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Abstract

Quantifying the tool–tissue interaction forces in surgery can be used in the training process of novice surgeons to help

them better handle surgical tools and avoid exerting excessive forces. A significant challenge concerns the development

of proper statistical learning techniques to model the relationship between the true force exerted on the tissue and

several outputs read from sensors mounted on the surgical tools. We propose a nonparametric bootstrap technique and

a Bayesian multilevel modeling methodology to estimate the true forces. We use the linear exponential loss function to

asymmetrically penalize the over and underestimation of the applied forces to the tissue. We incorporate the direction

of the force as a group factor in our analysis. A weighted approach is used to account for the nonhomogeneity of read

voltages from the surgical tool. Our proposed Bayesian multilevel models provide estimates that are more accurate than

those under the maximum likelihood and restricted maximum likelihood approaches. Moreover, confidence bounds are

much narrower and the biases and root mean squared errors are significantly smaller in our multilevel models with the

linear exponential loss function.
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1 Introduction

Quantification of the force exerted during the performance of surgical operations is of importance in the training

process of novice surgeons and surgical residents. A significant amount of errors in neurosurgical operations

(more than 50%) is due to excessive force to the brain tissue.1 Quantification of such forces would help trainees
learn about safe margins of forces when dealing with human tissue, and help residents acquire surgical skills in

practice. Knowledge of the force values may also significantly improve the learning curve, since the residents can
“learn-by-doing”, instead of only “observing” experienced surgeons performing surgical tasks.2

The development of educational systems, that precisely reflect the mechanical components, such as tool–tissue

interaction forces, during an operation, is of importance. Without such systems, trainees require years of expe-
rience and multiple pre-clinical and clinical trials to become educated in dealing appropriately with human tissues.

Therefore, there is an increasing demand to enhance the efficiency of the learning process and provide trainees
with quantitative tools to assess their surgical skills.3,4 This paper concerns microsurgical operations, where the
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goal is to increase the accuracy and resolution of the functionality of the sensorized surgical forceps by adding

some miniature force-sensing components called strain gauge.2 The force exerted to the brain tissue generates a

change in the electrical resistance of the strain gauge, and as a result, the voltage would change.1–3,5 There is a

relationship between the force applied to the brain tissue and the voltages read from the mounted strain gauges on

the prongs of the surgical forceps. It is required to appropriately model the output voltages (response variable) and

the force components (explanatory variable), to estimate the resultant force.
In this paper, we study a dataset that was obtained from a calibration station developed to calibrate a bipolar

forceps instrumented with small strain gauges. The data set was provided by the Project neuroArm at the

University of Calgary, and was partially used in our recent work in which the nonparametric bootstrap technique

was employed to estimate two-dimensional (2D) forces exerted on a cadaveric brain during the performance of

some neurosurgical tasks.6 We developed a Naı̈ve method using the underlying deterministic and physical prop-

erties pertinent to the strain gauges.2 However, the Naı̈ve approach has important limitations, as it does not allow

to construct necessary precision measures and confidence intervals for the predicted forces. To overcome these

problems, we developed another approach based on a nonparametric bootstrap technique to accurately estimate

the amount of force associated with the observed signals in a 2D environment where the forces are implemented in

only x and y directions. Necessary confidence intervals were developed and later used in the calibration of the

sensorized bipolar forceps.6

In practice, forces are applied to the tissue in three directions. One needs to provide accurate estimates of forces

along x-, y-, and z-axes using voltage signals read from three strain gauges. The first two strain gauges (measuring

the deflections in x and y directions) were mounted onto the surface of each prong of the forceps. To place the

third sensor for measuring the deflection along z-axis, the tool was altered and the strain gauge was installed inside

a U-shaped notch created during alteration (see the inset in Figure 1).
Due to the nonlinear behavior of the strain gauges in the revised form of sensorized bipolar forceps, the signals

measured from some of the strain gauges are often very noisy and out of range. As a result, the current approaches

can provide accurate estimates of the forces in only x and y directions, and are not able to obtain reasonable

results when data on the x, y, and z directions are used simultaneously. In this paper, we develop different

techniques to address this important issue. To this end, we first adopt the nonparametric bootstrap technique

for our 3D dataset and demonstrate that this technique does not properly estimate the interaction force in all three

Figure 1. Schematic of the developed bipolar forceps that uses three strain gauges S1, S2, and S3 to quantify the force components in
x, y, and z directions, respectively. The bipolar forceps is covered with a nonconductive material to protect the circuit during the
operation and sterilization.
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directions. We then propose different approaches based on a weighted least squares regression7 method as well as

Multilevel modeling8 using a Bayesian approach.9 As underestimating the implemented forces is not desirable in

our application, we develop a new Bayesian multilevel modeling approach using an asymmetric penalty (loss)

function that penalizes underestimation more than overestimation. Theoretical results are augmented with a real

data analysis using training, testing and validating datasets.
The rest of the paper is organized as follows. In Section 2, we discuss the experimental dataset, state of the main

issue pertinent to analyzing the data for estimating the true value of the force components in three Cartesian

directions using voltages read from the strain gauges mounted onto each prong of the bipolar forceps. In Section

3, we develop two nonparametric bootstrap techniques using the least squares and the weighted least squares

methods, and show how the weighting approach can partially resolve some of the issues pertinent to our dataset.

A multilevel modeling approach is developed in Section 4 using the Bayesian and non-Bayesian methodologies for

explained estimation problems. A linear exponential (LINEX) loss function, as an example of an asymmetric

penalty function, is used to obtain estimates in order to avoid underestimation of the applied forces. We also

propose a weighted approach for the multilevel modeling to account for the nonhomogeneity of the read voltages

from different strain gauges in the device. We discuss how to obtain the precision and confidence intervals

associated with each estimate. The results of implementing the proposed approaches are reported in Section 5.

