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Association between the nucleosome footprint of plasma DNA
and neoadjuvant chemotherapy response for breast cancer
Xu Yang 1,2,7, Geng-Xi Cai 3,4,7, Bo-Wei Han5,7, Zhi-Wei Guo5, Ying-Song Wu5, Xiaoming Lyu 6, Li-Min Huang5, Yuan-Bin Zhang1,
Xin Li 1,2✉, Guo-Lin Ye 3✉ and Xue-Xi Yang 5✉

Gene expression signatures have been used to predict the outcome of chemotherapy for breast cancer. The nucleosome footprint
of cell-free DNA (cfDNA) carries gene expression information of the original tissues and thus may be used to predict the response to
chemotherapy. Here we carried out the nucleosome positioning on cfDNA from 85 breast cancer patients and 85 healthy
individuals and two cancer cell lines T-47D and MDA-MB-231 using low-coverage whole-genome sequencing (LCWGS) method. The
patients showed distinct nucleosome footprints at Transcription Start Sites (TSSs) compared with normal donors. In order to identify
the footprints of cfDNA corresponding with the responses to neoadjuvant chemotherapy in patients, we mapped on nucleosome
positions on cfDNA of patients with different responses: responders (pretreatment, n= 28; post-1 cycle, post-3/4 cycles, and post-8
cycles of treatment, n= 12) and nonresponders (pretreatment, n= 10; post-1 cycle, post-3/4 cycles, and post-8 cycles of treatment,
n= 10). The coverage depth near TSSs in plasma cfDNA differed significantly between responders and nonresponders at
pretreatment, and also after neoadjuvant chemotherapy treatment cycles. We identified 232 TSSs with differential footprints at
pretreatment and 321 after treatment and found enrichment in Gene Ontology terms such as cell growth inhibition, tumor
suppressor, necrotic cell death, acute inflammatory response, T cell receptor signaling pathway, and positive regulation of vascular
endothelial growth factor production. These results suggest that cfDNA nucleosome footprints may be used to predict the efficacy
of neoadjuvant chemotherapy for breast cancer patients and thus may provide help in decision making for individual patients.
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INTRODUCTION
Noninvasive tests offer a number of compelling advantages, and
liquid biopsies have been developed as a valuable tool over the
past decade, in particular for chromosomal aneuploidy screening
and companion diagnostic testing. Blood is generally the easiest
specimen type to work with. In peripheral blood, testing may
target circulating tumor cells; circulating cell-free DNA (cfDNA),
which in cancer patients contains circulating tumor DNA (ctDNA);
circulating cell-free RNA (cfRNA); or circulating extracellular
vesicles (EVs), such as exosomes, tumor-educated platelets,
proteins, and metabolites1,2. The concentration of cfDNA is
relatively high and stable in blood, and cfDNA has therefore
become a widely used analyte in liquid biopsy. cfDNA is derived
mainly from apoptotic and necrotic cells of primary tumors,
circulating tumor cells, and normal cells3,4 and is usually bound to
mononucleosomes rather than present as free DNA1,5. ctDNA
makes up only a small proportion of the total plasma cfDNA6,
requiring a large volume of plasma and sensitive detection
methods, and cannot be used to detect cancer when there is a low
ctDNA:cfDNA concentration ratio or no mutation7.
In eukaryotes, nucleosomes are repeating units of chromatin

that are thought to strongly affect gene expression8,9. A
nucleosome-free region (NFR) or a nucleosome-depleted region
(NDR) is usually present in the transcriptionally active core region
of the gene promoter9. Nucleosome positioning relative to
transcription start sites (TSSs) is directly correlated with RNA
polymerase II (Pol II) binding, and genome-wide maps exhibit

differential nucleosome positioning in active and silent genes10.
Nucleosomes consist of 145–147 bp DNA segments wrapped
around a histone octamer composed of two molecules each of the
four core histone proteins (H2A, H2B, H3, and H4), cemented to
the nucleosome surface by an additional ~20 bp DNA (linker
DNA)11. cfDNA fragments are around 166 bp in length12, which
corresponds to the nucleosome DNA plus linker DNA.
In previous studies13,14, deep genome-wide sequencing of

circulating cell-free DNA enabled identification of maps
of nucleosome occupancy that provide a direct footprint of
transcription factor occupancy. In addition, nucleosome footprint
patterns in cell-free DNA are often specific to a type of cancer13.
The presence or absence of nucleosomes in the TSS region of
cfDNA results from expressed or silent genes in origin tissue and
thus can be used to predict gene expression. Peter et al.
determined that several TSSs matched with the expressed
isoforms of genes from metastatic primary tumors14, and this
result has been confirmed in individuals of different ages15.
Conventional gene expression profiling may be used to predict

prognosis and guide treatment in the early stages of breast
cancer. Five multigene expression testing techniques were
included in the guidelines for breast cancer published by the
National Comprehensive Cancer Network16 and the American
Joint Committee on Cancer17 in 2018: the Oncotype DX 21-gene
assay, the Mamma Print 70-gene assay, the Endo-Predict 12-gene
assay, and the PAM 50 (Prosigna) and Breast Cancer Index tests.
However, these tests are usually performed using tissue biopsies,
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which require invasive surgery and cannot capture the entire
genomic landscape of breast tumors.
In the present study, to explore relationships among the cfDNA

nucleosome profile, intracellular nucleosome positioning, and gene
expression, we used breast cancer cell line supernatant to mimic
plasma cfDNA and sequenced it using next-generation sequencing
technology. Simultaneously the cell particles were subjected to
MNase sequencing and mRNA sequencing. We analyzed correlations
by comparing the nucleosome footprint profiles 1 kb upstream and
1 kb downstream of TSSs, in particular at the exact positions of TSSs.
Furthermore, plasma cfDNA footprint profiles were characterized by
low-coverage sequencing, and differences in profiles in TSS-adjacent
regions were analyzed between healthy individuals and patients and
between responders and nonresponders to neoadjuvant epirubicin-
cyclophosphamide-docetaxel chemotherapy. Finally, we used plasma
collected before and after treatment to assess correlations between
cfDNA footprint profiles and response to breast cancer treatment
and to examine changes in the footprint associated with treatment.

