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Researchers have realized that microRNAs (miRNAs) play sig-
nificant roles in the pathogenesis of various diseases. Although
many computational models have been proposed to predict the
associations between miRNAs and diseases, prediction perfor-
mance could still be improved. In this paper, we propose a
novel self-weighted, multi-kernel, multi-label learning
(SwMKML) method to predict disease-related miRNAs.
SwMKML adaptively learns two optimal kernel matrices for
both miRNAs and diseases from multiple kernels constructed
from known miRNA-disease associations. Moreover, the
miRNA-disease associations predicted from both spaces are up-
dated simultaneously based on a multi-label framework.
Compared with four state-of-the-art computational models,
SwMKML achieved best results of 95.5%, 93.1%, and 84.1%
in global leave-one-out cross-validation, 5-fold cross-valida-
tion, and overall prediction accuracy, respectively. A case study
conducted on head and neck neoplasms further identified two
potential prognostic biomarkers, hsa-mir-125b-1 and hsa-mir-
125b-2, for the disease. SwMKML is freely available at Github,
and we anticipate that it may become an effective tool for
potential miRNA-disease association prediction.
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INTRODUCTION
MicroRNAs (miRNAs) are a class of evolutionarily conserved, non-
coding, small-molecule RNAs that have the function of regulating
gene expression at the post-transcriptional level.1 Recent studies
have shown that miRNAs play crucial roles in various biological pro-
cesses, such as cell growth and apoptosis, hemocyte differentiation,
cardiac genesis, and late embryonic development.2,3 Therefore, re-
searchers have made great efforts to explore disease-related miRNAs
by biological experiments to promote the understanding of the func-
tional roles of miRNAs in the pathogenesis of human diseases and
provide new clues for subsequent clinical treatment.4 Nevertheless,
the experimental methods are usually costly and time-consuming,
which hinders their applicability to large-scale prediction.5 Because
of the relatively limited experimental data, recently, various studies
regarding this topic have also been proposed to detect potential dis-
ease-related miRNAs based on computational biology methods.6–8
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Existing computational models can be roughly divided into three
categories: similarity-based approaches, network topology-based
methods, and machine learning-based methods. Based on the
assumption that functionally similar miRNAs are generally associated
with phenotypically similar diseases, many similarity-based ap-
proaches have been developed.9–14 For instance, Jiang et al.9 con-
structed a comprehensive human phenome-microRNAome network
to prioritize the entire human microRNAome for diseases of interest.
Chen et al.10 adopted global network similarity measures to infer po-
tential disease-related miRNAs by implementing random walk with
restart on the functional similarity network. Both Xuan et al.11 and
Liu et al.12 constructed a bilayer heterogeneous network to effectively
uncover miRNA-disease associations.

Another set of prediction methods utilized network topological char-
acteristics and also achieved remarkable performance.15–20 Zou
et al.15 learned an integrated network similar to a social network
composed of multiple heterogeneous networks to predict the poten-
tial associations between miRNAs and diseases. You et al.16 adopted
a depth-first search algorithm to rank the associations between miR-
NAs and diseases in terms of their path length. Chen et al.19 used
graphlet interaction to quantify the relationships between miRNAs
and diseases. Qu et al.20 developed a novel KATZ model-based
computational method through a reliable heterogeneous network
by integrating multiple data sources. Although these methods have
achieved great performance, their prediction performance could be
easily affected by a change in network topology.

In addition, with the rapid development of artificial intelligence tech-
niques, increasing numbers of computational models based on
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://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Performance Comparison of SwMKML

with the Other Four Methods

(A and B) Comparisons in terms of (A) global LOOCV and

(B) 5-fold CV.
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machine learning have also been designed to solve the prediction
problem.21–27 Chen and Yan28 developed a regularized least-squares
method to discover new disease-related miRNAs. Xiao et al.29 pro-
posed a graph-regularized, non-negative matrix factorization frame-
work to discover potential associations between miRNAs and
diseases. Chen et al.30,31 presented a novel model of inductive matrix
completion for miRNA-disease association prediction. Zeng et al.32

proposed a structural perturbation method based on the metric of
structural consistency to predict potential new associations.