Conclusions made in this research and future work are outlined in Section 6.

2 Statement of the problem and specification of employed calibration dataset

The calibration dataset is obtained by applying forces in the x, y, and z directions, where each pair of the strain

gauges measures the deflection in the corresponding direction. The amount of deflection in each direction is

quantified using a voltage read from the corresponding strain gauge. Specifically, the strain gauges S1, S2, and S3

are designed to measure three individual voltages when a force is applied along the x-, y-, and/or z-axes, respec-

tively. While three strain gauges are installed on each prong of the forceps, we only present the dataset of one of

the prongs in this study for the sake of compactness. Figure 2 illustrates the box plots of the voltages in S1, S2, and

S3 when the force is applied in x, y, and z directions, respectively. When the force is applied in a certain direction,

we expect to observe a substantial amount of output voltage from the corresponding strain gauge. For instance,

the application of a force in the x direction should result in larger output voltages from S1 than S2 and S3.

Similarly, an applied force in the z direction should result in output voltages in S3 that are significantly higher

than those recorded in S1 and S2. The first panel of Figure 2 shows the read voltages when the force is applied in

the x direction. One can see that the observed voltages in S2 and S3 are close to zero, while voltages read from S1

are more significant as expected. However, when Fy is applied, an anomaly occurs as we see in the second panel of

Figure 2 that the observed voltages in S2 and S1 are close to zero, but voltages in S3 are remarkably significant.

Nevertheless, we expected to observe voltages in S2 be more significant than those read from S1 and S3. Also, from

the third panel of Figure 2, it seems that when force is applied in the z direction, mounted sensors have difficulty

recording anything significant. Although the behavior of the read voltages is in line with one might expect. We

suspect that this problem is caused by improper placement of S3. In other words, when a force is applied in the y

direction, S3 experiences more deflection than S2 due to specific configuration considered to measure the voltages

corresponding to the z-axis. As we observe in Figure 2, another issue pertinent to observations concerns the

variability of the observed voltages in each strain gauge. Variances of the observed voltages obtained from three

strain gauges are significantly different given applied forces along each axis. To address these issues, we propose

methods based on the bootstrap approach with a Bayesian multilevel modeling to provide meaningful estimates of

the force along the z direction.
In this paper, three groups of datasets obtained from the strain gauges S1, S2, and S3 of sensorized bipolar

forceps are used:(i) Training: in which both forces and voltages are observed, (ii) Validation: which is used for

tuning model parameters and perform model selection (iii) and Test: in which we observe both voltages and forces

(same as the Training datasets); however, the forces are assumed to be unknown. The latter group is used to

predict forces by the proposed methodology for comparison purposes.6 For obtaining the Training dataset, 20

trials were run using the bipolar forceps proposed and applied forces and observed voltages were recorded.2,3 In

each direction (x, y, and z), forces between 0.2N and 2N with increments of 0.2N in forward and backward

directions were applied to the left and right prongs of the forceps and observed voltages were recorded. In

forward motion, the applied force increased from 0.2N to 2N, in the backward direction the force was reduces

from 2N to 0.2N.
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3 A bootstrap approach based on a weighted least squares method

In this section, we study a nonparametric method based on the bootstrap approach to estimate the true values of
the forces using observed voltages in a 3D situation.6 We present an algorithm based on an ordinary least squares
regression modeling approach. To resolve the issue of nonhomogeneity of the read voltages and improve the
bootstrap approach one can use a weighted least squares approach for model fitting.

Suppose we observe yl;i ¼ ðVxl;i;Vyl;i;Vzl;iÞ>, l¼ 1, 2, 3, i ¼ 1; . . . ; n, where Vxl;i; Vyl;i, and Vzl;i are voltages read
at time i from strain gauges S1, S2, and S3, when forces Fx;i; Fy;i, and Fz;i are applied in x, y, and z directions,
respectively. We fit the following models

yl;i ¼ Xl;iBl þ l;i (1)

where Bl ¼ ðal; bl; clÞ>; Xl;i ¼ diagðFl;i;Fl;i;Fl;iÞ for all l¼ 1, 2, 3 with F1;i ¼ Fx;i; F2;i ¼ Fy;i; F3;i ¼ Fz;i and

l;i ¼ ð�xl;i; �yl;i; �zl;iÞ>; i ¼ 1; . . . ; n. We estimate the model parameters to obtain âl; b̂l, and ĉl, respectively and
calculate fitted values ŷl;i. To construct the bootstrap point and interval estimates of the applied forces, we first
obtain F̂xl;i; F̂yl;i, and F̂zl;i as solutions to the following equations

ðV̂xl;i; V̂yl;i; V̂zl;iÞ> ¼ Xl;iB̂l (2)

where B̂l ¼ ðâl; b̂l; ĉlÞ>. We calculate the residuals for all l, and i, as follows

l;i ¼ yl;i � X̂l;iB̂l (3)

Figure 2. Observed voltages in strain gauges 1, 2, and 3 (S1; S2; and S3), when force is applied in three directions. Different strain
gauges are specified with different colors.
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with X̂l;i ¼ diagðF̂l;i; F̂l;i; F̂l;iÞ and proceed the following steps:
1. Form the rth bootstrap training and test datasets by resampling the residual pool
f�1;i; �2;i; �3;i; i ¼ 1; 2; . . . ; ng as follows

TðrÞ ¼ fy�rl;i ¼ ŷl;i þ ��rl;igi¼1;...;n

l¼1;2;3
(4)

and

VðrÞ ¼ fV�r
jl;i ¼ Vjl;i þ ��r0l;igj¼x;y;z

l¼1;2;3
(5)

where, ��rl;i and ��r0l;i are random samples with replacement from the associated parts of the residual pool, each

obtained independent of each other.

2. Fit models (1) to the bootstrap datasets T(r) and associated forces to obtain the corresponding values of the

parameters, denoted by â�rl ; b̂
�r
l , and ĉ�rl , l¼ 1, 2, 3.