RESULTS
A study flowchart that includes analytical methods is shown
in Fig. 1.

The cfDNA nucleosome footprint reveals intracellular
nucleosome positioning and gene expression
To determine whether the cfDNA profile reflected intracellular
nucleosome positioning and predicted gene expression, we
performed cfDNA whole-genome sequencing of cell supernatant
as well as MNase sequencing and mRNA sequencing of the MDA-
MB-231 and T-47D cell lines, respectively. We analyzed the cfDNA
sequencing library using a 2100 Bioanalyzer, and the lengths of
the inserted DNA fragments from cell supernatant and from the
cell genome digested by MNase were ~166 bp and ~146 bp,
respectively (ligation to ~90 bp adapter DNA; Supplementary Fig.
S1), which is consistent with previous reports14. Next we analyzed
chromosome 12p11.1, a 76 kb region containing more than 400
nucleosomes with strong positioning properties by cfDNA-seq and
MNase-seq for cell line supernatant and plasma cfDNA from 50
breast cancer patients. The cfDNA read depth map showed a crest
pattern whose position was highly correlated with that found in
the MNase map, in particular in plasma DNA (Fig. 2).
We also screened highly expressed genes (TPM > 10) and

unexpressed genes (TPM= 0) in these two cell lines using mRNA-
seq, then analyzed the genes’ sequence coverage depth around
TSSs using MNase-seq and cfDNA-seq. The results of MNase-seq

showed that the sequence coverage depth around TSSs was
significantly lower for highly expressed genes than for unex-
pressed genes (Fig. 3a, b). Analyses of the matching sequence
coverage depth around TSSs of the cfDNA showed the same
phenomenon, with a significant decrease in coverage depth at the
TSS site (Fig. 3c, d).
Permutation tests to estimate the overlaps between cell-free

HTSSs (high coverage depth around TSSs) or LTSSs (low coverage
depth around TSSs) and intracellular HTSSs or LTSSs revealed
significant enrichment for HTSSs pairs (p < 10−22) and LTSSs pairs (p
< 10−22). This significant enrichment was not observed in overlaps
between cell-free HTSSs and intracellular LTSSs or cell-free LTSSs
and intracellular HTSSs (Fig. 3e, g). These findings suggest that
cfDNA-seq of the cell supernatant can reveal intracellular nucleo-
some positioning. Similar permutation tests were performed to
estimate the enrichment of overlaps between cell-free HTSSs or
LTSSs and HEGs (highly expressed genes) or LEGs (lowly expressed
genes). The results revealed a pattern opposite to that found
between cell-free and intracellular TSSs. The LTSSs of cfDNA were
highly consistent with the corresponding HEGs (p= 1.981 × 10−05),
and the HTSSs of cfDNA were highly consistent with the LEGs (p=
3.156 × 10−10). However, this phenomenon was not observed in the
HTSSs of cfDNA and the corresponding HEGs or in the LTSSs of
cfDNA and the corresponding LEGs (Fig. 3f, h).

Breast cancer patients’ cfDNA coverage is related to gene
expression in breast cancer cells
We sequenced the circulating cell-free DNA from plasma collected
from 85 healthy individuals and 85 breast cancer patients and
compared it to cfDNA collected from the supernatant of the breast
cancer cell lines. Correlation analyses showed that the gene
sequence coverage depth near cfDNA TSSs in cell lines was positively
correlated with nucleosome positioning assessed by MNase-seq and
negatively correlated with gene expression assessed by mRNA-seq
(Fig. 4a). The cfDNA pattern from 85 breast cancer patients was the
same as that of the two breast cancer cell lines (Fig. 3a–d). It is
interesting that this pattern was more obvious in the cfDNA from
breast cancer patients, with a lower high-expression gene sequence
coverage depth near TSSs in the entire TSS ± 1 kb region, whereas
coverage was lowest at the TSS site (NFR; Fig. 4b).
Then we performed permutation tests to analyze whether

these breast cancer–specific TSSs identified from the plasma
cfDNA were expected based on expressed genes from the TCGA
breast cancer data. We observed enrichment for lower coverage
depth near TSSs in breast cancer patients compared to healthy
donors for highly expressed genes in primary tumor tissue

MDB-MB-231 / T-47D cell line

Cell supernatant

Cell particles

cell-free DNA-seq

MNase-seq

mRNA-seq

Correlation analysis

Healthy individuals

(n=85,training; n=30, validation)
plasma circulating cell-free DNA-seq

Different TSSs analysis

Gene Oncology analysis

10 non-responders

pre- vs. post-C1, C3/4, C8

Pretreatment

28 responders (PR) vs 10 non-responders (SD)
12 responders

pre- vs. post-C1, C3/4, C8

Patients with breast cancer

(n=85, training; n=60, validation)
plasma circulating cell-free DNA-seq

Neoadjuvant chemotherapy (n=38)

cell-free nucleosome footprint

intracellular nucleosome positioning

gene expression

cell-free nucleosome footprint

cell-free nucleosome footprint
Different TSSs analysis

Fig. 1 Experimental design and flowchart of data analyses. The correlation of cfDNA nucleosome profile, intracellular nucleosome
positioning, and gene expression was analyzed by using breast cancer cell lines MDA-MB-231 and T-47D. Next the different nucleosome
positioning on cfDNA of breast cancer patients and healthy individuals was analyzed. And finally the footprints of cfDNA corresponding with
the responses to neoadjuvant chemotherapy in patients at pretreatment and after teatment were identified.
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compared to the adjacent breast tissue (TCGA; p= 0.0030) but
not for HTSSs of highly expressed genes (p= 0.0039; Fig. 4c).
However, this effect was not significant when we compared
coverage depth for lowly expressed genes in primary tumor
tissue (TCGA) near TSSs in breast cancer patients versus
healthy donors. This may be because of the difference between
cfDNA from healthy individuals and from tumor-adjacent breast
tissue.

