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Abstract: Maternal and perinatal undernutrition affects the lung development of litters and it may
produce long-lasting alterations in respiratory health. This can be demonstrated using animal models
and epidemiological studies. During pregnancy, maternal diet controls lung development by direct
and indirect mechanisms. For sure, food intake and caloric restriction directly influence the whole
body maturation and the lung. In addition, the maternal food intake during pregnancy controls
mother, placenta, and fetal endocrine systems that regulate nutrient uptake and distribution to
the fetus and pulmonary tissue development. There are several hormones involved in metabolic
regulations, which may play an essential role in lung development during pregnancy. This review
focuses on the effect of metabolic hormones in lung development and in how undernutrition alters
the hormonal environment during pregnancy to disrupt normal lung maturation. We explore the role
of GLP-1, ghrelin, and leptin, and also retinoids and cholecalciferol as hormones synthetized from
diet precursors. Finally, we also address how metabolic hormones altered during pregnancy may
affect lung pathophysiology in the adulthood.
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1. Introduction

Maternal diet is an essential factor that controls fetal growth, both directly by providing nutrients
to the embryo and indirectly by regulating the expression of endocrine mechanisms that control the
uptake and use of nutrients by the fetus; it also contributes indirectly by changing epigenetic profile
and so modulating the expression of genes. The reduction in caloric supply during pregnancy that
usually comes accompanied by deficiency of macro and several oligonutrients is called maternal
undernutrition. It is demonstrated that maternal undernutrition reduces fetal and placental growth in
animals and humans [1]. The reduction in fetal growth is explained by the reduction in cell division [2],
which is the result of the adaptation of the cells to the lack of nutrients and the alteration of growth
factor and hormone supplies, especially insulin and growth hormone [3]. Fetal growth restriction
(FGR) is defined as the fetal growth in lower rate than the normal growth potential, and is an important
cause of fetal and neonatal morbidity and mortality [4].

Lung development is a complex process that initiates in utero and continues until early adulthood.
In humans, lung development starts as soon as week 3 of gestation [5]. Lung organogenesis comprises
five differentiated stages in humans [6]. In the embryonic stage (4 to 6 weeks of gestation, WG), the two
lung buds and primary bronchi emerge from the primitive foregut. In the pseudoglandular stage (5 to
17 WG), there is an expansion of the conducting airways. Following this, in the canalicular stage (16 to
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27 WG), the epithelia differentiates to separate conducting and respiratory airways and the pulmonary
surfactant starts to be synthetized by alveolar type II cells (ATII). In the saccular stage (28 to 31 WG),
there is a transition from branching morphogenesis to alveologenesis. In the final alveolar stage (32
WG until early postnatal life), alveoli form and grow.

Other mammal species used for the study of lung development show similar stages, but at different
timing during gestation. Rodents have an immature lung at birth—they are in the saccular stage and
the alveoli develop postnatally [7]. The deficit of nutrients may alter normal lung development, and
promotes a long-lasting impact in the lung structure and function [8].

2. Effect of Metabolic Hormones in Lung Development

Hormones and growth factors lead lung morphogenesis. Some key hormones for metabolic
control such as insulin, glucocorticoids, and thyroid hormones are at the core of regulatory management
of organ development. However, there is extensive literature about their role in lung development
and organogenesis that the interested reader might easily find, and thus they are not included in our
review, despite their undoubted relevance.

Instead, new hormones modulating metabolism have been recently shown to have a key role in
the maturation of several organs, including the lung. In the next paragraphs, we summarize the actions
of some of the most relevant metabolic hormones, such as ghrelin, leptin, GLP-1, and gene-regulating
hormones such as retinoids and cholecalciferols.

2.1. Ghrelin

Ghrelin is a 28 amino acid acylated peptide derived from preproghrelin, a 117 AA precursor.
It was firstly identified in rat and human stomachs [9], but later, ghrelin expression was found in
other adult organs such as the pituitary, hypothalamus, kidneys, heart, and placenta [10]. Ghrelin
acts trough a G protein-coupled receptor known as growth hormone secretagogue receptor subtype
1a (GHS-R1a) [9], because it potently stimulates growth hormone (GH) release from the pituitary.
In addition, ghrelin stimulates food intake, acting at hypothalamus, and it is involved in the regulation
of metabolism, having an overall anabolic effect [11].