Despite the tremendous efforts made to identify the possible associa-
tions between miRNAs and diseases, most computational methods
still suffer from several limitations that affect their prediction accu-
racy and scalability. For instance, the similarity matrices constructed
for miRNAs and diseases might be sub-optimal because of data
incompleteness. Moreover, the prediction process in miRNA space
is usually separated from that in disease space. To conquer the afore-
mentioned limitations, we propose a novel method to predict poten-
tial disease-related miRNAs based on a self-weighted, multi-kernel,
multi-label learning (SwMKML) framework. Specifically, our method
first constructs a set of kernel matrices by fully taking advantage of
known miRNA-disease associations. We then adaptively learn two
optimal kernel matrices for both miRNAs and diseases from multiple
kernels. Finally, the predicted miRNA-disease associations are up-
dated synchronously according to a graph-based, multi-label learning
framework. To illustrate the effectiveness of the proposed method, we
apply several evaluation metrics to systematically measure prediction
performance. The experimental results show that our method
achieves favorable performance compared with several state-of-the-
art methods. We further implement a case study of head and neck
neoplasms to identify potential diagnostic biomarkers for the disease.
In summary, our method demonstrates a superior ability to predict
candidate disease-related miRNAs for future clinical trials.

RESULTS
Performance Evaluation

We compared the prediction performance of our method with
four state-of-the-art computational models: L1-Norm, structural
perturbation method for miRNA-disease association prediction
(SPMMDA), path-based miRNA-disease association prediction
(PBMDA), and extreme gradient boosting machine for miRNA-dis-
Molecular Therap
ease Association prediction (EGBMMDA). Spe-
cifically, L1-Norm is a graph-based, semi-super-
vised learning method that obtains sparse
solutions for prioritizing disease-related miR-
NAs.33 SPMMDA uses structural consistency
to estimate the link probability between miR-
NAs and diseases.32 PBMDA measures the association scores of
miRNA-disease pairs by calculating the accumulative contributions
from all paths.16 EGBMMDA utilizes an extreme gradient-boosting
machine model for predicting miRNA-disease associations.31 Several
different evaluationmetrics were employed to comprehensively verify
the performance of our method.

We first performed global leave-one-out cross-validation (LOOCV) and
5-fold cross-validation (CV) to evaluate our method based on the exper-
imentally verified miRNA-disease association dataset from Human
MicroRNA Disease Database (HMDD) v.2.0.34 In particular, global
LOOCV considered each association as the test set and the rest as the
training set to iteratively obtain a predicted ranking.35 For 5-fold CV,
the entire miRNA-disease associations were randomly divided into five
disjoint subsections, and then each part was selected as the test set,
whereas the remaining parts were taken as the training set.36 To intui-
tively demonstrate prediction performance, the receiver operating char-
acteristic (ROC) curvewas drawn by plotting the true positive rate (TPR)
against the false positive rate (FPR) at varying thresholds.37 Moreover,
the area under the ROC curve (AUC) was calculated to quantitatively
measure the performance of all methods.38 AUC = 1 means that the
method achieves a perfect performance, whereas AUC = 0.5 indicates
that the method has a random prediction performance. Figure 1 shows
in detail the performance of our method compared with the other four
methods in terms of global LOOCV and 5-fold CV. It can be observed
that ourmethodobtained the best performancewithin both frameworks.

Next, a new evaluation metric, called leave-one-disease-out cross-
validation (LODOCV) was adopted to assess the prediction power
of our method in predicting diseases without known associated miR-
NAs. Specifically, for a given disease, LODOCV removed all miRNAs
associated with this disease, and the predictions were carried out
relying on the association information from other diseases. As shown
in Figure 2A, our method also achieved the best performance among
all methods. Furthermore, we also calculated the statistical signifi-
cance of differences in performance obtained by our method and
the other four methods (Table 1), and a Wilcoxon signed-rank test
statistically confirmed the superiority of our method.