Different TSSs in pretreatment cfDNA between patients with
breast cancer and healthy individuals
We compared sequence coverage depth around cfDNA TSSs
between patients with breast cancer and healthy donors.
Technical reproducibility was evaluated using six samples, and
the distance of each three technical replicates of the same sample
was closer than those from different samples based on PCA
analysis. (Supplementary Fig. 2). Among a total of 32444 tested
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Fig. 2 Genome browser view in chromosome 12 with enlargement of 12p11.1. CfDNA-seq data from the MDA-MB-231 and T-47D cell lines
(up), MNase-seq data from the MDA-MB-231 and T-47D cell lines (mid), and circulating cell-free DNA from breast cancer patients (down). The
region contains an extreme example of sequence-directed nucleosome positioning. Read depth coverage for cfDNA-seq data from cell lines
(n= 2; merged data) and patients (n= 50; merged data) is shown in red, and the MNase midpoint density map from cell lines cell lines (n= 2;
merged data) is shown in blue.
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TSSs, 414 TSSs were significantly different (p < 0.01, |log[fold
change]| ≥ log1.2 and FDR < 0.1): 244 TSSs with relatively high
coverage and 170 TSSs with relatively low coverage in patients
with breast cancer (n= 85) compared with healthy donors
(n= 85) (Supplementary Table S1a). Hierarchical clustering ana-
lyses showed an obvious separation of patients with breast cancer
from healthy donors (Fig. 5a).
To assess the ability of coverage at TSS regions to classify

individuals into cancer and healthy, we constructed LASSO
classifier and repeated fivefold cross validation for 100 times to
prevent biases. And we recollected 60 patients’ and 30 healthy
donors’ plasma in an independent validation test. High values of
the area under curve (AUC, median: 0.863 in training cohort; and
0.834 in validation cohort) were observed using receiver operating
characteristic (ROC, Fig. 5b, c). The significantly different genes
were related mainly to regulation of cell adhesion, positive
regulation of cell death, etc (Fig. 5d), and the related genes were
listed in Supplementary Table S1b.
Simultaneously, we compared TSS profiles between different

tumor stage, ER status and molecular subtypes. And the results
showed that the early stage (T1 and T2, Supplementary Fig. 3a; I
and II, Supplementary Fig. 3b) and late stage (T3 and T4,
Supplementary Fig. 3a; III and IV, Supplementary Fig. S3b) groups,
ER positive and negative groups (Supplementary Fig. 4a), and
different molecular subtypes (Supplementary Fig. 4b, c) could also
be clustered into different groups, in particular luminal A vs triple
negative subtype (Supplementary Fig. 4d). We also found some
different related genes, such as cell adhesion related genes
(ITGBL1, RAPGEF4, ADGRL3, CDH18, DCAF6, CUTA) in late-stage
cancer group (Supplementary Table S2a, b, c), BCAR1 in ER positive
group (Supplementary Table S3a, b) and some genes (ADCY2,
CALM2, HSPA2, HSP90AA1, PIK3CA, AKT3 and SHC4) related to
estrogen signaling pathway in luminal A group (Supplementary
Tables S4a, b and S5a, b).

Different TSSs in pretreatment cfDNA between responders
and nonresponders
We compared sequence coverage depth around TSSs of cfDNA
between responders and nonresponders at pretreatment. A total
of 232 TSS regions (p < 0.01 and |log[fold change]| ≥ log1.5)
differed significantly in the 28 responders compared to the 10
nonresponders: 100 TSSs had high coverage and 132 TSSs had
relatively low coverage in responders (Supplementary Table S6a).
Hierarchical clustering analyses showed an obvious separation of
responders from nonresponders (Fig. 6a). Gene functional
annotation analyses revealed the top 13 pathways (Fig. 7,
Supplementary Table S6b). Significantly differentially expressed
genes included those involved in the regulation of hippo
signaling, a pathway that inhibits cell growth (GO:0035330: NIMA
related kinase 8 [NEK8], WT1 interacting protein [WTIP], WW and
C2 domain containing 2 [WWC2], large tumor suppressor kinase 1
[LATS1]); necrotic cell death (GO:0070265: olfactomedin 4 [OLFM4],
ring finger and FYVE-like domain containing E3 ubiquitin protein
ligase [RFFL], spermatogenesis-associated 2 [SPATA2], forkhead
box O3 [FOXO3], TNF receptor superfamily member 10c
[TNFRSF10C], Rho/Rac guanine nucleotide exchange factor 2
[ARHGEF2], BCL2-like 2 [BCL2L2], CD70 molecule [CD70], tumor
necrosis factor [TNF]); the intrinsic apoptotic signaling pathway in
response to DNA damage (GO:0008630: BCL2L2, clusterin [CLU],
TNF, apoptosis enhancing nuclease [AEN]); positive regulation of
reactive oxygen species biosynthesis (GO:1903428: CLU, FOXO3,
TNF); and the PID angiopoietin receptor pathway (M92: angio-
poietin 2 [ANGPT2], CUGBP Elav-like family member 1 [ELF1], TNF).
It is interesting that these genes had high TSS coverage in
responders. However, several pathways were found in nonre-
sponders, including pathways involved in pyruvate metabolism
and the citric acid (TCA) cycle (R-HSA-71406) and protein O-linked
glycosylation (GO:0006493). Significantly different pathways are
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Fig. 3 The cfDNA nucleosome footprint of cell supernatant reveals intracellular nucleosome positioning and gene expression. DNA read
depth maps of the TSSs by MNase-seq for highly expressed genes (TPM > 10, blue) and unexpressed genes (TPM= 0, red) in the MDA-MB-231
cell line (a) and T-47D cell line (b) and cfDNA-seq for highly expressed genes (TPM > 10, blue) and unexpressed genes (TPM= 0, red) in the
MDA-MB-231 cell line (c) and T-47D cell line (d). Overlaps of DTSSs (different high coverage depths around TSSs) in cfDNA-seq and MNase-seq
of the MDA-MB-231 cell line (e) and T-47D cell line (f) and DTSSs by cfDNA-seq and DEGs (differentially expressed genes) matched by mRNA-
seq of the MDA-MB-231 cell line (g) and T-47D cell line (h). Box plots represent the expected null distribution of overlaps from 1000
permutations (two sided, p values computed using a standard normal distribution). The extremes of the boxes define the upper and lower
quartiles, and the center lines define the median. Whiskers indicate 1.5 times the interquartile range (IQR). Triangles represent observed
overlap (red if significantly enriched, green if significantly depleted).
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listed in (Fig. 7, Supplementary Table S6b). Common pathways for
each of the two groups are listed in Supplementary Table 6c, d.
We further compared patients with pCR and npCR, and with low