3. Calculate F̂
�r
xl;i; F̂

�r
yl;i, and F̂

�r
zl;i from (2) using the bootstrap data V(r) and corresponding estimates.

4. Repeat steps 1 to 3 for r ¼ 1; . . . ;B; and get B estimates.
5. Use the B estimated force values to construct point and interval estimates as described in Azimaee et al.6

As we show in Section 5, this method provides acceptable estimates of the forces in the x and y directions,

while suffering from poor performance in the z direction. Due to the nonhomogeneity of read voltages

from the strain gauges, the variability of the residuals obtained from fitting regression models in our

OLS approach is also changing from one model to another. This suggests using a weighted least

squares (WLS) approach with proper weights in order to obtain more suitable regression models to be used

in our proposed bootstrap method. To this end, we use the inverse of the variances of observations read

from each strain gauge to construct the necessary weights in the WLS approach to run the bootstrap calibration

procedure.

4 Multilevel modeling and a Bayesian approach using the LINEX loss function

In this section, we propose a new method based on multilevel modeling. We develop necessary estimates under an

asymmetric loss function to avoid underestimation of the applied forces in each direction, which is more impor-

tant than overestimation in our application. Multilevel models are generalizations of the regression models, in

which a set of data is structured in different categories such that their characteristics and the model’s coefficients

can vary within each category.
Multilevel models are also referred to as mixed models as they consist of fixed and random coefficients.9 In this

approach, instead of complete pooling (i.e. ignoring the effects of different group levels) or no-pooling (i.e.

separate modeling for different groups), one can perform a partial pooling8 to avoid overfitting the data and

account for nonhomogeneity between different groups.
Consider the force direction as a group factor with three levels corresponding to x, y, and z, respectively. We

introduce the varying slope models with no intercept9

Vjl;i ¼ b�l Fl;i þ �jl;i with b�l ¼ bl þ ujl (6)

such that j ¼ x; y; z indicates the direction of force, Fl;i are defined as before, l ¼ 1; 2; 3; refers to the

index of the strain gauge that voltages Vjl;i are read from, with i ¼ 1; . . . ; nj. For our calibration dataset nj¼ n

for all j.
By putting together the voltages read from the stain gauge l (for all values of j and i) into a vector Yl of size

3n� 1, one can represent (6) as

Yl ¼ blFl þ Zlul þ �l (7)
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where Fl ¼ ðf>l ; f>l ; f>l Þ3n�1 with f l ¼ ðFl;1; � � � ;Fl;nÞ>, bl’s are called fixed effects, ul ¼ ðux;l; uy;l; uz;lÞ>’ sare random
effects, and

Z>
l ¼

Fl;1 � � � Fl;n 0 � � � 0 0 � � � 0

0 � � � 0 Fl;1 � � � Fl;n 0 � � � 0

0 � � � 0 0 � � � 0 Fl;1 � � � Fl;n

0
B@

1
CA:

Similarly, �l ¼ ð�xl;1; � � � ; �xl;n; �yl;1; � � � ; �yl;n; �zl;1; � � � ; �zl;nÞ> is a 3n� 1 vector of error terms. Here, we have

E
ul
�l

� �
¼ 0

0

� �
and Cov

ul
�l

� �
¼ Gl 0

0 Rl

� �
, where Gl ¼ diagðr2ux;l ; r2uy;l ; r2ux;lÞ and Rl ¼ r2�lI3n�3n. Also

VarðYlÞ ¼ ZlGlZ
>
l þ Rl ¼ Rl: (8)

Note that working with the covariance matrix Rl is very convenient. However, it worth mentioning that

Rl provides a simplified representation of the existing covariance structure in our data set and one might

decide to work with more general cases where the matrix Gl is not diagonal.

4.1 Estimation of fixed and random effects coefficients

For the moment, suppose Rl in (8) is known. Fixed effects coefficients are normally estimated using either the

maximum likelihood (ML) or generalized least squares approach. Under a multivariate normality assumption for

the error terms, the log-likelihood function under the model (7) is

Zl‘ðblÞ / � logjRlj þ ðYl � blFlÞ>R�1
l ðYl � blFlÞ

n o
: (9)

Maximizing (9) with respect to bl results in

b̂l ¼ ðF>
l R

�1
l FlÞ�1F>

l R
�1
l Yl:

Note that b̂l performs a partial pooling by using the information obtained from the strain gauge l when forces

are applied in x, y, and z directions, respectively. To estimate random effects, the best linear unbiased prediction

(BLUP) approach under the squared error loss (SEL) function is often employed. Let djðYlÞ be an estimator for

uj;l obtain through the following optimization problem:

dj;BLUPðYlÞ ¼ argmindj E ðuj;l � djðYlÞÞ2jYl

h i
:

In order to derive an expression for dj;BLUPðYlÞ, let

HðdjðYlÞÞ ¼ E½u2j;ljYl� � 2djðYlÞE½uj;ljYk� þ d2j ðYlÞ:

which is minimized at

dj;BLUPðYlÞ ¼ E½uj;ljYl� (10)

Therefore, assuming that Yl and ul are normally distributed, straightforward calculations show that the BLUP

estimator of ul under the usual SEL for a given bl has the following form

ûl ¼ EðuljYlÞ ¼ Z>
l GlR

�1
l ðYl � blFlÞ; (11)

where, in practice, bl is replaced by its estimate b̂l, and Gl and Rl in Rl are estimated as in Section 4.2.
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In our calibration problem, underestimating the amount of implemented force on the brain tissue might have

severe consequences such as the need for repeating a surgical task and increasing time of the operation and should

be prevented. To this end, we use a LINEX loss function to penalize underestimation more than overestimation

and obtain results that are more suitable for the targeted problem.10,11 The LINEX loss function is defined as