Ghrelin hormone is detected in cord blood in human fetuses from 20 weeks of gestation [12].
Interestingly, ghrelin is expressed in neuroendocrine cells of the bronchial wall in the pseudoglandular
stage of fetal lung development (7–18 WG), but its levels decrease from 19 WG to the second year of
postnatal life, and remains afterwards [13]. GHS-R1a is also widely expressed in fetal lung tissue [14,15].
It has been postulated that ghrelin acts as a regulator of fetal lung development in an autocrine/paracrine
way, and when exogenously administered, it contributes to fetal lung branching in in vivo and in vitro
studies [15,16].

It has been observed that in congenital diaphragmatic hernia (CDH), the ghrelin gene is
overexpressed in humans and in an animal model of CDH induced by nitrofen administration.
These data suggest a potential role of ghrelin in the mechanisms involved in attenuation of lung
hypoplasia [16]. In addition, and very relevant, ghrelin administration sensitizes lung fetal tissue to
the action of retinoic acid (RA) by upregulating RA receptors, what may be part of the underlying
mechanism to explain the effect of ghrelin in lung growth and development [17]. Moreover, ghrelin
administration improved pulmonary hypertension and attenuated pulmonary vascular remodeling in
newborn pups from an animal model of persistent pulmonary hypertension [18].

2.2. Leptin

Leptin is a 164 AA peptide product of the ob gene [19]. Leptin is produced and secreted by the
white adipose tissue, and so it is considered an adipokine. The circulating leptin levels seem to be
related to the whole amount of fat stored in adipose tissues [20]. Interestingly, leptin has shown to
have pleiotropic effects and it can modulate food intake and energy expenditure, immune response,
reproduction, and blood pressure homeostasis [21].
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Leptin acts through the leptin receptor (Ob-R), encoded by the db gene [22]. Ob-R is a member of
the class I cytokine receptor family and it is composed for six different isoforms, all of them products
of the alternative splicing of the Ob-R mRNA [23]. Leptin and Ob-R are expressed in many other
tissues, like the placenta and lungs [24,25]. In lung adult tissue, leptin expression was identified in
bronchial epithelial cells, ATII cells, which produce the surfactant, and in alveolar and interstitial
macrophages [26]. Leptin receptor expression is detected in the distal lung both in the alveolar and
bronchial epithelia [27].

In the fetal lung, leptin gene is expressed in lipofibroblasts, and its levels increases during alveolar
differentiation, when pulmonary surfactant phospholipid synthesis is induced [28]. The lung is one
of the few tissues that expresses the Ob-R leptin receptor during fetal development [29,30]. Ob-R is
expressed specifically by fetal ATII cells [30] and it is enhanced in late gestation, which suggests a
key role of leptin in lung maturity [31]. In FGR, the expression of leptin and Ob-R diminishes during
the canalicular stage of lung development, being a relevant pathogenic event to explain the lung
immaturity in that condition [32]. Moreover, leptin increases surfactant-associated protein (SFTP)
expression in in vitro culture of fetal lung explants and in fetal ATII cells [32,33]. The stimulation
of SFTP production by leptin is been postulated to be the result of a regulatory paracrine feedback
loop between the lipofibroblasts inside the lung and the type II alveolar epithelial cells [28]. On the
other hand, the administration of leptin to control animals in vivo produces contradictory findings.
While leptin did not modify surfactant synthesis in sheep and mice fetal lungs [34], in more recent
studies, it was able to increase the mRNA expression of surfactant-associated protein B (SFTPB) in fetal
ewes [35]. In addition, leptin administration to pregnant rats between GD19 and GD20 prevented the
alterations in fetal lung architecture and normalized the expression of surfactant-associated protein A
(SFTPA) in a model of FGR [32].

Furthermore, the role of leptin in lung maturation may be clarified in ob/ob mice, which lack leptin
expression [36]. These mice, which show a clear obese phenotype, also present an altered alveolar
formation that may be observed from the second week of postnatal life onwards, with a clear decrease
in lung volumes and reduced alveolar number and total alveolar surface area. The postnatal leptin
replacement in ob/ob mice stimulates alveolar enlargement and increases lung volume and alveolar
surface area [37].