RCB (residual cancer burden, RCB; RCB 0 and I) and high RCB (RCB
II and III) at pretreatment, and hierarchical clustering analyses also
showed an obvious separation between them (Fig. 6b, c). There
were a total of 200 TSS regions differed significantly in the 11
patients with pCR compared to 27 patients with npCR: 95 TSSs
with relatively high coverage in pCR patients, and 105 TSSs with
relatively low coverage (Supplementary Table 7a), and 194 TSS
regions differed significantly in the 17 patients with low RCB
compared to 21 patients with high RCB: 102 TSSs with relatively
high coverage in patients with low RCB, and 92 TSSs with relatively
low coverage in patients with high RCB (Supplementary Table
S7b) (p < 0.01 and |log[fold change]| ≥ log1.5). Gene functional
annotation analyses showed that these genes was related to
reveal the top 15 pathways, including regulation of PTEN gene
transcription (R-HSA-8943724), PID INTEGRIN A481 PATHWAY
(M277), positive regulation of cell cycle (GO:0045787) (Supple-
mentary Fig. S5).

Differently altered TSSs after neoadjuvant chemotherapy
between responders and nonresponders
We analyzed paired plasma specimens before (pretreatment), during
(post-1 cycle, post-3/4 cycles), and after (post-8 cycles) neoadjuvant
chemotherapy to compare sequence coverage depth changes

around TSSs in 12 responders and 10 nonresponders. The TSS
regions of 321 genes (p < 0.01 and |log[fold change]| ≥ log1.5) were
significantly differentially covered in responders: 93 of these genes’
TSS regions were downregulated and 112 were upregulated during
early treatment (post-1 cycle), and 66 of these genes’ TSS regions
were downregulated and 50 were upregulated during mid-
treatment (post-3/4 cycles), with stable coverage after treatment
(post-8 cycles). Conversely, these genes were not altered throughout
the treatment period in nonresponders. Functional enrichment
analyses revealed the top 20 pathways (Fig. 8a). Note that these
significantly different genes were related mainly to positive
regulation of the acute inflammatory response (GO:0002675), the
TGF-beta signaling pathway (hsa04350), regulation of the T cell
receptor signaling pathway (GO:0050856), the nuclear-transcribed
mRNA catabolic process, nonsense-mediated decay (GO:0000184),
and positive regulation of vascular endothelial growth factor
production (GO:0010575) and proteoglycans in cancer (Fig. 8b).
BRCA1 (breast cancer 1 early onset), HIC1 (HIC ZBTB transcriptional
repressor 1), and HMGB1 (high mobility group box 1) were involved
in several of these pathways. Three pathways were related to cellular
response to organonitrogen localization, response to estrogen, and
lactation. Individual genes with significantly different coverage from
these pathways are listed in Supplementary Table S8a. It is
interesting that the 205 genes that were significantly altered from
pretreatment to early treatment (post-1 cycle) in responders mainly
comprised breast cancer 1 early onset [BRCA1], erb-b2 receptor
tyrosine kinase 4 [ERBB4], GRB2-associated binding protein 1

Table 1. Clinical characteristics of the 115 healthy individuals and 145
breast cancer patients in the study.

Number of patients in
training group

Number of patients in
validation group

Healthy
individuals

85 30

Age, mean
(range), years

27.8 (19–45) 25.7 (27–48)

Sex, female – –

Breast cancer
patients

85 60

Age, mean
(range), years

50.6 (32–88) 49.6 (26–83)

Sex, female 85 –

Tumor staging

Tis/T1/T2//T3/T4 0/19/48/5/13 1/22/36/0/1

Node staging

N0/N1/N2/N3 31/41/9/4 37/20/2/1

Metastasis staging

M0/M1 85/0 59/1

Combined staging

0/IA/IIA/IIB 0/13/22/25 1/16/25/13

IIIA/IIIB/IIIC/IV 10/10/4/1 2/1/1/1

Subtype

HR+Her2- 47 47

HR+Her2+ 13 12

HR-Her2+ 6 1

HR-Her2- 19 0

Luminal A 26 12

Luminal B 34 47

Her2 6 1

Triple negative 19 0

Subtype immunohistochemically categorized subtype.