We also selected four classical performance evaluation metrics—
sensitivity (Sn), specificity (Sp), overall accuracy (Acc), and stability
y: Nucleic Acids Vol. 17 September 2019 415
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Figure 2. Performance Comparison between

SwMKML and the Other Methods under Two

Different Evaluation Metrics

(A) Performance comparison of SwMKML with the other

four methods in terms of LODOCV. (B) The number of

predicted miRNAs that were confirmed in HMDD v.2.0.
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(Matthews correlation coefficient [MCC])—to objectively reflect the
prediction performance of each method in a quantitative way.39,40

The definitions of the four metrics are given as follows:41,42
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whereN + andN� represent the total number of positive samples and
negative samples investigated, respectively. N +

� is the number of pos-
itive samples incorrectly predicted to be negative, whereas N�

+ is the
number of negative samples incorrectly predicted to be positive. Ac-
cording to the definitions above, we obtained the values of the four
metrics for each disease following the same process as that of LO-
DOCV and calculated their average as the final results for each
method. As shown in Table 2, SwMKML achieved the best perfor-
mance under all evaluation metrics except Sn.

Finally, todemonstrate the predictionpowerof ourmethodon real data-
sets, we implemented ourmethod on the HMDD v.1.0 dataset and veri-
fied the prediction results based on the HMDD v.2.0 dataset. The older
version of HMDD v.1.0 contained 1,616 association pairs involving 129
diseases and 280 miRNAs after filtering. Specifically, we compared the
number of validatedmiRNA-diseasepairs among the top50 associations
predictedby eachmethod.As shown inFigure 2B, ourmethod identified
more validated associations than the other computational methods.
Taken together, all results demonstrated the superiority and reliability
of our method in predicting potential miRNAs associated with diseases.
Parameter Analysis

There were three trade-off parameters in our objective function.
In this section, we varied their values to see their effects on the
416 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
final prediction accuracy of 5-fold CV.
Specifically, we tested the effects of two pa-
rameters each time by fixing the other param-
eter (Figure 3). We found that our
method achieved the best performance when a = 10�4, b = 10,
and g = 1.

Convergence Analysis

In this section, we verified the convergence of our method in practice
based on 5-fold CV. As shown in Figure 4, our method quickly
reached a steady state within 15 iterations, which clearly demon-
strated that our method has a fast convergence speed. This character-
istic ensures the extendibility of our method on large-scale datasets.

Case Study

We conducted a case study analysis on head and neck neoplasms to
further prove the reliability and prediction performance of our
method. Head and neck squamous cell carcinoma (HNSC) is the sixth
most common cause of cancer death worldwide, and the molecular
mechanism of HNSC is not yet clear. In recent years, a handful of
miRNAs were found to be differentially expressed in HNSC through
clinical experiments, such as hsa-let-7a-1. The top10 miRNAs pre-
dicted to be related to HNSC by our method are listed in Table 3.
Moreover, we downloaded miRNA expression data as well as clinical
information of HNSC patients from The Cancer Genome Atlas
(https://portal.gdc.cancer.gov/repository)43 for further analysis.
Concretely, the miRNA expression data contain 567 HNSC samples:
44 normal samples and 523 tumor samples. We first perform a 5-fold
CV to assess the classification ability of the predicted miRNAs in
differentiating the normal samples from tumor samples. As expected,
these miRNAs achieved a mean classification accuracy of 0.92, indi-
cating their strong classification power in HNSC (Figure 5A).
We then carried out a differential expression analysis by using the
R package edgeR.44 As a result, we found that 2 of the top 3 predicted
miRNAs, hsa-mir-125b-1 and hsa-mir-125b-2, were significantly
differentially expressed (false discovery rate [FDR] < 0.05 and log
fold-change [jlogFCj] > 1). Therefore, we further tested whether these
two miRNAs were also significantly differentially expressed at
different tumor stages by one-way ANOVA. Specifically, 5 patholog-
ical stages—G1, G2, G3, G4, and GX—were recorded in the clinical
information, and the test results confirmed that their expression levels
were indeed altered at varying stages (Figure 5B). Last, we carried out
a Kaplan-Meier survival analysis to assess their potential prognostic
role for HNSC by using the R package survival (Figure 6). Intrigu-
ingly, we found that patients with a lower expression level have a

https://portal.gdc.cancer.gov/repository


Table 1. Statistical Significance of Differences in Performance between

SwMKML and the Other Four Methods in LODOCV

L1-Norm SPMMDA PBMDA EGBMMDA

p Value 3.99e�03 3.81e�37 4.01e�02 3.17e�87

Table 2. Comparison of the Proposed Method with the Four State-of-the-

Art Methods in Terms of Acc, MCC, Sn, and Sp

Method Acc (%) MCC Sn (%) Sp (%)