On the other hand, the excessive leptin levels may also have deleterious effects. In rats, a maternal
high fat diet increases offspring serum leptin levels, and increases inflammatory cell infiltration and
interstitial remodeling, although in this case, it is not clear whether these effects might alternatively
be secondary to obese phenotype and dysregulation of metabolism [38]. In fact, there is a negative
correlation between leptin levels and forced expiratory volume in first second (FEV1), in obese children
and adolescents [39].

Again, all of the little experimental data reported to date clearly indicate that leptin may play a
relevant role in lung development, and in some way, this hormone might contribute to explain the
functional and pathophysiological connections already observed between adipose tissue and lungs.

2.3. GLP-1

Glucagon-like peptide 1 (GLP-1) is an insulinotropic hormone produced by enteroendocrine L-cells
of the ileum in response to food intake [40]. GLP-1 is the product of post-translational processing of
proglucagon gene. GLP-1 acts by binding to GLP-1 receptor (GLP-1R), a G protein-coupled receptor that
is widely expressed in many tissues, including a very high expression in fetal and adult lungs [41,42].

During fetal development, GLP-1 receptor is expressed in lung tissue, and its expression is
greatly increased just immediately before birth, in coincidence with a period of high surfactant
demand before alveolar expansion at first breath after birth [42]. GLP-1R activation increases in vitro
phosphatidylcholine secretion in rodent and human ATII cell primary cultures [43,44]. GLP-1 analogue,
exendin-4 also, increases perinatal SFTP expression and secretion in rats [42]. In the animal model
of lung hypoplasia induced by nitrofen in pregnant rats, exendin-4 administration promotes the
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expression of SFTPA and SFTPB in similar amounts as dexamethasone, but it also improves the
structural development of alveoli and the interstitial tissue, thus allowing the survival of a significant
number of newborn rats [42], which never found in untreated animals. In addition, transplacental
administration of the GLP-1R agonist liraglutide improved the morphology of the pulmonary vascular
vessel in an animal model of congenital diaphragmatic hernia in rabbits [45]. Moreover, GLP-1R
activation promoted a marked induction of the ACE2 expression, which enhanced the activity of
the ACE2/Ang(1-7)/MasR branch of the renin–angiotensin system, with vasodilatory instead of
vasoconstrictor properties, in an animal model of FGR by perinatal food restriction of the mothers [46].
This was also observed in diabetic rats, showing right ventricle hypertrophy, which is prevented by
just one-week administration of liraglutide [47].

In summary, our group and others have shown that GLP-1 receptor agonists have very important
effects in different aspects of lung physiology. These molecules stimulate the production of both
components of surfactant, phospholipids, and SFTPs; they regulate the vascular tone of the pulmonary
vessel, promoting vasorelaxation instead of vasoconstriction, thus preventing pulmonary hypertension
by the modulation of the components of the renin-angiotensin system; and they improve the alveolar
and interstitial histological structure of the lung tissue (Figure 1). GLP-1 receptor expression is also
regulated in relation to key events in the lung physiology, and it is overexpressed immediately before
birth. Altogether, GLP-1 receptor agonists show protective effects that improve lung function in
different physiological and pathophysiological conditions, suggesting a very relevant role in this organ.
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Figure 1. Schematic representation of the main effects of GLP-1R activation in fetal lung tissue.
Abbreviations: ATI cell, alveolar type I cell; ATII cell, alveolar type II cell; Glp-1, glucagon-like peptide-1;
ACE2, angiotensin-converting enzyme 2; Ang (1-7), angiotensin 1-7; MAS1, Mas proto-oncogene, G
protein-coupled receptor.

2.4. Retinoids

Retinoic acid (RA) is a metabolite derived from diet that acts properly like a hormone regulating
gene expression [48]. This hormone is obtained as a micronutrient, either as retinyl-esters, present in
animal origin food, or as carotenoids, present in vegetables. The hepatocytes are the main reservoir of
retinoids, where they accumulate up to 70% in the form of retinyl-esters [49]. When an extrahepatic
tissue requires RA, retinyl-esters are cleaved to retinol, which is transported to target tissue bound to
retinol-binding protein (RBP) [50]. In target tissues, retinol undergoes two successive oxidations to
produce all-trans retinoic acid (ATRA), the biologically active hormone [49].