Table 2. Clinical characteristics of the 38 breast cancer patients
undergoing neoadjuvant chemotherapy in the study.

Number of patients

Age, mean (range), years 48.0 (34–65)

Sex, female 38

Tumor staging

T1/T2//T3/T4 4/28/1/5/

Node staging

N0/N1/N2/N3 11/23/2/2

Metastasis staging

M0/M1 38/0

EC-T 34

T-EC 4

Tumor response

PR 28

SD 10

pCR (RCB 0) 11

npCR 27

RCB-I 6

RCB-II 15

RCB-III 6

Subtype

Luminal A 1

Luminal B 28

Her2 6

Triple negative 3

Subtype immunohistochemically categorized subtype, E epirubicin, C
cyclophosphamide, T docetaxel, EC-T (epirubicin-cyclophosphamide) × 4
cycles + docetaxel × 4 (3 weeks per cycle), T-EC docetaxel × 4 +
(epirubicin-cyclophosphamide) × 4 (3 weeks per cycle), PR partial response,
SD stable disease, pCR pathologic complete response, npCR none
pathologic complete response, RCB residual cancer burden.
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(endothelial cell chemotaxis to vascular endothelial growth factor
[GAB1]), mediator complex subunit 1 (epithelial cell proliferation
involved in mammary gland duct elongation [MED1]), pro-apoptotic
WT1 regulator (positive regulation of hydrogen peroxide-mediated
programmed cell death [PAWR]), phosphatidylinositol-4,5-bispho-
sphate 3-kinase catalytic subunit gamma [PIK3CG], protein kinase D2
[PRKD2], and transforming growth factor beta 3 [TGFB3]. These genes
were involved in positive regulation of the acute inflammatory
response, positive regulation of vascular endothelial growth factor
production, response to estrogen cellular response to growth factor
stimulus, regulation of the T cell receptor signaling pathway, and
positive regulation of response to DNA damage (Supplementary
Table S8b). However, 116 genes that were significantly altered from
pretreatment to mid-treatment (post-3/4 cycles) in the responders
were involved mainly in the PID TGFBR pathway, nonsense-
mediated decay, and the establishment of mitotic spindle orienta-
tion (Supplementary Table S8c).

DISCUSSION
Previous studies have focused mainly on the relationship between
ctDNA and cancer occurrence and development, relapse, metas-
tasis, and drug resistance. ctDNA may be used as a biomarker for
cancer screening, early diagnosis, individualized treatment, and
prognostic evaluation based on the detection of CNVs18,
mutations4, or methylation patterns19. However, the clinical utility
of the cfDNA nucleosome footprint has not yet been fully
confirmed. We provide new insight into the nucleosome footprint
of plasma circulating cfDNA. Our work directly maps the
nucleosome footprint of cell-free DNA.
To confirm the relationship between the cfDNA nucleosome

footprint and gene expression, we performed correlation analyses
among the nucleosome footprint of DNA in the cell supernatant,
intracellular nucleosome positioning, and gene expression. The
results showed that the length of cell supernatant DNA was similar
to the length of DNA bound to the mononucleosome. Correlation
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Fig. 4 Breast cancer patients’ cfDNA coverage is related to gene expression in breast cancer cells. a Correlations between DTSSs by
circulating cell-free DNA-seq from 85 breast cancer patients and DEGs matched by mRNA-seq, DTSSs by MNase-seq, and DTSSs by cell-free
DNA-seq in the MDA-MB-231 cell line and T-47D cell line. b Circulating cell-free DNA-seq read depth maps of promoter regions from 85 breast
cancer patients for highly expressed genes (TPM > 10, blue) and unexpressed genes (TPM= 0, red) in the MDA-MB-231 cell line and T-47D cell
line. c Overlaps of coverage depth around TSSs of expressed genes in primary tumor tissue compared to adjacent breast tissue (TCGA) in
breast cancer patients (n= 85) compared to healthy donors (n= 85). Box plots represent the expected null distribution of overlaps from 1000
permutations (two sided, p values computed using a standard normal distribution). The extremes of the boxes define the upper and lower
quartiles, and the center lines define the median. Whiskers indicate 1.5 times the interquartile range (IQR). Triangles represent observed
overlap (red if significantly enriched, green if significantly depleted).
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analyses also confirmed the relationships among TSS coverage in
cell supernatant DNA, intracellular nucleosome positioning, and
gene expression (Fig. 3f, h). As expected, the TSS region coverage
of cell supernatant DNA was positively correlated with intracellular
nucleosome positioning and negatively correlated with gene
expression. Nucleosome positioning relative to transcription start
sites is directly correlated with RNA Pol II binding10, and
transcriptionally active gene promoters are characterized by the
presence of a NFR or NDR in their core region9. Therefore, we may
infer that nucleosome footprint changes in vivo lead to gene
expression or silencing.
DNA protected by nucleosomes is released into the blood-

stream as cfDNA, which can be sequenced directly. It is interesting
that cfDNA from patients is more closely related to gene
expression in breast cancer cell lines than cell supernatant DNA,
possibly because of the high similarity between bovine serum
DNA in culture medium and human serum DNA or because of
extracellular release without complete digestion, which affects
analyses of cell supernatant DNA. A correlation between cfDNA
and gene expression has been reported in previous studies14, but
the gene expression data sets used were from public databases. In
the current study, the correlation between cfDNA and nucleosome
positioning and the correlation between cfDNA and gene
expression were demonstrated more clearly as a result of the
use of cell lines.
We also confirmed the association between the cfDNA