SwMKML 84.10 0.3059 63.79 85.30

L1-Norm 83.34 0.3005 51.37 84.87

SPMMDA 82.45 0.2932 38.43 84.34

PBMDA 79.37 0.2613 65.00 79.78

EGBMMDA 54.87 0.1845 38.04 56.58
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higher survival rate. In summary, our analysis indicated that the two
miRNAs were closely related to HNSC and that they could serve as
potential prognostic markers for clinical diagnosis.
DISCUSSION
It has been found that miRNAs play increasingly important roles in
physiological processes and even complex human diseases. Re-
searchers have attempted to make miRNAs valuable biomarkers
for disease prevention, diagnosis, and treatment. Because of the in-
efficiency and high cost of experimental methods, many computa-
tional models have been developed to make effective predictions,
such as graph-based methods, network topology-based methods,
and the most widely used machine learning-based methods. In
this paper, we propose a novel SwMKML method to predict poten-
tial miRNA-disease associations based on a miRNA functional sim-
ilarity matrix, disease semantic similarity matrix, Gaussian interac-
tion profile kernel similarity matrix, and association matrix between
miRNAs and diseases. Specifically, our method learned an optimal
kernel matrix adaptively from multiple kernel matrices for both
miRNAs and diseases, respectively. We also propose a unified opti-
mization process to update the predicted miRNA-disease associa-
tion synchronously according to a graph-based, multi-label learning
framework. As a result, comparative experiments conducted using
our method and several state-of-the-art methods confirmed the su-
perior performance and practicability of the proposed method. Last,
the case study of head and neck neoplasms further validated the pre-
diction ability of our method, and two miRNAs, hsa-mir-125b-1
and hsa-mir-125b-2, were identified as potential prognostic markers
for HNSC.

The main reasons for the success of our model are 3-fold. First, the
kernel matrices learned for both miRNAs and diseases during the
optimization process were optimal kernels instead of a simple linear
combination of base kernels. Moreover, the set of Gaussian kernels
constructed with varying bandwidth parameters better characterized
the known miRNA-disease associations from multiple views.
Notably, our method is highly scalable because it only requires the
miRNA-disease associations to fulfill the prediction task. Last but
not least, the predictions of the miRNA-disease associations from
both optimization spaces were unified by leveraging the multi-label
learning framework. Nevertheless, there were also some limitations
in our model. Because our method is a multi-kernel learning method,
the given miRNA similarity matrix as well as disease similarity matrix
has to be kernelized in advance, and different kernelization strategies
might lead to different results. It remains a challenging task to balance
the three trade-off parameters involved in our objective function to
reach a global optimum.
MATERIALS AND METHODS
Human miRNA-Disease Associations

The human miRNA-disease associations dataset used in this paper was
downloaded from HMDD v.2.0, which includes 6,088 experimentally
verified associations between 328 diseases and 550 miRNAs.45 For
simplicity, we useY˛Rnd�nm to represent the knownmiRNA-disease as-
sociation matrix. If miRNA mi is related to disease dj, then the entry
Y(mi,dj) is 1 and0otherwise. Furthermore, the variablesnm andnd repre-
sent the number of miRNAs and diseases in the dataset, respectively.

Disease Semantic Similarity

The development of the Mesh database provides great convenience
for studying the relationship among diseases.46 Concretely, the rela-
tionship between different diseases in the database can be represented
by a directed acyclic graph (DAG).47 A disease D can be represented
as DAG(D) = (D,T(D),E(D)), where T(D) represents both D and its
ancestor nodes, and E(D) represents all direct edges from parent
nodes to child nodes. The contribution value of disease d to the
semantic value of disease D can be formed as follows:�
DDðdÞ= 1 if d =D
DDðdÞ=max

�
D � DD

�
d’
	

d’˛children of d

�
if dsD ;

(Equation 1)

where D = 0.5 is the semantic contribution factor. For disease D, the
contribution value to itself can be set to 1. From the representation of
DAGmentioned above, we can finally conclude the semantic value of
disease D as

DVðDÞ=
X

d˛TðDÞ
DDðdÞ: (Equation 2)