Nutrients 2019, 11, 2870 5 of 18

Retinoids exert their actions through two different families of nuclear receptors that are
ligand-dependent transcription factors: Retinoid acid receptors (RARs) and retinoid X receptors
(RXRs) [51]. ATRA binds to an RAR, which then forms a heterodimer with an RXR molecule.
This complex binds to specific retinoic acid response elements (RAREs) present in the genomic DNA
upstream of the sequence of the gene promotor region. The RA receptors work as hormone-dependent
transcription regulators of several genes, interacting with other hormonal families such as estrogens
and thyroid hormones [51].

ATRA plays an essential role in fetal development and in tissue homeostasis by regulating cellular
differentiation, tissue maturation, remodeling and apoptosis, and tissue repair [52]. It was shown that
reduced levels of RA might promote fetal malformations of several organs [53], whereas very high
levels may trigger teratogenesis [54]. Therefore, circulating RA levels must remain within normal
ranges during pregnancy.

During fetal lung development, and since early embryonic stages, there is synthesis of RA and
expression of RA receptors in the primordial lung buds [55,56]. In fact, RA regulates the formation of the
bronchial tubules during the pseudoglandular phase [57]. This may be why the maternal deficiency of
retinoid results in lung hypoplasia—and even lung agenesis in the most severe cases [53,58]. This effect
was shown in fetuses of the RARα/RARβ2 double knockout mice, which had blunted the capacity to
respond to RA [59].

In murine animal models, lung maturation is finished after birth. In that case, it can be observed
that RA also plays a key role during perinatal lung maturation, when there is a relative depletion of
retinyl-ester levels in lung tissue [60], but RAR expression is upregulated in alveoli with respect to
mature lung, which suggests RA is involved in the genesis of alveoli [61]. Moreover, RA induces the
proliferation and differentiation of fetal type II to type I alveolar epithelial cells in vitro [62], and it
increases the expression of mRNA for surfactant-associated protein D [63].

Congenital diaphragmatic hernia (CDH) is a major life threatening disease, characterized by a
failure in both alveolar and vascular pulmonary development [64]. There is evidence that a defective
mechanism in the retinoid signaling pathway is involved in the etiology of CDH [65]. In classical
studies, an incidence of 25–70% of CDH in the offspring of pregnant rats with a deficient intake of RA
precursors was reported [66]. Whereas in humans, CDH-affected newborns present a 50% reduction of
plasma levels of retinol and retinol binding protein with respect to healthy newborns [67].

ATRA has been shown to also be very effective in other animal models of lung diseases.
For example, in bronchopulmonary dysplasia (BPD), the pups are exposed to hypoxia conditions from
postnatal day 1, disrupting normal septation and lung alveolarization [68]. In this model, postnatal
treatment with RA improves alveolar structure, reduces septal fibrosis, and increases survival [69–71].

In addition, RA contributes to ameliorate the status of the pups in experimental models of lung
hypoplasia. In one of these models, the perinatal caloric restriction decreases the RARα expression, and
the intraperitoneal administration of RA to the pups improves alveolar formation, likely overcoming
the partial deficit of receptors but also stimulating the expression of RARα [72].

There are different strategies for modeling lung hypoplasia in laboratory animals. Nitrofen (2,
4-dichlorophenyl-p-nitro phenyl ether) is a molecule developed as a herbicide, without toxicological
effects in adult rats. However, administration of nitrofen to pregnant rats on day 9 of gestation induces
deep alterations in lung development, to the end that pups show lung hypoplasia, making them not
viable for extra uterine life [73]. Nitrofen-induced lung hypoplasia might involve abnormalities in the
synthesis, uptake, and signaling pathway of the retinoid system [74–76], since retinoid administration
to lung explants of nitrofen-treated animals greatly improves the indicators of lung growth [77].
In addition, in vivo, the administration of retinoid precursors to the mothers during gestation reduces
the incidence of CDH, and increases survival and lung maturity of the litters [78,79]. It was also shown
that RA administration to mothers treated with nitrofen increases postnatal alveologenesis in the
progenies [80], likely by promoting the proliferation of type I alveolar epithelial cells [81]. All these
data suggest that an increase in the substrate supply for RA synthesis could counteract the decreased
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activity of the retinal dehydrogenase 2 (RALDH2), a key enzyme in retinol synthesis, as observed in
nitrofen-treated fetal lungs [74].