nucleosome positioning in breast cancer patients and the
expressed breast cancer-specific genes using TCGA breast cancer
data (Fig. 4c). Parallel analysis with RNAseq and MNase-seq of the
matched primary tumor and blood samples may facilitate the

discovery of correlations between cfDNA nucleosome positioning
and relevant gene expression with the nucleosome occupancy of
the genes. cfDNA contains DNA from both normal and tumor
tissues in patients with breast cancer, and studies have found
cfDNA derived from tissue-specific and tumor-specific open
chromatin regions (NFR or NDR)20,21. Because the fractions of
tumor- and non-tumor cfDNA vary among different patients4, a
limitation of our study is that we failed to consider the two
fractions of normal and tumor DNA. Normalization of the tumor
fractions may increase the cancer prediction accuracy. Another
limitation of our study is that we failed to profile the nucleosome
positioning of immune cells, which are the major components of
non-tumor-derived normal DNA in patients with cancer22,23.
MNase-seq of different immune cell types, as well as single-cell
RNA sequencing of peripheral blood mononuclear and tumor
cells, will help to further elucidate the contributions of tissues and
the origins of cfDNA to better understand the complexity and
heterogeneous nature of cfDNAs in patients with breast cancer.
For breast cancer, neoadjuvant chemotherapy is equivalent to

postoperative treatment for breast cancer and is used to reduce
tumor size, decrease tumor stage, prolong patients’ DFS and OS,
and conserve breast tissue24. The decision to perform neoadjuvant
chemotherapy for breast cancer is based on molecular typing;
some patients do not benefit from this type of therapy. The
response to neoadjuvant chemotherapy is usually assessed only
after several treatment cycles, which leads to wasted resources
and overtreatment of patients. Thus, another aim of the present
study was to explore whether a characteristic plasma cfDNA
profile can be used to predict the efficacy of neoadjuvant
chemotherapy. We first analyzed pretreatment specimens and

Fig. 5 Prediction of breast cancer patients. a Heatmap of different TSS region coverage between patients with breast cancer and healthy
donors. Receiver operating characteristic (ROC) curves for the classifier in training cohort (b) and in validation cohort (c). d The top
20 significantly different pathways between breast cancer and healthy donors.
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identified a number of biologic pathways related to treatment
response, including regulation of hippo signaling, necrotic cell
death, intrinsic apoptotic signaling pathway in response to DNA
damage, and positive regulation of reactive oxygen species
biosynthesis. Using Affymetrix GeneChip detection technology
to analyze biopsy tissue, Larissa et al.24 identified biologic
pathways related to docetaxel and capecitabine treatment,
including spindle regulation and microtubule depolymerization,
DNA repair, and cellular proliferation. Using PCR, Gianni and
colleagues25 identified 86 genes that correlate with responsive-
ness to neoadjuvant doxorubicin and paclitaxel; these genes were
from functional categories that influence sensitivity or resistance
to chemotherapy (i.e., apoptosis, invasion, metastasis, drug
resistance/metabolism, proliferation, ER). Ayers et al.26 built a 74-
gene model classifier to predict pathologic response to neoadju-
vant T/FAC therapy, achieving high positive predictive value and
specificity.
Although the genes identified in the present study are different

from those in previous reports, they belong to several of the same
pathways (e.g., necrotic cell death and intrinsic apoptotic signaling
in response to DNA damage). This may be explained by the fact
that different genes play a role in different body parts. We also
identified a pathway related to the regulation of erythrocyte
differentiation, which may have been due to the presence of
peripheral blood cell DNA; its relationship with tumorigenesis is
unknown. These results support the feasibility of predicting the
efficacy of neoadjuvant chemotherapy prior to treating breast
cancer.
We examined changes in TSS region coverage in plasma

collected from breast tumors at different time points during
neoadjuvant chemotherapy as well as their association with
response to treatment. Examining changes throughout treatment
may provide more information regarding patient responsiveness
than analyzing static time points. Analyzing changes throughout
treatment may facilitate the development of improved predictors
of response and drug resistance.
These altered genes were associated mainly with positive

regulation of the acute inflammatory response, the TGF-beta
signaling pathway, regulation of the T cell receptor signaling
pathway, and positive regulation of vascular endothelial growth
factor production (Fig. 6b). BRCA1, HIC1, and HMGB1 were involved
in several of these pathways. BRCA1 is a tumor suppressor gene
whose structural and functional abnormalities are closely related
to the incidence of breast cancer. It plays an important role in the
regulation of cell cycle progression, DNA damage, the repair of cell

growth and apoptosis, transcriptional activation and inhibition,
and other biological pathways27. HIC1, a tumor suppressor gene, is
epigenetically silenced in a variety of tumors, and deleting HIC1
might contribute to premalignant transformation in the early
stages of tumor formation28. The HMGB family is a group of
chromosomal proteins involved in DNA replication, recombina-
tion, transcription, and repair that is related to the progression of a
variety of cancers, including colorectal cancer29, hepatocellular
carcinoma30, and gastric cancer31,32. In recent years, an increasing
number of studies have focused on changes in gene expression in
serial biopsy tissue specimens. Genetic changes associated with
prediction and prognosis involve the immune response33–35, cell
proliferation24,33–36, apoptosis34,35, DNA repair24, and the antiin-
flammatory response26. These findings are consistent with those
of the current study.
We also noted significantly altered genes in early treatment