Therefore, the semantic similarity between disease di and disease dj
can be calculated as follows:

S
�
di; dj

	
=

P
d˛TðdiÞXTðdjÞ

�
DdiðdÞ+DdjðdÞ

	
DVðdiÞ+DV

�
dj
	 : (Equation 3)

According to Equation 3, we obtained the disease semantic similarity
matrixAD˛Rnd�nd .

miRNA Functional Similarity

Wang et al.48 introduced a novel method to calculate miRNA func-
tional similarity in terms of the associated disease terms. Here we
Molecular Therapy: Nucleic Acids Vol. 17 September 2019 417
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Figure 3. Effects of the Three Parameters a, b, and g on the Prediction Performance of SwMKML in 5-Fold CV
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directly downloaded the miRNA functional similarity score for the 550
miRNAs from http://www.cuilab.cn/files/images/cuilab/misim.zip.45

We use AM˛Rnm�nm to denote the obtained similarity matrix for
miRNAs, and (AM)ij measures the closeness between mi and mj.

Gaussian Interaction Profile Kernel Similarity

Based on the current miRNA-disease interaction prediction prob-
lem, we prefer the Gaussian kernel approach, which can construct
a kernel matrix from the miRNA-disease interaction profiles.
Gaussian interaction profile kernel similarity is the most popular
method, and it has already been confirmed as an effective method
for measuring similarities. For a given miRNA i or disease j, y(mi)
or y(dj) is the interaction profile for the i-th row or the j-th column
of the miRNA-disease association matrix. Therefore, the Gaussian
interaction profile kernel similarity is defined as follows for both
miRNA mi and disease dj:

KGIP;d

�
di; dj

	
= exp

�� gdkyðdiÞ � y
�
dj
	 k 2	

and (Equation4)
Figure 4. The Variations of the Objective Function Value of SwMKML with

Respect to the Number of Iterations
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KGIP;m

�
mi;mj

	
= exp

�� gmkyðmiÞ � y
�
mj

	 k 2	
; (Equation 5)

where gd and gm are determined by the following transformation:

gd =g0
d

, Xnd
i= 1

kyðdiÞ k
,

nd

!
and (Equation 6)

gm =g0
m

, Xnm
i= 1

kyðmiÞ k
,

nm

!
; (Equation 7)

where g0
d and g

0
m are the kernel bandwidth.We denoteAðiÞ

M˛Rnm�nm

andAðjÞ
D ˛Rnd�nd (i,j = 1,2,.,7) for the KGIP,m, and KGIP,d for both the

miRNA space and disease space.
Kernelization

Because ourmethod is based onmulti-kernel learning, we first need to
make the given miRNA similarity matrix AM as well as the disease
similarity matrix AD positive semi-definite. As we know, a real
Table 3. Top 10 miRNAs related to HNSC based on our method.

miRNA p Value logFC FDR

hsa-mir-125b-1 2.59e�16 �1.001610441 5.23e�15

hsa-let-7a-1 2.50e�08 �0.606930394 2.13e�07

hsa-mir-125b-2 1.15e�17 �1.061612358 2.70e�16

hsa-let-7a-3 2.64e�08 �0.60496417 2.23e�07

hsa-let-7a-2 2.23e�08 �0.609628999 1.92e�07

hsa-let-7b 0.000766178 �0.367610987 3.24e�03

hsa-let-7e 0.606511339 �0.068722721 9.64e�01

hsa-mir-1-1 9.77e�27 �3.369305544 4.08e�25

hsa-mir-221 0.045288057 0.252113845 1.16e�01

hsa-mir-145 8.05e�06 �0.563207754 4.80e�05

The first column represents the miRNA names predicted by SwMKML. The second col-
umn represents the p value of the significance of differential expression for eachmiRNA.
The third column represents the log2 fold change. The fourth column represents the
adjusted p value of the differential analysis.