Laðûj;l; uj;lÞ ¼ eaðû j;l�uj;lÞ � aðûj;l � uj;lÞ � 1

where the value of a > 0 controls the penalty for underestimating the true value of uj;l using ûj;l. When a
approaches zero, the LINEX loss function tends to the SEL function up to a constant. In order to use the

LINEX loss function, a risk unbiased predictor of uj;l is first found. We need to obtain ûj;l such that

E½Laðûj;l; uj;lÞ� � E½Lað�; uj;lÞ� (12)

for any nu 6¼ ûj;l, where expectation is taken on both Yl and uj;l.
12 When the underlying loss function is the SEL

function Lðûj;l; uj;lÞ ¼ ðûj;l � uj;lÞ2, the risk-unbiased predictor reduces to an unbiased predictor with

Eðûj;l � uj;lÞ ¼ 0.
Now, the Best LINEX Unbiased Predictor of uj;l is obtained by minimizing E½Laðûj;l; uj;lÞ�, with respect to ûj;l.

Using the total law of expectation and by writing E½Laðûj;l; uj;lÞ� ¼ E½E½Laðûj;l; uj;lÞ�jYj;l�; we get

ûaj;l ¼
1

a
logE½e�auj;l jYl� (13)

Assuming that uj;ljYl �Nðlj;l; r2j;lÞ, with lj;l ¼ Eðuj;ljYlÞ ¼ ûj;l, then

ûaj;l ¼ lj;l � a
r2j;l
2

¼ ûj;l � a
r2j;l
2

(14)

4.2 Estimation of the covariance matrices Gl and Rl

The ML approach and restricted (or residual) ML (REML) strategies are proposed to estimate Gl and Rl.
9 We

first establish the ML approach by considering the log-likelihood function (9) as a function ‘ðbl;RlÞ of unknown
parameters bl and Rl.

We then substitute b̂l in ‘ðbl;RlÞ to obtain ‘pðRlÞ as follows

�logjRlj � Y>
l R

�1
l ðI� FlðF>

l R
�1
l FlÞ�1F>

l R
�1
l ÞYlÞ (15)

where ‘p stands for the profile log-likelihood function and Rl is defined in (8). At this point, we can obtain the ML

estimates of Gl and Rl in Rl, by maximizing (15) with respect to Rl and Gl, respectively. For the REML estimation

of Gl and Rl, we maximize

‘REMLðRlÞ ¼ ‘pðRlÞ � 1

2
logjF>

l R
�1
l Flj (16)

with respect toGl and Rl, respectively.
9 This is a preferred approach when the sample sizes are small. However, for

large samples the ML and REML estimates are very close to each other. Another technical reason for choosing

the REML estimate over the ML ones is due to the fact that the influence of fixed effects’ degrees of freedom is

not considered in the ML approach.13

4.3 Bayesian approach for multilevel modeling

In order to improve our estimation in terms of accuracy, we employ the Bayesian approach for the multilevel

regression problem. This allows us to incorporate prior information about the underlying problem into the
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estimation process and obtain better and more accurate estimates.9 To this end, considering the multilevel model
(7), we first write the posterior distribution of ðbl; ul;Gl;RlÞ given the observed voltages Yl as follows

Pðbl; ul;Gl;RljYlÞ

/ PðYljbl; ul;Rl;GlÞPðuljGlÞPðRlÞPðblÞPðGlÞ (17)

Suppose, uljGl �MN3ð03�1;GlÞ and

Yljbl; ul;Rl;Gl �MN3nðblFl þ Zlul; RlÞ:

Therefore

PðYljbl; ul;Rl;GlÞPðuljGlÞ

/ jGlj�
1
2exp � 1

2
ðu>l G�1

l ulÞ
� �

� jRlj�
1
2

�exp �ðYl � blFl � ZlulÞ>R�1
l ðYl � blFl � ZlulÞ
2

� �
(18)

Using (18), straightforward calculations show that Pðbl; uljYl;Rl GlÞ is a multivariate normal distribution as
follows

MN ðC>
l Cl þ RlDlÞ�1C>

l Yl; YlðC>
l Cl þ RlDlÞ�1

� �
(19)

where, Cl 	 Fl Zl

� 	
and Dl ¼ 0 0

0 G�1
l

� �
. Following Ruppert et al.,9 we use an improper prior on bl as

PðblÞ 	 1. One can also use a Nð0; r2blÞ distribution with very large r2bl . Furthermore, we use the following inverse

gamma (IG) distributions as priors for r2�l and fr2uj;l ; j ¼ x; y; zg, that are components of Rl and Gl, respectively,

and simply show them with PðRlÞ and PðGlÞ

PðRlÞ / ðr2�lÞ
�ðArl

þ1Þexp �r2�lBrl

� �
;

PðGlÞ /
Y

j2fx;y;zg
ðr2uj;lÞ�ðAgl

þ1Þexp �r2uj;lBgl

� �
8>><
>>: (20)

where, ðArl ;BrlÞ and fðAgl ;BglÞ; j 2 fx; y; zgg are positive hyper-parameters. If the hyper parameters approach to

zero, then the priors for Rl and Gl would be improper and equal to 1
r2�l

and
Y

j2fx;y;zg
1

r2uj;l
, respectively. It has been

recommended in Ruppert et al.,9 to consider hyper-parameters close to zero (e.g. 0.1), to come up with non-
informative, but proper priors. Based on (18)

PðYljbl; ul;Rl;GlÞ / ðr2�lÞ�ð32nþArl
þ1Þexp �

r2�lBrl

2

( )

�exp � r2�l
2
ððYl � blFl � ZlulÞ>ðYl � blFl � ZlulÞÞ

� �
(21)
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Using (20) and (21), it is straightforward to show that

½RljYl; bl; ul;Gl� � IG Arl þ
n

2

� �

ðYl � blFl � ZlulÞ>ðYl � blFl � ZlulÞ þ BrlÞ (22)