2.5. Cholecalciferol

Cholecalciferol or vitamin D3 is a secosteroid that is obtained directly from food of animal
origin, or indirectly by synthesis in the skin from 7-dehydrocholesterol after ultraviolet B exposure.
This prohormone is inactive, and it experiences two sequential hydroxylation steps to produce
1,25-Hydroxyvitamin D (1,25(OH)2D), the hormone active form [82]. 1,2(OH)2D, also called calcitriol,
interacts with this specific receptor, called vitamin D receptor (VDR), that is a ligand-dependent
transcription factor [83]. After ligand binding, it requires the formation of a heterodimer with a retinoid
X receptor (RXR) to interact with vitamin D response elements (VDRE) present in the DNA and to
regulate gene expression [84].

As the action mechanism of calcitriol requires forming heterodimers with the promiscuous receptor
for retinoids (RXR), it is not surprising that it may be involved in lung development, maturation,
and functional regulation. In fact, the lung is likely one of the main target tissues for calcitriol
during fetal development [85]. VDR receptor is expressed in fetal ATII cells, where its activation
induces proliferation and the synthesis and secretion of surfactant of both the fractions proteins and
phospholipids [86–89]. The incubation of human fetal and adult ATII cells with 1,25(OH)2D in vitro
culture increases VDR and the expression of SFTPB [90].

The maternal calcitriol deficiency during lung development in animal models modifies the
expression of genes involved in organ development, branching morphogenesis, and regulation of
inflammation process [91]. Therefore, several respiratory parameters may be affected, including the
reduction in lung volume, vital capacity and oxygen saturation, and increases in airway smooth
muscle mass and airway contractility [92–94]. All of these changes alter normal lung physiology and
might compromise the survival of the litters. In this condition, the supplementation of mothers with
calcitriol precursors completely prevents the negative effects of the deficiency. In addition, calcitriol
supplementation during lactation in rodents with previous deficiency during gestation improves
alveolar septation and lung function [95]. Even in pups from normal pregnant rats, the aerosol
administration of calcitriol precursors contributes to lung maturity by increasing the expression of
markers of epithelial, mesenchymal, and vascular differentiation that is followed by an increase in
the synthesis of surfactant phospholipids [96]. In human studies, there is an association between
a reduction of calcitriol levels in 18 WG and a reduced lung function in childhood [97]. It is also
demonstrated that severe deficiency of 25(OH)D in preterm infants is related to the development of
respiratory distress syndrome [98]. Thus, preterm supplementation with calcitriol precursors reduces
the time of assisted ventilation and oxygen supplementation [99], which confirms the essential role
of this hormone in lung maturation. In addition, it has been proposed that supplementation with
calcitriol precursors during pregnancy may be an effective mean of preventing childhood asthma [100].

3. Effect of Undernutrition on Lung Development and Adult Lung Function

There are several different animal models for the study of FGR, including genetic manipulation
models, but also mother food restriction during pregnancy [101]. The most frequently used animal
species for modeling FGR are mice, rats, and lambs.

In a model of lamb FGR by the removal of endometrial caruncles, there is a reduction in fetal
lung weight, lung liquid volume, and phospholipid concentration in liquid of alveolar lavage [102].
In this model, the lung weight is reduced by a similar rate to fetal body weight reduction, but carrying
structural alterations that reveal a retarded maturation [103]. FGR reduces alveolar number and
vascular density, but increases septal thickness [104,105]. These alterations become more pronounced
during postnatal lung development [104], which leads to a smaller number of large alveoli, alveolar
fenestrations, and increased number of mast cells in the lungs of adult animals, anticipating a premature
lung aging [106]. At least part of these changes in lung architecture could be explained by a marked
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reduction in elastin synthesis and deposition [107]. FGR also promotes the reduction of the mRNA
and protein expression of the SFTPs [108]. SFTP expression is higher after the delivery in FGR ewes
due to the activation of the hypoxia-signaling pathway by increasing HIF-2α mRNA expression [109].