http://www.cuilab.cn/files/images/cuilab/misim.zip


Figure 5. Analysis for the Top 10 Predicted miRNAs

(A) Classification accuracy of the top 10 predicted miRNAs under 5-fold CV. (B) The expression level of has-mir-125b-1 and hsa-mir-125b-2 at different tumor stages.
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symmetric matrix S could be decomposed into S = ULUT, where U is
an orthogonal matrix, and L is a diagonal matrix of real eigenvalues
with L = diag(l1,l2,.,ln). Previous studies have considered different
spectrum modifications to make S positive semi-definite, such as
spectral shift, flip, and clip. Here we adopted spectrum shift because
it only strengthens the self-similarities and does not change the
similarity between any two different samples:49

S=UðL+ jminðlminðSÞ; 0Þ j IÞUT ; (Equation 8)

where lmin(S) is the minimum eigenvalue of S. According to
Equation 8, we converted AM and AD into the corresponding kernel
matrices.
SwMKML

To fully understand the rationale behind our model, we first briefly
introduced the single-kernel learning (SKL) framework on which
SwMKML is based. In general, the SKL could be formulated as50

min
S;F

Tr
�
K � 2KS+ STKS

	
+ gkS k 2

F +aTr
�
FTLF

	
; s:t: SR0;

(Equation 9)

where K represents the kernel matrix constructed from the input
data, and S is the similarity matrix that will be learned from K.
L = D-S is the Laplacian matrix, and D is the diagonal degree matrix,
with its i-th diagonal element defined as dii =

P
jðsij + sjiÞ=2. In

particular, F could be the class indicator matrix or label matrix, de-
pending on whether this framework is applied to unsupervised or
semi-supervised problems.51,52 Therefore, we can obtain the
multi-kernel learning framework by extending Equation 9 as
follows:

min
S;P;K

Tr
�
K � 2KS+ STKS

	
+ gkS k 2

F +aTr
�
FTLF

	
+ b
Xl

i= 1

wikHi � K k 2
F ; s:t: SR0;

(Equation 10)

where Hi (i = 1,.,l) is one of the input kernel matrices. Specifically,
the kernel weight parameter wi is defined as

wi =
1

2kHi � K k F

: (Equation 11)

Althoughwi is dependent onK, we could update its value alternatively
after obtaining K. As a result, the weight assignment for each kernel
matrix is totally self-weighted. According to Equation 10, we could
obtain the optimization function in miRNA space by substituting
Figure 6. Kaplan-Meier Survival Analysis for hsa-

mir-125b-1 and hsa-mir-125b-2, Identified as

Prognostic Biomarkers in HNSC

As observed, patients with a lower expression level have a

higher survival rate.
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Figure 7. Integrated Flow Chart of SwMKML to Predict Disease-Related miRNAs
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the variables in Equation 10 with matrices constructed in miRNA
space:

min
SM ;F;KM

Tr
�
KM � 2KMSM + STMKMSM

	
+ kSM k 2

F +aTr
�
FLSMF

T
	

+ b
P8
v = 1

WðvÞ
M kAðvÞ

M � KM k 2

F

s:t: SMR0

;

(Equation 12)

whereLSM =DSM � ðSTM + SMÞ=2 is the Laplacian matrix, and the de-
gree matrix DSM˛R

nm�nm is defined as a diagonal matrix whose i-th
diagonal element is

P
jððSMÞij + ðSMÞjiÞ=2. Similarly, we define the

objective function in the disease space as follows:

min
SD ;F;KD

Tr
�
KD � 2KDSD + STDKDSD

	
+ kSD k 2

F +aTr
�
FTLSDF

	
+ b

P8
v = 1

WðvÞ
D kAðvÞ

D � KD k
2

F

s:t: SDR0

:

(Equation 13)
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The definition of variables in the disease space is equivalent to that in
the miRNA space. Finally, instead of simply combining these two
objective functions with equal weights, we integrate them into one
overall optimization formulation in terms of the graph-based,
multi-label learning framework:
min
SM ;SD ;F;KM ;KD

Tr
�
KM � 2KMSM + STMKMSM

	
+ kSM k 2

F

+aTr
�
FLSMF

T
	
+ b
X8
v = 1

WðvÞ
M kAðvÞ

M � KM k 2

F

+Tr
�
KD � 2KDSD + STDKDSD

	
+ kSD k 2

F

+aTr
�
FTLSDF

	
+ b
X8
v = 1

WðvÞ
D kAðvÞ

D � KD k
2

F

+gkF � Y k 2
Fs:t: SMR0; SDR0:

(Equation 14)

An overall workflow of the SwMKML method to predict the disease-
related miRNAs is shown in Figure 7.