Similar to (21) for Gl one can show that ½GljYl; bl; ul;Rl� follows

IG Agl þ
3

2
;Bgl þ

1

2
u>l ul

� �
(23)

Finally, in order to make statistical inference, we use the Markov Chain Monte Carlo (MCMC) approach to

sample from the posterior distribution based on the following algorithm9

1. Generate initial valuesWð0Þ ¼ ðbð0Þl ; u
ð0Þ
l ;R

ð0Þ
l ;G

ð0Þ
l Þ using the ML or REML approaches as explained in Sections

4.1 and 4.2.
2. For t ¼ 0; 1; . . . ;M, where M is the number of iterations, repeat the following steps:

• Sample ðbðtþ1Þ
l ; u

ðtþ1Þ
l Þ from Pðbl; uljYðtÞ

l ;R
ðtÞ
l G

ðtÞ
l Þ in (19).

• Sample G
ðtþ1Þ
l from (23) given WðtÞ.

• Sample R
ðtþ1Þ
l from (22) given WðtÞ.

For the comparison purpose, we obtain the estimates under the SEL and LINEX loss functions. Through the

MCMC process, we obtain M estimates of bl and ul, where under the SEL, we consider the mean value of these

samples û and b̂ as follows

ûl ¼ 1

M

XM
t¼1

u
ðtÞ
l and b̂l ¼

1

M

XM
t¼1

bðtÞl : (24)

Under the LINEX loss function these estimates are obtained by averaging estimates obtained via (14), û and b̂,
respectively.

5 Results

5.1 Results obtained from bootstrapping

Table 1 represents the estimated bootstrap confidence bounds in each direction for the amount of forces between

0.2N and 2N with an increment of 0.2N. Under the LS approach the bootstrap confidence intervals are too wide,

and the estimated forces are often very different from the true force values. Figure 3 shows the observed voltages

from each strain gauge where different colors are used to show different directions. It also shows the residuals

obtained by fitting LS regression models in (1). One can see that the residuals are not homogeneous and those

pertinent to S3 are relatively large. To adjust for nonhomogeneity of the error terms, we used the bootstrap

method with a WLS approach based on the following weights7

Wl ¼ ðVar�1ðVxlÞ;Var�1ðVylÞ;Var�1ðVzlÞÞ; l ¼ 1; 2; 3 (25)

These weights are associated with the variance of the voltages read from Sl in (1), l¼ 1, 2, 3. Results for the

bootstrap method with WLS regression models are presented in Table 2. We observe that estimated confidence

intervals are significantly improved compared to Table 1. For most cases, the true amount of forces in the x and y

directions are within the estimated intervals. However, estimated confidence intervals for forces in the z direction

are still not accurate enough, and the length of the intervals is considerably large.
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5.2 Results obtained from multilevel modeling

For the multilevel modeling approach we used R and the built-in function lmer, within the lme4 package.14

In theory, we should not consider intercepts in the underlying models, since voltages are not observed when no
forces are applied. However, we violate this assumption and consider models with intercept, which provides better
results. Also, we performed our study under both SEL and LINEX loss functions. For the LINEX loss function,
we use a 2 f0:1; 0:5; 1g to provide different measures of penalty for overestimation compared with
underestimation.

Figure 3. In the left panel, observed voltages from each strain gauge are presented versus the amount of force in three directions. In
the right panel, residuals obtained from fitting models in each strain gauge are illustrated versus the fitted values of voltages for all
three directions. Different directions are specified with different colors.

Table 1. Bootstrap confidence intervals for forces applied to the right forceps tip, in the x, y, and z directions using the LS regression
approach.

True force Fx C.I Fy C.I Fz C.I

0.2 (0.000, 0.893) (0.000, 2.000) (0.000, 2.000)

0.4 (0.275, 2.000) (0.000, 2.000) (0.000, 2.000)

0.6 (0.447, 2.000) (0.777, 2.000) (0.000, 2.000)

0.8 (0.994, 2.000) (0.851, 2.000) (0.000, 2.000)

1.0 (0.000, 1.105) (1.370, 2.000) (0.000, 2.000)

1.2 (0.314, 1.691) (0.000, 2.000) (0.000, 2.000)

1.4 (0.890, 2.000) (0.442, 2.000) (0.000, 2.000)

1.6 (0.728, 2.000) (0.000, 2.000) (0.000, 2.000)

1.8 (1.263, 2.000) (0.974, 2.000) (0.000, 2.000)

2.0 (1.269, 2.000) (1.324, 2.000) (0.000, 2.000)
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According to our numerical studies (not presented here), we observed that under the LINEX loss function,

estimated forces in the x and y directions are close to their true values, but estimation in the z direction is not

accurate enough irrespective of the values of a. The details of such numerical studies can be found in Chapter 4 of

Azimaee.15 This is due to mechanical issues associated with adding the third pair of strain gauges as discussed in

Section 2. To address this, we decided to apply weights in our multilevel modeling approach. Since the problem

was only in estimating the forces along z direction, we applied weight only for l¼ 3 in model (7) to account for the

problem in the voltages read from Sl. As shown in Table 3, we considered different weights associated with data

obtained from S3 when forces are applied in the x, y, and z directions.
Our comprehensive numerical studies in Azimaee15 show that models with intercept provide better force esti-

mation compared to those without intercept. As such, we only present the results for models with an intercept

from here on. Table 4 shows estimated forces in the z direction using different weighs under the SEL function for

models with and without intercept. Under the LINEX loss function the best results are obtained when a ¼ 0:5 and

we use W1 in the model (see Table 5). Also, the results under the SEL and LINEX loss functions are very similar.
In order to provide interval estimation, we employed a bootstrap technique with multilevel models. Once again,

we considered both models with and without an intercept for obtaining the results. Bootstrap results are obtained

from models with considering weights (WLS). The bootstrap procedure is the same as in Section 3, except that

instead of linear regression models, we fitted multilevel models as presented in (7). Based on the results presented

in Tables 4 and 5, we selected W3 to be used in the model for estimating forces in z direction under SEL and W1

under LINEX loss in the bootstrapping procedure. We also considered a ¼ 0:1, since the results under this value

were considerably better than other values. In most cases, true values of the applied forces are within the estimated

intervals and the bias is very low. However, there are some differences between the results obtained for applied

forces in the z direction from models with intercept and models without intercept. While there are wider confi-

dence bounds for models with intercepts, the bias and RMSE values, are lower for these models and most of the

time the true value of the force is within the estimated interval.