FGR alters normal structure of the lamellar bodies of ATII cells involved in surfactant synthesis
and secretion, in the saccular stage before birth in rodents [110]. This alteration also reduces mRNA
expression of SFTPs [111]. However, after birth, there is a reduction in lung surfactant lipid levels, just
in the early postnatal period, without modifying the expression of surfactant-associated proteins in the
remaining postnatal period [112]. As described in lambs, FGR also disrupts normal lung architecture
in rodents, and it decreases alveolar number and increases septal thickness [113] from postnatal day 1
through adulthood. Moreover, this is accompanied by a decline in synthesis and secretion of elastin,
and an increase in static lung compliance [114].

In humans, fetal undernutrition can be caused by at least five situations:

(1) Severe nausea and vomiting period that persists more than the first trimester [115];
(2) The “Maternal Depletion Syndrome,” a product of a short inter-pregnancy interval, not allowing

sufficient time to replenish energy reserves and recovery of mothers, which promotes a depletion
of both macro- and micronutrients [116];

(3) Teenager pregnancy, where the mother, who may still be growing, competes with the fetus for
resources [117];

(4) Use and abuse of tobacco [118]; and
(5) Alcohol/drugs [119], which may promote placenta under-function and reduced nutrient supply

to fetus and/or maternal undernutrition.

There are few studies linking FGR, fetal lung development, and neonatal lung pathology in humans.
In fact, there are some conflicting results about the effect of FGR over respiratory distress syndrome
(RDS). Several studies have concluded that FGR reduces the incidence of RDS and increases the ratio
of lecithin/sphingomyelin in amniotic fluid, a marker of lung maturation [120,121]. They explain
this accelerated lung maturation as a consequence of the chronic intrauterine stress that increases
fetal glucocorticoid levels. Nevertheless, other studies have concluded that FGR increases the risk of
developing RDS and the risk of respiratory failure and death [122], and yet others did not find this
relation [123]. On the other hand, there is an association between perinatal growth restriction and an
increased risk of developing bronchopulmonary dysplasia in preterm infants [124]. Moreover, low
birth weight, but not prematurity, decreases lung size and bronchial airflow, and conversely increases
bronchial hyperreactivity in children [125].

In the mature lung, there is a clear relationship between the early fetal nutritional environment
and adult pulmonary diseases—despite the mechanistic basis of this relationship being unknown [126].
In the adult lung, there is a suggestive, not fully consistent, association between FGR and pulmonary
function in adulthood [127]. There are some evidences that FGR can decrease adult lung function [128],
whereas other studies did not find any effect over lung function [129]. Another study shows that
prenatal exposure to famine did not modify the lung function, but increased the prevalence of
COPD [130]. This risk is greater when severe famine exposure occurs during infancy [131]. Asthma is
another lung pathology that is related with FGR. There are some studies that link FGR with an increased
risk of developing adult asthma [132], whereas other studies conclude that environmental factors
during childhood rather than fetal undernutrition are responsible for the increased risk of developing
asthma in adult life [133].

4. Undernutrition and Hormones in Lung Development

Undernutrition in pregnancy promotes several changes in metabolic control and hormone levels,
which are needed to adapt the energy demands to reduced supplies. It is easy to link a caloric deficit
with reduced availability of precursor for hormones that are obtained in diet, such as retinoids and
carotenoids [134,135]. However, these precursors may be stored in some amounts in the liver and fat
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depots. In such a way, nutritional deficits of these hormones must be set up likely before pregnancy,
for reducing the reserves enough to affect fetus development during gestation. In developed countries,
the follow-up of every pregnant women and nutritional advice should be enough to prevent this
kind of deficit. A large part of the population is in the lower range or outside the normal range for
cholecalciferols (VitD), which may be especially critical in some susceptible populations: Low sun
exposure, low intake of fish and dairy products, obesity, or undernutrition.

