els can be refined to handle this problem on images with
relatively poor quality caused by fast data acquisition in
brachytherapy practice or artifacts generated by appli-
cators or seeds. Meanwhile, many Al tools are built to
address generic problems across multiple fields includ-
ing brachytherapy. They are hence capable of solving
problems in brachytherapy treatment planning. For
example, Al-based CT metal artifact reduction methods
can mitigate imaging artifacts caused by metal objects.
Material decomposition methods can provide valuable
material compositions information to support accurate
radiation dose calculation in the low energy range.
Modern CT- or MRI-guided brachytherapy is often
subject to an intense time pressure, requiring imaging,
contouring, and planning all completed while the appli-

cators are implanted in the patient. It is therefore vital
to perform the planning tasks in a timely fashion. There
have been several successes using Al and automations
to streamline the planning process. The group at Sunny-
brook cancer hospital built machine learning algorithms
for low-dose rate brachytherapy treatment planning of
prostate cancer, yielding an average planning time of
0.84 min, compared with 17.88 min for expert planners°
and subsequently demonstrated noninferior postoper-
ative dosimetry achieved by the algorithm via a Phase
| clinical trial® Having an Al model to digitize the large
number of needle applicators in interstitial brachyther-
apy is another example of improving efficiency? Via
reducing human interventions, automation helps miti-
gating potential human errors that can be manifested
when time is pressed.

Needless to say, brachytherapy treatment planning
often encounters complex situations that require human
decisions, for example, to decide dosimetric tradeoffs
in organs and/or targets. This aspect, namely building
intelligence that can autonomously make decisions
like humans do, is indeed at the core of modern Al, as
indicated by the word “intelligence” in “Al” In the past
few years, we are fascinated to see that virtual game
players can play complex computer games or board
games like Go, and beat top human players.” Recent
advances using deep reinforcement learning, the back-
bone of these virtual game players, have enabled
human-like treatment planning in brachytherapy—a
virtual planner operating a treatment planning system
to derive high-quality plans® | envision a future that
human planners will partner and interact with virtual
colleagues in brachytherapy treatment planning, with
the Al colleagues working on the actual tasks and the
humans mainly taking responsibility for quality review
and making corrections if necessary. This Al-based
decision-making capability is expected to be of particu-
lar importance for brachytherapy treatment planning in
resource-limited settings, with the hope to fill the short-
age of human expertise due to insufficient staffing or
training.

On the translation side, one challenge impeding
clinical deployment of Al models is their robustness.’
Models with nonrobust behaviors necessitate planners
carefully inspecting the results from the Al models
and correcting errors, which obviously counteracts the
whole benefit of using Al. This problem is often caused
by different dataset characteristics used for model
development and clinical application, due to, for exam-
ple, different image acquisition protocols, resulted in
nongeneralizable Al models. This is indeed not a unique
problem to brachytherapy but generally a concern for
all Al applications in medicine. With strong desires to
achieve the best Al performance in real clinical prac-
tice, rapid advancements such as domain adaptation
and adversarial training have substantially improved
generalizability and robustness of Al models.
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Learning and continuous learning are also core com-
ponents of the Al framework, which critically supports
clinical translation of Al models.”’ In practice, each
institution may have its own planning protocols. Spe-
cific guidelines in brachytherapy treatment planning,
for example, dosimetric constraints, are also evolving
with knowledge derived from new clinical studies. The
learning capability of Al enables adaptations of models
to specific clinical contexts, allowing them to self-adjust
to planning guidelines, to catch up with the state of the
art, and to correct improper model behaviors.

In summary, Al has demonstrated its power in
brachytherapy planning. New developments building
intelligent models further empower the planning process
with human expertise. Recent developments support
the clinical translation of Al. With these considered, |
believe Al can overcome challenges in brachytherapy
treatment planning.

2.1 | J.Adam M. Cunha, PhD
At first blush you may be inspired to wonder: Al has
already started having an impact on so many aspects
of treatment planning, how can this statement NOT be
true?

| concede up front that the argument in favor of this
statement absolutely is on the right side of history: Al
will almost certainly contribute to better treatment of
our brachytherapy patients. Indeed, | would have been
happy arguing either side of this debate simply because
who would argue against the progress of innovation!
And yet, | have found composing this counter argument
to be enlightening for two unique reasons. Each of
these | hope spurs you to give your intuition pause:
(1) pure computational power is a mighty tool and (2)
brachytherapy planning relies heavily on externalities.

For decades, inverse planning optimization algorithms
have been available that quickly output plans near the
optimization Pareto Front. Inverse planning simulated
annealing, for example, has been shown to reliably get
to within a few percent of absolute optimality within a
few seconds."" Of course, this still requires feedback
response as the planner fine tunes the solution for
each patient. But even this limitation is solved by recent
breakthroughs. Multi-criteria optimization (MCO), for
example, can probe the entire search space, generating
tens of thousands of plans, in a matter of seconds.'?
Upon commercial adoption, we will be able to peruse
the optimization Pareto Front as easily as one scrolls
through slices of a CT—notably, this is achievable sim-
ply by exploiting the continuing validity of Moore’s Law
via graphics processing unit (GPU)-based computation.
No planning-specific Al is needed.