5.3 Results obtained using the Bayesian approach

In this section, we report predicted values of the applied forces along x, y, and z directions that are obtained using

the Bayesian approach under both SEL and LINEX loss functions. To obtain the results, we used lmer-stan

function of “rstanarm” package, in R programming language.16

Table 3. Six different proposed weights to use in multilevel modeling approach.

W1 W2 W3 W4 W5 W6

1 1 1 Vy;1 Yy;1 1

1 1 1 Vy;2 Vy;2 1
1

VarðVz;3Þ
1

VarðVy;2Þ
1
Vy;2

Vy;3 Vx;1
1

meanðVz;3Þ

Table 2. Confidence intervals for forces applied to the right forceps tip, in the x, y, and z directions using the WLS regression
approach.

True force Fx C.I Fy C.I Fz C.I

0.2 (0.156, 0.199) (0.169, 0.264) (0.290, 0.766)

0.4 (0.394, 0.438) (0.347, 0.442) (0.378, 0.867)

0.6 (0.580, 0.625) (0.589, 0.682) (0.657, 1.143)

0.8 (0.760, 0.805) (0.791, 0.886) (1.050, 1.530)

1.0 (0.975, 1.020) (0.998, 1.090) (1.153, 1.622)

1.2 (1.199, 1.243) (1.216, 1.310) (1.636, 2.000)

1.4 (1.390, 1.436) (1.389, 1.483) (1.739, 2.000)

1.6 (1.586, 1.630) (1.566, 1.659) (1.859, 2.000)

1.8 (1.800, 1.846) (1.801, 1.897) (2.000, 2.000)

2.0 (1.976, 2.000) (2.000, 2.000) (2.000, 2.000)
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Once again, we considered intercepts in the model and applied weights (as described in Section 3) in the model
(WLS). Results are reported in Table 5 for models with an intercept under the LINEX loss function. One can
observe that estimated forces using models with intercepts are close to the true values of forces. Among all weights
that have been employed, W4 provides more accurate results and most predictions are very close to the true
amount of applied forces for models under both SEL and LINEX loss functions. For instance, there is no bias in
estimating the true force of 2N, under the SEL when W4 is applied. Another point to consider is the robustness of
the algorithm with respect to the choice of different priors for ðb; uÞ. To check this, we obtained the
force prediction in x, y, and z directions under the SEL function considering noninformative, normal, and
Student’s t priors. As one can observe in Table 6, there is not any significant difference between estimates
under different priors.

Table 4. Estimated forces in the z direction, considering six different weights under the SEL loss function using models with or
without intercepts.

F̂ z in models without intercept F̂ z in models with intercept

True Fz W1 W2 W3 W4 W5 W6 W1 W2 W3 W4 W5 W6

0.2 0.30 0.30 0.29 0.31 0.31 0.30 0.15 0.15 0.21 0.16 0.19 0.17

0.4 0.52 0.52 0.51 0.53 0.53 0.52 0.41 0.41 0.44 0.42 0.44 0.42

0.6 0.70 0.70 0.67 0.71 0.71 0.70 0.60 0.60 0.63 0.61 0.63 0.62

0.8 0.85 0.85 0.82 0.87 0.87 0.85 0.78 0.78 0.80 0.79 0.80 0.79

1.0 1.09 1.09 1.05 1.11 1.11 1.09 1.06 1.06 1.06 1.06 1.07 1.06

1.2 1.27 1.27 1.22 1.29 1.29 1.27 1.25 1.25 1.24 1.26 1.26 1.26

1.4 1.41 1.41 1.36 1.43 1.43 1.41 1.42 1.42 1.40 1.42 1.42 1.42

1.6 1.56 1.56 1.50 1.58 1.58 1.56 1.58 1.58 1.55 1.58 1.58 1.58

1.8 1.70 1.70 1.64 1.73 1.73 1.70 1.75 1.75 1.71 1.75 1.75 1.74

2.0 1.94 1.94 1.87 1.97 1.97 1.94 2.00 2.00 1.97 2.00 2.00 2.00

Table 5. Estimated forces in z direction, considering six different weights under the LINEX loss using models with intercept using the
multilevel models and the Bayesian approach.

a1 ¼ 0:1 a2 ¼ 0:5 a3 ¼ 1

True Fz W1 W2 W3 W4 W5 W6 W1 W2 W3 W4 W5 W6 W1 W2 W3 W4 W5 W6

Using multilevel models

0.2 0.16 0.18 0.21 0.16 0.18 0.21 0.21 0.24 0.27 0.17 0.19 0.22 0.19 0.22 0.25 0.18 0.20 0.23

0.4 0.42 0.47 0.55 0.42 0.47 0.55 0.46 0.51 0.59 0.43 0.48 0.56 0.45 0.50 0.59 0.43 0.48 0.57

0.6 0.62 0.70 0.82 0.62 0.70 0.82 0.65 0.72 0.84 0.63 0.71 0.83 0.65 0.72 0.85 0.63 0.71 0.83

0.8 0.80 0.90 1.06 0.80 0.90 1.06 0.82 0.91 1.06 0.81 0.91 1.07 0.82 0.92 1.08 0.81 0.91 1.07