The effect in the modulation on gene transcription by the activation of the retinoid hormone
system is so important that it might be a source of teratogeny when in elevated levels during pregnancy.
In addition, on the other hand, a deficit of retinoids promotes alterations in reproduction, placentation,
and organ development. However, there is not a recommendation to supplement nutrition with retinoid
precursors in pregnancy apart from in known deficient populations. In some African countries, this
deficit may be present in the 21–48% of all pregnant women [135]. On the other hand, some hormones
are involved in the short-term availability of energy resources, and may eventually be relevant in the
case of reduced food intake during pregnancy. In this context, and as described above, leptin seems
to be a relevant hormone in lung development. This hormone is mainly secreted by adipose tissue
in proportion to total fat storage. During starving, even partial, fat depots and, consequently, leptin
circulating levels are reduced [136]. Leptin is also produced by the placenta, where it plays a local
role in protein synthesis and proliferation of placental cells. It has been also postulated that leptin is
very important for maternal–fetal exchanges, regulating the growth and development of many organs,
including the lung. In fact, dysregulation of leptin mechanisms is link to several disorders occurring in
pregnancy, such as gestational diabetes and intrauterine growth restriction [137]. In FGR neonates,
there is a reduction in circulating leptin levels, due to a reduction in fetal fat mass and placental
production [138,139] The fetal reduction in leptin levels may compromise correct lung development.
The reduction in fetal circulating leptin levels is usually compensated by a postnatal increase when
enough energy supply is set up, which explains the catch-up lung growth in FGR offspring [140];
however, it may also be related to the augmented incidence of childhood asthma in FGR offspring [141].

Another hormone that has a relevant role in metabolic and food intake control is ghrelin. Ghrelin
is a peptide with orexigenic, adipogenic, and GH-releasing properties [142]. Regarding all described
effects for ghrelin, it is important in the regulation of metabolism and it has been suggested that
it contributes to energy resource distribution, linking nutrients to growth and development of the
organs. Ghrelin levels vary during pregnancy, reaching the highest peak at mid-gestation, and then
declining up to term [143]. Ghrelin is present in the cord blood and inversely correlates with fetal
growth. Moreover, intrauterine ghrelin levels have been linked to programming body weight in the
postnatal period [144]. FGR fetuses present high ghrelin levels in response to intrauterine malnutrition,
which might contribute to increase neonate appetite, which suggests a role of ghrelin in catch-up
growth [145,146]. Nevertheless, more recently, others have shown that ghrelin levels are reduced in
“small for gestational age” fetuses [146], and this is in accordance with increased levels of cortisol in
FGR fetuses due to the stress in the intrauterine environment. It has been shown that there is a negative
correlation between cortisol and ghrelin levels [147]. Despite there being few studies about ghrelin’s
involvement in lung function and development, the reported results suggest it has a relevant role.
The action mechanisms underlying the effects of ghrelin in the lungs will need some more studies to
be revealed.

GLP-1 is the least studied metabolic hormone, here presented in relation with pregnancy. GLP-1
could compensate pregnancy-related alterations in metabolism, such as an increase in glycaemia and
the development of insulin resistance, based on the increase of fasted active GLP-1 levels in the third
trimester of gestation [148]. This increase in GLP-1 secretion is a product of gastrointestinal tissue
expansion, rather than satiety [149]. GLP-1 circulating levels are reduced in pregnant mothers with
gestational diabetes [150,151]. However, we have no data about changes in GLP-1 levels during normal
pregnancy. It is important to emphasize that GLP-1 half-life is very short, lower than 2 min. Therefore,
GLP-1 levels may change very fast after meals, and so to study GLP-1 variations will demand to do
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repeated short-interval blood sampling in every individual. In a recent study, it has been reported that
GLP-1 and GIP circulating levels in mothers and cord blood negatively correlate with 25OHD, and,
surprisingly, GLP-1, GIP, and ghrelin positively correlate with glycated albumin maternal/cord ratio,
highlighting the relevance of these hormones and their interplay in the complex control of metabolism,
especially in pregnancy.

Ghrelin and GLP-1 are secreted in relation to meals and, since they may serve as a link between
maternal food intake and metabolism, may possibly modulate the exchange of nutrients through
the placenta. However, and as described above, both hormones have direct and important effects
in lung development. It must be highlighted that GLP-1 modulates many different functions of the
lung, including key processes such as the production of surfactant components, or the modulation
of vascular tone of pulmonary vessels by controlling the renin–angiotensin system local activation.
In addition, it should of the greatest interest to study whether the placenta, as the maternal/fetal
interchange organ, is a target for GLP-1 modulatory actions, as we have no data in this respect.