(post-1 cycle) in responders. These genes were involved in positive
regulation of the acute inflammatory response, positive regulation
of vascular endothelial growth factor production, response to
estrogen, cellular response to growth factor stimulus, regulation of
the T cell receptor signaling pathway, and positive regulation of
response to DNA damage. Genes that were significantly altered
mid-treatment (post-3/4 cycles) were involved in the PID TGFBR
pathway, nonsense-mediated decay, and the establishment of
mitotic spindle orientation. These results indicate that different
gene changes occurred during chemotherapy treatment. It is also
possible that gene expression was delayed for a period after
nucleosomes were depleted at the transcription initiation sites37.
cfDNA in plasma comes from apoptotic cells and includes

ctDNA released by tumor cells as well as DNA from peripheral
blood cells and other tissue. Therefore, gene changes based on
cfDNA analyses reflect not only tumor tissue but also the reactions
of the blood system and other tissue in the body, such as immune
cells. Another limitation of this study is its relatively small sample
size. Therefore, we consider our analyses to be exploratory: Larger
studies are required to validate our findings and confirm specific
associations between molecular data and clinical outcomes.
In summary, we confirmed a correlation between the cfDNA

nucleosome footprint profile in the region around TSSs and gene
expression. We also found significantly different nucleosome
footprint profiles in the region near TSSs in plasma cfDNA from
healthy individuals versus patients with breast cancer and in
plasma cfDNA from responders versus nonresponders before,
during, and after a series of neoadjuvant chemotherapy treatment
cycles. These genes were related to pathways involved in the
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inhibition of cell proliferation, response to DNA damage, and
immune response. These findings are expected to increase the
feasibility of plasma cfDNA nucleosome profiling as a new
biomarker for predicting the efficacy of neoadjuvant chemother-
apy for breast cancer.

METHODS
Cell culture
The human breast cancer cell lines T-47D and MDA-MB-231 were obtained
from ATCC. T-47D cells were cultured in RPMI-1640 medium (Gibco,
Carlsbad, CA, USA) supplemented with 20mM HEPES and 10% fetal bovine
serum (FBS) at 37 °C in a humidified 5% CO2 atmosphere. MDA-MB-231
cells were cultured in DMEM medium (Gibco) supplemented with 20mM
HEPES and 10% FBS at 37 °C in a humidified 5% CO2 atmosphere. Cell
supernatant and cell particles were collected over a period of 48 h and
subsequently used for high-throughput sequencing.

Patients and samples
The study included 85 healthy individuals from Guangzhou Darui
Biotechnology company and 30 from the Third Affiliated Hospital of
Southern Medical University, and 145 breast cancer patients from the First
People’s Hospital of Foshan in Guangdong, China. Ethical approval for the
study was received from the Ethics Committee of the Affiliated Foshan
Hospital of Sun Yat-Sen University. All participants provided written
informed consent. A total of 115 healthy individuals and 145 breast cancer
patients were sampled before any treatment. 38 of 145 breast cancer
patients received 24 weeks of sequential epirubicin-cyclophosphamide-
docetaxel preoperative chemotherapy followed by resection. Of these 38
patients with neoadjuvant chemotherapy, 22 patients were also sampled
at 3 time points during treatment: after the first cycle (post-1 cycle), after
the third or fourth cycle (post-3/4 cycles; 10 patients post-3 cycles and 12
patients post-4 cycles), and after the eighth cycle (post-8 cycles).
Postsurgical assessment was performed according to the evaluation
criteria of RECIST (Response Evaluation Criteria In Solid Tumor) version
1.038. Clinical characteristics of the patients are presented in Tables 1 and 2.

cfDNA sequencing
A total of 1 mL peripheral blood was collected in EDTA tubes from each
patient and immediately centrifuged for 10min at 16,000 rpm, 4 °C, and
~500 µL plasma and cell supernatant was stored at −80°C before use,
which yielded at least 1 ng total cfDNA for sequencing. cfDNA extraction
from plasma and cell supernatant was performed with the QIAamp DNA
Blood Mini Kit (Qiagen). We prepared a starting amount of approximately
1–5 ng DNA (three biological replicates per input for six samples) for library
construction using the Life Sciences Ion Xpress™ Plus Fragment Library Kit,
and we omitted the fragmentation step because of the degradation of
plasma DNA. The number of PCR cycles was set to 12. Libraries were
analyzed on a Bioanalyzer instrument (Agilent Technologies, Singapore) to
observe the DNA size distribution. Sequencing was performed with the Ion
PI™ Hi-Q™ OT2 200 Kit and the Ion PI™ Hi-Q™ Sequencing 200 Kit. Ten
libraries were pooled together and subjected to 520 flow on the Ion Proton
platform (ThermoFisher Scientific, USA), and 6–10 million reads were
generated for each cfDNA sample.

MNase sequencing
Approximately 107 cells were prepared for nucleosome digestion and DNA
extraction with the Active Motif Inc Nucleosome Preparation Kit. A total of
50 µL obtained chromatin and 2.5 µL working stock enzyme was incubated
for 15min at 37 °C. The digested nucleosome samples were immediately
used for the next step of DNA extraction. Approximately 100 ng DNA was
used for library construction and sequencing. Libraries were analyzed on a
Bioanalyzer instrument (Agilent Technologies) to observe the DNA size
distribution. The kits and parameters used were the same as for cfDNA
sequencing. Approximately 100 million reads were generated per sample
by MNase-seq.

Gene expression sequencing (mRNA sequencing)
We extracted RNA from approximately 107 cell particles using TRIzol
Reagent (Invitrogen, USA). The amount and quality of the RNA were
assessed with a NanoDrop™ 8000 UV Spectrophotometer (Thermo
Scientific, USA). We used 1 µg total RNA for mRNA purification using a
Dynabeads™ mRNA DIRECT™ Purification Kit (Invitrogen). We prepared the
purified product for library construction using the Ion Total RNA-Seq Kit v2.
We quantified the concentration of mRNA using the Qubit™ 3.0
Fluorometer (Invitrogen). Experimental operations followed the RNA
enrichment and library generation protocols provided in the manual.
Two libraries were pooled together and subjected to 520 flow on the Ion
Proton platform (ThermoFisher Scientific), and 30–40 million reads per
sample were generated.