1.0 1.08 1.22 1.43 1.08 1.22 1.43 1.08 1.21 1.41 1.09 1.22 1.44 1.10 1.23 1.44 1.09 1.22 1.43

1.2 1.29 1.44 1.70 1.29 1.44 1.70 1.27 1.42 1.65 1.29 1.45 1.70 1.30 1.45 1.70 1.29 1.44 1.70

1.4 1.46 1.63 1.93 1.46 1.63 1.93 1.43 1.60 1.86 1.46 1.64 1.93 1.46 1.63 1.92 1.46 1.63 1.92

1.6 1.63 1.83 2.15 1.63 1.82 2.15 1.59 1.78 2.07 1.63 1.82 2.15 1.63 1.82 2.14 1.62 1.82 2.14

1.8 1.80 2.02 2.38 1.80 2.01 2.38 1.75 1.95 2.28 1.80 2.01 2.37 1.79 2.00 2.35 1.79 2.00 2.36

2.0 2.08 2.33 2.75 2.08 2.33 2.75 2.02 2.25 2.62 2.08 2.33 2.74 2.07 2.31 2.71 2.07 2.32 2.72

Using the Bayesian approach

0.2 0.157 0.184 0.232 0.155 0.164 0.178 0.208 0.214 0.224 0.169 0.180 0.195 0.193 0.209 0.233 0.172 0.178 0.186

0.4 0.420 0.490 0.619 0.412 0.436 0.472 0.448 0.463 0.483 0.424 0.450 0.488 0.445 0.481 0.536 0.424 0.438 0.458

0.6 0.625 0.729 0.922 0.613 0.649 0.702 0.636 0.657 0.686 0.623 0.662 0.717 0.642 0.694 0.774 0.620 0.642 0.671

0.8 0.808 0.943 1.191 0.791 0.839 0.906 0.804 0.830 0.866 0.800 0.850 0.921 0.817 0.884 0.985 0.795 0.823 0.860

1.0 1.093 1.275 1.612 1.070 1.134 1.226 1.065 1.100 1.147 1.077 1.144 1.239 1.090 1.180 1.314 1.069 1.106 1.155

1.2 1.298 1.515 1.915 1.271 1.347 1.456 1.253 1.295 1.350 1.276 1.355 1.469 1.287 1.393 1.552 1.266 1.309 1.368

1.4 1.469 1.715 2.167 1.439 1.525 1.648 1.410 1.457 1.519 1.442 1.532 1.660 1.452 1.570 1.750 1.430 1.479 1.546

1.6 1.641 1.914 2.419 1.606 1.702 1.840 1.567 1.619 1.688 1.609 1.708 1.851 1.616 1.748 1.947 1.594 1.649 1.723

1.8 1.812 2.114 2.672 1.774 1.880 2.031 1.724 1.781 1.857 1.775 1.884 2.042 1.780 1.926 2.145 1.758 1.818 1.900

2.0 2.097 2.447 3.092 2.053 2.175 2.351 1.985 2.051 2.139 2.051 2.178 2.360 2.053 2.221 2.475 2.031 2.101 2.196

1534 Statistical Methods in Medical Research 30(6)



We also employed the proposed bootstrap method in Section 3 for the Bayesian approach. Results of boot-
strapping under the SEL approach and the LINEX loss function are presented in Table 7 when we use the weight
function W4 and a¼ 1. Under the SEL function confidence bounds that we obtained using models with intercept
for Fz are more precise and almost always contain the true values of the forces, nevertheless, the bounds are
relatively wide. Point estimates of applied forces in the z direction are much better than other estimates and the
bias is negligible under the SEL function. As can be seen, under the LINEX loss function, estimated confidence
intervals for Fx and Fy are very narrow, and often do not contain the true values of the force. Although the
calculated bounds for Fz are also narrower, true values of force are not included within the bounds. The advan-
tage of results obtained under the LINEX loss is that the point estimates with considering intercept in the models

Table 6. Point estimates of applied forces in the x, y, and z directions using the Bayesian approach in multilevel modeling with
different priors for models with intercepts.

Prior Noninformative Normal Student’s t

True force F̂ x F̂ y F̂ z F̂ x F̂ y F̂ z F̂ x F̂ y F̂ z

0.2 0.176 0.183 0.324 0.176 0.183 0.321 0.176 0.183 0.320

0.4 0.411 0.444 0.543 0.411 0.444 0.539 0.411 0.444 0.537

0.6 0.577 0.583 0.715 0.578 0.583 0.710 0.577 0.584 0.707

0.8 0.801 0.731 0.867 0.801 0.730 0.862 0.801 0.731 0.858

1.0 0.982 0.967 1.106 0.982 0.966 1.099 0.982 0.967 1.094

1.2 1.222 1.224 1.283 1.224 1.225 1.340 1.225 1.226 1.419

1.4 1.418 1.397 1.420 1.418 1.396 1.412 1.417 1.398 1.405

1.6 1.581 1.650 1.563 1.581 1.649 1.554 1.580 1.651 1.546

1.8 1.824 1.852 1.706 1.825 1.851 1.696 1.824 1.853 1.688

2.0 2.018 2.059 1.945 2.019 2.058 1.933 2.018 2.060 1.923

Table 7. Point and interval estimates of applied forces in the x, y, and z directions using the bootstrap method and the Bayesian
approach for multilevel modeling under the SEL and LINEX loss functions.