Finally, clinicians dedicated to pregnancy must be conscious of the delay in lung maturity in all of
the five clinical situations mentioned above, which include: Persistent severe vomiting beyond first
trimester; “Maternal Depletion Syndrome”, especially in susceptible populations; teenager pregnancy;
use of tobacco and abuse of alcohol and drugs [119]; but also in obese and diabetic mothers. In all of
these cases, a complete, well balanced, and eventually supplemented diet of mothers will guarantee
normal lung development of fetuses and newborns, contributing to prevent lung pathology in infancy
and adult life. This diet should provide enough, but not an excessive amount of, calories and calcitriol
and retinoid sources, in addition to other known nutrients needed for organogenesis, such as good
quality protein, iodine, and iron. Although, correct attention to the diet of pregnant women is included
in current gestational protocols in occidental medicine, it appears that this is not so general in many
countries, and thus should be regarded as a priority objective of preventive health policies.

In conclusion, the reduction of food intake during pregnancy may not just directly affect tissue
development because insufficient resources, but also undernutrition modifies the hormonal milieu,
which is critical for many organs, including lung. Retinol and cholecalciferol are hormones synthetized
from precursors obtained from diet; therefore, reductions in food intake limit the availability of these
hormones. In fact, the deficit in cholecalciferol is one of the most frequent in pregnancy, especially
in susceptible populations. Gestational undernutrition also reduces fat storage, as well as leptin
circulating levels in the medium-term; and daily-reduced caloric intake may affect the levels of
hormones regulated in the short-term, linked to meals such as ghrelin and GLP-1. The mentioned
hormones have key roles in lung development and maturity, including morphogenesis and structure
development, cell proliferation and apoptosis, and many functional processes such as production of
surfactant components, activity of the local renin–angiotensin system, and vascular tone of pulmonary
vessels (see Table 1). Moreover, undernutrition in pregnancy affects all of these hormonal systems at
once, in addition to others also relevant such as insulin and IGFs, thyroid hormones, and glucocorticoids.
Therefore, the correction of known specific deficits with diet supplementation during gestation is
mandatory and should be included in clinical protocols. The disruption of the hormonal environment
during pregnancy becomes especially important when the mothers present metabolic diseases such as
diabetes and obesity, despite that caloric intake may be preserved. The dysregulation in hormonal
control in altered metabolism in mothers may affect lung development and maturity of the fetus to
different degrees, also conditioning higher risk to lung pathology in adult life. In this case, the correction
during pregnancy of diet and food intake, in proper amounts and composition, is so important to lung
development, like it might be in caloric restriction and undernutrition.
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Table 1. Summary of the effects of the different hormones over lung development.

Hormone Action in Lung Development References

Ghrelin
Fetal lung branching [15,16]

Upregulating RA receptors/ sensitizing RA action [17]

Leptin
Enhance lung maturity [28,31–34]

In vitro phosphatidylcholine secretion [28]

In vitro SFTPs expression [28,32–34]

GLP-1
In vitro phosphatidylcholine secretion [43,44]

In vivo SFTPs expression [42,46,47]

Increase ACE2/Ang (1-7)/MasR branch of the
renin-angiotensin system [46,47]

Retinoic acid

Formation of bronchial tubules during
pseudoglandular phase [57]

Lung maturation [62,69,70,72,77–79]

In vitro Proliferation of ATII cells and differentiation
to ATI cells [62,81]

In vitro and in vivo SFTPs expression [62,63]

Cholecalciferol

Branching morphogenesis [91]

In vitro proliferation of ATII cells [96]

In vitro surfactant phospholipids secretion [96]

In vitro SFTPs expression [96]

Lung maturation [95,96]

Abbreviations: RA, retinoic acid; SFTPs, surfactant-associated proteins; ACE2, angiotensin-converting enzyme 2;
Ang (1-7), angiotensin 1-7; MAS1, Mas proto-oncogene, G protein-coupled receptor; ATII cells, alveolar type II cells;
ATI cells, alveolar type I cells.
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