Sequencing read alignment and processing
For cfDNA sequencing and MNase sequencing, we aligned sequencing
reads with the human reference genome (hg19) using TMAP and
removed PCR duplicates using the SAMtools (version 1.9) rmdup
function39. For mRNA sequencing, we aligned sequencing reads with
the GENCODE human transcriptome (Release 30) using Salmon (version
0.13.1)40 and used transcripts per million (TPM) to quantify the expression
of each gene.

TSS profiles of cDNA and MNase sequencing
Gene information was obtained from RefSeq. For cfDNA sequencing data,
we calculated read counts of regions ranging from –1k bp to +1k bp
around TSSs using bedtools (version 2.17.0), then normalized them using
the reads per kilobase per million mapped reads (RPKM) method to
present cfDNA-based nucleosome occupancy. In the MNase sequencing
data, only the nucleosome-depleted region (NDR; from –150 bp to
+50 bp of the TSS) showed depleted coverage, so we used coverage
depth of the NDR to quantify the nucleosome occupancy of each TSS. The
total depth of each NDR was calculated with SAMtools (version 1.9).
Based on the cfDNA RPKM value of each TSS, we performed Wilcoxon

rank sum tests (two-sided) to identify TSSs with altered cfDNA coverage
between groups. TSSs with p < 0.01 and |log(fold change)| ≥ log1.5 were
considered significantly changed. Hierarchical clustering was performed
with the average linkage clustering algorithm, and heatmaps were plotted
with the pheatmap package (version 1.0.12).

Correlation analyses of cfDNA-seq, MNase-seq, and RNA-seq
data
To evaluate concordance across the three platforms, we performed
Spearman’s rank correlation analyses for gene expression, MNase-based

Fig. 7 Top 13 significantly different pathways between responders and nonresponders in pretreatment samples.
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TSS nucleosome occupancy, and cfDNA-based TSS nucleosome occu-
pancy profiles. Moreover, for MNase-seq and RNA-seq data, sequence
coverage depth around TSSs was compared between highly expressed
genes (TPM > 10) and unexpressed genes (TPM= 0), and the depth of
each genomic site was calculated with SAMtools (version 1.9).
Furthermore, we performed permutation tests to estimate the

significance of overlaps between gene expression profiles and TSS profiles
(cfDNA-seq and MNase-seq, respectively). We computed the frequency of
highly expressed genes (TPM > 10) with high nucleosome occupancy
(genes in the upper quartile), unexpressed genes (TPM= 0) with high
nucleosome occupancy, highly expressed genes with low nucleosome
occupancy (genes in the last quartile), and unexpressed genes with low
nucleosome occupancy. A null distribution was generated from 1,000
permutations. The distributions were then standardized based on z scores
and used to compute two-sided p values to determine the significance of
overlaps.
Similarly, we estimated the concordance between differentially

expressed genes and genes with altered cfDNA TSS coverage in breast
cancer patients. We filtered the list of differentially expressed
genes using GEPIA (http://gepia.cancer-pku.cn)41, and genes with
different cfDNA TSS coverage (p < 0.01 and |log[fold change]|
≥ log1.5) between breast cancer patients and healthy donors were
selected. Permutation tests were performed to determine the sig-
nificance of overlaps.

Technical reproducibility assessment
Technical reproducibility of TSS coverage between replicates using
Principal Component Analysis (PCA).

Procedure of classifiers construction
Genes with significant differential TSS coverages were used to develop
promoter profiling-based classifiers, and fivefold cross validation was used
to randomly divide samples into training and validation sets and evaluate
the performance. In the training set, the normalized read count of each TSS
was discretized according to the optimal cut-off point before classifier
construction. The optimal cut-off point of each promoter was defined as
the maximum value of (sensitivity+ specificity)/2 in the training sets. R
package glmnet (version 2.0–16) was used to perform the least absolute
shrinkage and selection operator (LASSO). Receiver operating characteristic
(ROC) analysis was used to calculate area under curve (AUC) of the
validation set using pROC (version 1.16.2) R package (version 3.5.1). The
whole process was repeated 100 times.

Functional annotation and enrichment
We performed functional annotation and enrichment analyses using
metascape (http://metascape.org)42.

Fig. 8 Differentially altered TSSs between responders and nonresponders after neoadjuvant chemotherapy. a Heatmaps summarizing
changes in TSS region coverage over time in two major molecular functional groups in responders (PR) and nonresponders (SD). Samples are
ordered from left to right by patient identification for each stage. Red and blue represent relatively high and low coverage, respectively. Stage
1 represents pretreatment, stage 2 represents post-1 cycle, stage 3 represents post-3/4 cycles, and stage 4 represents post-8 cycles. b The top
20 significantly altered pathways after neoadjuvant chemotherapy in responders. Red and blue represent relatively high and low coverage,
respectively.
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
All novel sequencing datasets (cfDNA whole-genome sequencing, MNase sequencing and
mRNA sequencing) generated during this study, are publicly available in Sequence Read
Archive: https://identifiers.org/ncbi/insdc.sra:SRP30230843. All other datasets generated and
analyzed during the study, are available in the figshare repository: https://doi.org/10.6084/
m9.figshare.1370995344. Data supporting Fig. 5a, d and Figs. 6–8, are included in the
supplementary tables that accompany the article. The data generated and analyzed during
this study are described in the following metadata record: https://doi.org/10.6084/m9.
figshare.1373879545.

CODE AVAILABILITY
Relevant custom code is available at https://github.com/hanbw0120/cfDNA_
breast_cancer.
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