Box 1 Algorithm to Solve Equation 14

Input: miRNA similarity matrices of n views {Að1Þ
M ,Að2Þ

M , .,
AðnÞ
M }, disease similarity matrices of m views {Að1Þ

D , Að2Þ
D , .,

AðmÞ
D }, known association matrix Y˛Rnd�nm, the parameters

a, b and g.

Output: Predicted association matrix F.

1. Initialize the weights of each view for both miRNAs and
diseases with WðvÞ

M = 1=n, WðuÞ
D = 1=m.

2. Repeat:

3. Repeat:

4. Update SM by solving problem (17).

5. Update KM by solving problem (19).

6. Update SD by solving problem (21).

7. Update KD by solving problem (22).

8. Update F by solving problem (25).

9. Until convergence

10. Update WðvÞ
M , WðuÞ

D according to Equation (20) and
Equation (23).

11. Until convergence

12. Return SM, KM, SD, KD, F
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Optimization

We divide the problem in Equation 14 into three subproblems
with regard to miRNA space and disease space, respectively. We
then develop an iterative algorithm to solve these problems
alternatively.

Update SM. By fixing the other variables, the optimization for SM from
Equation 14 can be derived as

min
SM

Tr
�� 2KMSM + STMKMSM

	
+ kSM k 2

F +aTr
�
FLSMF

T
	

s:t: SMR0
:

(Equation 15)

Note that the problem (Equation 15) is independent for different i;
thus, we can solve the problem separately for each i. Based onP

ijð1=2ÞkFi � Fj k 2
2ðSMÞij = TrðFLSMFTÞ, we can equivalently solve

the following problem for each i individually:

�2ðKMÞiðSMÞi+ ðSMÞTi KMðSMÞi+ ðSMÞTi ðSMÞi+
a

2
GT

i ðSMÞi;
(Equation 16)

whereGi˛Rn�1 with gij = kFi � Fj k 2
2. By setting its first derivative

with respect to (SM)i to zero, we can obtain
ðSMÞi= ðI +KMÞ�1

�
ðKMÞi �

aGi

4

�
: (Equation17)

Update KM. By fixing the other variables, Equation 14 can be
rewritten as

min
KM

Tr
�
KM � 2KMSM + STMKMSM

	
+ b
Xm
v = 1

WðvÞ
M kAðvÞ

M � KM k 2

F :

(Equation 18)

By differentiating Equation 18 with respect to KM, we could obtain:

KM =

2STM � SMSTM � I + 2b
Pm
v = 1

WðvÞ
M AðvÞ

M

2b
Pm
v = 1

WðvÞ
M

: (Equation 19)

After we obtained KM, we could update the weight value for each view
as follows:

WðvÞ
M = 1

.�
2kKM � AðvÞ

M k F

�
: (Equation 20)

Because the optimization in disease space is the same as that in
miRNA space, we could derive the formulas to optimize SD, KD and
WðvÞ

D as follows:

ðSDÞi= ðI +KDÞ�1

�
ðKDÞi �

aGi

4

�
; (Equation 21)

KD =

2STD � SDSTD � I + 2b
Pd
v = 1

WðvÞ
D AðvÞ

D

2b
Pd
v = 1

WðvÞ
D

; and (Equation 22)

WðvÞ
D = 1

.�
2kKD � AðvÞ

D k F

�
; (Equation 23)

where Gi˛Rn�1 with its j-th element defined asgij = kFi � Fj k 2
2.

Update F. Equation 14 is transformed into the following formula by
fixing the other four variables:

min
F
aTr

�
FLSMF

T
	
+ aTr

�
FTLSDF

	
+g
Xn
i= 1

kFi � Yi k 2
:

(Equation 24)

By differentiating Equation 24 with respect to F and setting it to zero,
we could obtain the following formula:

ðaLSM +gIÞF + aFLSD � gY = 0: (Equation 25)

Obviously, Equation 25 is a Sylvester equation and can be easily
solved.53 The overall procedure for solving Equation 14 is summa-
rized in Box 1. The dataset used in this paper as well as the source
code of SwMKML is available at https://github.com/JiaMuL/
SwMKML.
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