So, let us take a step back and identify what exactly
are the challenges we face in brachytherapy treatment
planning.

MEDICAL PHYSICS 2=

* Time: Treatment planning can be an onerous
endeavor without the right tools.

» Consistency: The caliber of plan quality for a given set
of contours needs consistency across various expe-
rience levels and toolset available to each planner.

* Accommodation: We need to be able to identify and
accommodate unique patient-specific restrictions on
dose (internal injury, prior radiation, etc.).

* Robustness: Further automation will benefit from
treatment plans that mitigate inevitable uncertain-
ties like catheter migration and anatomical changes
between imaging and delivery.

* Feasibility: Treatment planning requires that the
implant is feasible, that is, the target is reachable via
a brachytherapy applicator or catheters.

» Appropriateness: It is related to feasibility, but in
the context of tumor biology or medical history: is
brachytherapy the right treatment?

» Delineation: Identification of the target and avoidance
structures has been shown to have a high enough
variance that real and as-delivered dosimetry can
be impacted significantly depending on how contours
were generated.

To evaluate the veracity of our thesis in each of these
cases, it is helpful to define a razor that can be applied
to each in turn. | propose the following:

Can this challenge be accomplished with brute force
computing alone?

Is this challenge best solved in treatment planning or
is an externality more fundamental?

In the spirit of Ockham'’s razor, the first component
asks if there is already a simpler avenue to solve the
challenge. While the second probes whether this chal-
lenge is most appropriately addressed at the treatment
planning stage. Let us see what we get when we apply
our razor to each challenge.

Planning time and plan consistency are fundamen-
tally a product of our limited ability to probe the entire
search space of our optimization problem. Once con-
tours and the implant are digitized, the problem is
defined completely. As the recent results with MCO
have shown, we now have the computational power to
quickly find every possible solution for a given implant
and patient geometry. Thus, the first criterion of our
razor is met: brute force computation alone can solve
this challenge without the need for Al.

Accommodation requires thoughtful evaluation and
understanding of the nuances of a specific case. At
first glance, one might consider this a prime candidate
for Al. But at the level of treatment planning, accom-
modation is mathematically a natural extension of plan
consistency—we accommodate by imposing a reduced
dose tolerance or weighing more heavily normal tissue
sparing during optimization. Each of these can be
represented as a term in our optimization algorithm.
Thus, we reduce this problem to one of consistency:
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g.e.d. (If this is not adequate for your taste, | note
that the nuanced decision making that does occur in
accommodation happens prior to treatment planning.
For example, what dose should we give to a patient
who had prior RT? Following this logic, Accommodation
is more appropriately considered an externality and
satisfies our razor’s second criterion.)

Robust optimization, like both plan consistency and
accommodation, is fundamentally limited by our ability
to compute all possible dosimetric outcomes due to
changes to the implant-anatomy geometry. Again, this
is a computationally intensive problem; but it is one that
is solvable in our current computing environment and
therefore meets our razor’s first query.

Feasibility and appropriateness are where things
start to get interesting. Almost by definition, it is impos-
sible to generate an acceptable brachytherapy plan
if an implant cannot place the brachytherapy source
near the tumor, that is, pubic arch interference blocking
access to the prostate. Without proper applicator/seed
implantation by an experienced brachytherapy expert,
dose objectives will necessarily be unmet. Feasibility
can be categorized as a subset of appropriateness:
the selection of patients who, based on tumor biology,
would benefit from brachytherapy (or the contraindi-
cation of patients unlikely to benefit) is critical. While
feasibility and appropriateness both present a chal-
lenge for brachytherapy planning, the most apt solution
is to determine who should get brachytherapy and who
should not. Thus, when we apply our razor, these clearly
fall under an externality. That is, while patient selection
is one of the holy grails of Al in medicine, it is not
fundamentally a treatment planning problem.

Finally, delineation, dear readers, is one challenge |
must concede. Contouring is almost by definition per-
sonal and subject to nuance of image interpretation.
The task is not well defined by traditional (non-Al-type)
algorithms and therefore a solution is untenable by
brute-force computation. And delineation is so fun-
damentally tied to treatment planning, it would be
disingenuous to categorize it as an externality. There-
fore, we fail to meet either of our razor’s criteria. This is
not to say that Al can currently consider this problem
solved. There remain all the issues that plague machine
learning and deep learning across industries not least
of which is the reliance on massive datasets, which will
manifest differently at each institution.

In conclusion, | propose a more accurate statement:
“Al does not need to solve many of the challenges
in brachytherapy treatment planning.” Traditional com-
putational methods that rely on brute force probing
of the entirety of the possible solution set can tackle
many of the challenges in brachytherapy treatment
planning. Al is not needed so the original question
is moot. However, contouring is one challenge that
will very likely benefit from Al since this challenge
requires statistical methods that interpret datasets

(contours) that are fundamentally nondiscrete and
irreducible.