Force in x direction Force in y direction Force in z direction

True force C.I F̂ Bias RMSE C.I F̂ Bias RMSE C.I F̂ Bias RMSE

Estimation under the SEL function

0.2 (0.162, 0.203) 0.175 �0.025 0.030 (0.161, 0.257) 0.185 �0.015 0.038 (0.074, 0.593) 0.148 �0.052 0.335

0.4 (0.397, 0.437) 0.409 0.009 0.018 (0.423, 0.518) 0.447 0.047 0.059 (0.565, 1.116) 0.666 0.266 0.424

0.6 (0.563, 0.603) 0.576 �0.024 0.029 (0.562, 0.658) 0.586 �0.014 0.038 (0.575, 1.127) 0.677 0.077 0.339

0.8 (0.786, 0.827) 0.799 �0.001 0.016 (0.709, 0.805) 0.733 �0.067 0.075 (0.666, 1.225) 0.774 �0.026 0.332

1.0 (0.967, 1.008) 0.981 �0.019 0.025 (0.945, 1.042) 0.969 �0.031 0.047 (1.037, 1.584) 1.129 0.129 0.356

1.2 (1.207, 1.249) 1.221 0.021 0.026 (1.201, 1.299) 1.227 0.027 0.044 (1.105, 1.649) 1.194 �0.006 0.332

1.4 (1.403, 1.445) 1.417 0.017 0.023 (1.374, 1.473) 1.399 �0.001 0.036 (1.390, 1.933) 1.474 0.074 0.341

1.6 (1.566, 1.608) 1.579 �0.021 0.026 (1.626, 1.726) 1.652 0.052 0.063 (1.546, 2.096) 1.636 0.036 0.336

1.8 (1.810, 1.852) 1.823 0.023 0.028 (1.827, 1.929) 1.855 0.055 0.065 (1.698, 2.248) 1.787 �0.013 0.336

2.0 (2.004, 2.046) 2.017 0.017 0.024 (2.033, 2.136) 2.061 0.061 0.071 (1.834, 2.390) 1.927 �0.073 0.344

Estimation under the LINEX loss function with a¼ 1 and the weight function W4.

0.2 (0.176, 0.180) 0.176 �0.024 0.028 (0.181, 0.190) 0.183 �0.017 0.045 (0.271, 0.406) 0.134 �0.066 0.396

0.4 (0.412, 0.415) 0.409 0.009 0.016 (0.443, 0.451) 0.444 0.044 0.061 (0.910, 1.034) 0.658 0.258 0.468

0.6 (0.580, 0.583) 0.576 �0.024 0.028 (0.582, 0.590) 0.583 �0.017 0.045 (0.924, 1.049) 0.669 0.069 0.397

0.8 (0.804, 0.807) 0.800 �0.000 0.014 (0.731, 0.737) 0.730 �0.070 0.081 (1.041, 1.176) 0.767 �0.033 0.393

1.0 (0.987, 0.989) 0.984 �0.016 0.022 (0.967, 0.974) 0.966 �0.034 0.054 (1.457, 1.643) 1.126 0.126 0.413

1.2 (1.228, 1.231) 1.222 0.022 0.026 (1.224, 1.232) 1.224 0.024 0.048 (1.536, 1.731) 1.192 �0.008 0.394

1.4 (1.424, 1.428) 1.418 0.018 0.023 (1.396, 1.406) 1.396 –0.004 0.042 (1.857, 2.120) 1.475 0.075 0.403

1.6 (1.588, 1.592) 1.582 �0.018 0.023 (1.649, 1.661) 1.648 0.048 0.063 (2.044, 2.339) 1.639 0.039 0.399

1.8 (1.833, 1.837) 1.826 0.026 0.029 (1.851, 1.865) 1.849 0.049 0.064 (2.218, 2.544) 1.791 �0.009 0.398

2.0 (2.028, 2.033) 2.020 0.020 0.025 (2.057, 2.074) 2.054 0.054 0.068 (2.383, 2.734) 1.933 �0.067 0.405

RMSE: root mean square error.
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are relatively accurate. In Table 7, we have used the bias and RMSE as the usual performance measures under to

compare our estimates. One can also calculate the bias and risk associated with estimates under the LINEX loss

function.17

6 Conclusions and future work

We proposed several statistical methodologies to provide accurate point and interval estimates of force compo-

nents exerted to the brain tissue during the performance of surgical tasks. Three small strain gauges were mounted

onto each prong of a conventional surgical bipolar forceps, and the voltage signals of each strain gauge installed

on a calibration station were used to estimate the value of force components applied. To calculate the estimates of

the interaction forces, we developed a bootstrap technique that was later used in conjunction with weighted least-

squares linear regression and multilevel models to estimate the unknown force values using observed voltages. The

nonparametric bootstrap technique provides accurate point and interval force estimation along the x and y

directions and fails to accurately estimate the force in the z direction due to particular mechanical design con-

sidered to place the strain gauge for measuring the force along the z-axis. We introduced different weights to the

model building process to come up with more accurate estimates. After applying these weights, bootstrap results

were improved as well, but still, results were not satisfactory for the z direction.
Since the calibration data was readily structured based on the direction in which the force was exerted to the

brain tissue (in x, y, and z directions), we developed a proper multilevel model for our calibration problem. The

force estimates obtained from the multilevel modeling yield better estimates when compared with those under

the WLS approach. The estimates improved further as weights were introduced into the model. Furthermore, we

enhanced our results by using a Bayesian approach to estimate the coefficients of the underlying multilevel

models. Results obtained under both the SEL and the LINEX loss functions to avoid overestimating the applied

forces. We also employed our proposed bootstrap methodology in conjunction with multilevel models to provide

interval estimates and enhance the accuracy of our point estimation. The overall results suggest that estimations

obtained using multilevel models are more accurate; however, the Bayesian approach provides narrower confi-

dence bounds with smaller bias and RMSEs. Another important observation is that using an intercept in the

model helps obtain more accurate results. An interesting direction for future work is to consider measurement

error in the model, specifically, multilevel models.18 This seems to be a proper direction as there are obviously

measurement errors in the read voltages from the strain gauges. Another interesting research direction involves

robust Bayesian analysis to study the sensitivity of our results with respect to the choice of prior distributions in

the underlying Bayesian multilevel modeling approach.
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