3 | REBUTTAL

3.1. Xun Jia, PhD

| agree with my opponent on the nicely summarized
challenges in brachytherapy treatment planning and the
spirit of Ockham’s razor. But | would like to emphasize
that brute force computation alone is not adequate, or
not the most appropriate one, to address these chal-
lenges in many cases. For instance, it is true that we
can mathematically formulate each planning objective,
for example, dose tolerance. With high-power computa-
tions, MCO enables searching the Pareto space, thereby
potentially enhancing consistency and robustness.
Nonetheless, this framework can only rapidly generate
candidate plan solutions, but the time spent on browsing
these solutions and decision making by a human plan-
ner is still needed and may potentially impede the goal of
consistency and robustness considering various human
factors such as training, experience, and available time
in plan selection. In this regard, the intelligence aspect
in Al, as explained in my opening statement, seamlessly
complements MCO and closes the loop by behaving as
a human planner for plan selection.

There are other components in the planning pipeline
that are too complicated to be handled accurately
and robustly by classical algorithms and may require
human interventions. Applicator/seed digitization is a
great example, especially in complex situations such
as images with strong artifacts or cases with a large
number of needles in intricate geometry configurations.
Recent Al solutions have demonstrated successes in
overcoming such challenges.

Further along this line, human-like decision making is
the holy grail of the Al world. Current Al studies mostly
employed deep neural networks as a statistical tool for
data mapping between different domains, for instance
from CT images to needle configurations for needle
digitization. Yet the ultimate goal of Al in medicine is
indeed to develop trustworthy virtual partners to assist
humans, also known as human-centered Al. In a broad
scope, | would consider challenges such as deciding
the appropriate dose to a patient with prior radiation
treatment, or determining a feasible and appropriate
plan under sub-optimal applicator placement, as part of
brachytherapy treatment planning rather than its exter-
nalities. While no mature Al solutions at this moment, the
pursuit for human-centered Al will eventually empower
us in better handling these challenges. Of note, | agree
that properly placing applicators/seeds is the challenge
that is apparently beyond the scope of planning. But
one can not deny the fact that such problem will benefit
from Al-based image guidance tools.



JIAET AL.

JOURNAL OF APPLIED CLINICAL

MEDICAL PHYSICS -L->°

Finally, delineation, especially target delineation, is
indisputability a challenge affecting more than just treat-
ment planning, but the overall success of brachytherapy.
There are two aspects in the delineation task: accu-
racy and consistency. Target delineation accuracy is
normally proven by clinical outcome analysis. Al tools
will be essential for this task, particularly for large-scale
analysis across multiple institutions with a modern
federated learning scheme. Regarding consistency, Al
solutions will help reducing variations among planners
or institutions due to human subjectivity, experience
level, guideline deviation, and so forth. More importantly,
consistency improvement feeds back to the aspect of
improving accuracy, by enhancing the overall quality of
clinical outcome studies.

3.1 | J.Adam M. Cunha, PhD

Al is here to stay. It certainly will be incorporated into
many aspects of our practice. As Dr. Jia so aptly laid
out in his argument, challenges that cannot be well
defined, like contouring, will most certainly be met head
on by Al. I have no doubt Al will help us do better, faster,
and more consistent contouring for treatment planning.
However, this is precisely the situation where it is difficult
to ensure that the application of an algorithm is identical
to the training used to develop the algorithm.

Statistical learning (by definition) uses incomplete
information to make an educated guess of the best
answer. This makes machine learning as subtle as it is
powerful since it also begets its foil: it is only as good
as its training. So, | would like to take the opportunity
presented to me in this rebuttal to remind you, Dear
Reader: Embrace Al, yes. But be aware. Poor training is
dangerous because it can be very hard to identify, and
it will mislead as often as not.

Except for  structure  delineation/contouring,
brachytherapy treatment planning challenges can
be simply expressed as solvable (though quite likely
onerous) mathematical statements. Modern computa-
tional power continues to grow exponentially. This has
enabled brute-force probing of the search space for the
absolute best solution by evaluating each and every
possible solution within clinically meaningful tolerances,
which is feasible and therefore must be favored over
Al for the majority of the challenges in brachytherapy
treatment planning. If the serach space is able to be
completely probed in a reasonable time, this will always
be more accurate than an answer obtained by inferring
from statistical analysis.

In conclusion, we see the biggest gains from Al when
applied to problems that have a multitude of both input
and output parameters, or have loosely correlated rela-
tionships between inputs and outputs. This is true for
contouring but is otherwise not a feature of the current
challenges to brachytherapy treatment planning. In the
cases where our challenges do push this boundary,

however, current computing power allows us to find the
most optimal solution using brute force evaluation of
the entirety of the search space.

So, can Al overcome challenges in brachytherapy
treatment planning? Possibly. But quite often so can sim-
pler, more absolute methods.
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